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Abstract 

Applying monotone mapping theory, this paper studies the existence 
of weak solutions of ( )xp -biharmonic equation on variable 

exponential space. 

1. Introduction and Preliminaries 

In the theory of elasticity, we often encounter with ( ) ( )∫Ω dxxDu xp  

and the integrals constructed from more general function with growth 
conditions, where ( )xp  is the function defined on Ω. These integrals reflect 

an important physical phenomenon called “Anisotropy”. 
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Fan and others have systematically investigated ( )xp -Laplacian on 

variable exponential space more than ten years. However, the results on 
( )2>nn  order equations with non-standard growth conditions are fewer. 

Applying pseudomonotone operator, Zhao and Fan [1] discussed the 
existence of weak solutions of 2m order elliptic equations with ( )xp -growth 

condition. Moreover, applying calculus of variations, Zang discussed the 
existence of solutions and multiplicity solutions in [2]. 

Deeply impressed by [3], we shall discuss the existence of solutions of 
Navier boundary problem with monotone mapping theory. To be precise, we 
show that 
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where ( ) ( ),Ω∈ Cxp  nR⊂Ω  is a bounded smooth domain and =< −p1  

( ) ( ) .esssupessinf K
Nxppxp xx <=≤ Ω∈+Ω∈  

Let ( )xp  is log-Hölder continuous, i.e., for the bounded exponent 

( ) 1>xp  and ,Ω∈∀x  we have 

( ) ( ) ,2
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When ( ) pxp =  is constant, the existence and non-existence of the solutions 

can be referred to [4, 5]. For ,Ω∈x  ( ) ( ( ) )uuu xp
xp ΔΔΔ=Δ− −22  is called 

( )xp -biharmonic operator. 

In order to study boundary value problem ( ),p  we first introduce some 

notations and results in variable exponent Sobolev space ( )xpkW ,  [6]. 

We use ( )ΩS  to denote the set of all real measurable functions defined 
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on Ω. For ( ),, Ω∈ Syx  yx,  are considered as the same element if they 

equal almost everywhere. Set 

( ) { ( ) ( ) }.1essinf, ≥=∈=Ω −
Ω

∞
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+ pxpLxpL  

For ( ),Ω∈ ∞
+Lp  we further denote 
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The corresponding norms are 
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Let ( ) ( )( )∑ =α Ω
α

Ω = J LxpJ xpuDu ,,,  where J is multiple index and α  

is differential order. 

Let ( )( )ΩxpKW ,
0  is the closure of ( )Ω∞

0C  in ( )( )., ΩxpKW  

Property 1.1 [6]. ( )( ),ΩxpL  ( )( )ΩxpKW ,  and ( )( )ΩxpKW ,
0  are all 

reflexive Banach space. 

The norm of ( )( ) ( )( )ΩΩ= xpxp WWX ,2
0

,1
0 ∩  is defined as 
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Set 
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Property 1.2 [7]. Let Ω be a bounded region, ( )xp  be log-Hölder 

continuous and 
2
Np <+  restricted in space ( )( ) ( )( ).,2

0
,1

0 ΩΩ xpxp WW ∩  Then 

⋅  and ( )xpΔ  are equivalent norms. 

Property 1.3 [8]. Let Ω be a bounded region, ( ) ( ),Ω∈ Cxp  ( ) ( )xpxq ≥  

a.e. Ω∈x  and ( ) ( ) .0essinf >−∗ xqxp  Then ( )( )ΩxpKW ,  compact 

embedding in ( ).xqL  

Definition 1.1 [9]. Let E be a real Banach space and let ∗E  be the dual 

space of E. Then ∗×⊂ EEM  is called monotone set if ( )2121 , xxyy −−  

,0≥  for [ ] [ ] .,,, 2211 Myxyx ∈  And the monotone set ∗×⊂ EEM  is called 

maximal monotone if ∗× EE  is not the real subset of any monotone set. 

Definition 1.2 [9]. The multi-value map 
∗

→ EET 2:  is monotonous if 

its image ( ) ( ){ }TxyDxyxTG =∈= ,:,  is a monotone set of .∗× EE  T is 

maximal monotonous if its image ( )TG  is a maximal monotone set of 

.∗× EE  

Definition 1.3 [9]. Let ,ED ⊂  map ∗→ EDT :  and .0 Dx ∈  If 

,Eh ∈  ,0>nt  ,0 Dhtx n ∈+  ( ) ( ),0 00 xThtxTt nn →+⇒→  then T is 

called semi-continuous in .0x  Moreover, T is called semi-continuous in D, if 

T is semi-continuous in every point of D. 

2. Main Results 

Lemma 2.1 [9]. If ∗→ EET :  is semi-continuous and monotonous, 
then T must be maximal monotonous. 
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Lemma 2.2 [2]. The map ∗→ XXT :  is defined as follows: 

( ) ( )∫Ω
− ∈∀ΔΔΔ−= .,,, 2 XvuvdxuuTuv xp  

Then T is defined everywhere and bounded and monotonous. Thus, T is 
maximal monotonous. 

Lemma 2.3 [9] (Minty-Browder). Let E be reflexive, map ∗→ EET :  
is semi-continuous and monotonous. And let T be mandatory, i.e., 

( ) .,lim +∞=+∞→ x
xTx

x  Then T must be surjective, i.e., ( ) .∗= EET  

Theorem 2.1. For ( )( ),Ω∈ xpLf  the boundary value problem ( )p  have 

solutions in the space ( )( ).,2
0 ΩxpW  

Proof. For ( )( )Ω∈ xpWu ,2
0  and ,0≠u  then 
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where M is a constant. 

By Property 1.2, ( )( ),,2
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Due to Minty-Browder theorem, we obtain 

( ) ( ( )( )) .,2
0

∗Ω= xpWBR  

Meanwhile, ( )( ),Ω∈∀ xpLf  we could derive from Property 1.1 and 

Property 1.3 that 

( ( )( )) .,2
0
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Therefore 

( )( ) ..s.t,2
0 TufWu xp =Ω∈∃  

Consequently, ( ),0 Ω∈ϕ∀ ∞C  it follows that 
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Obviously, 
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