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Abstract

In this paper, the existence of coincidence points of single-valued and
multi-valued mappings in G-metric spaces is proven. Moreover, we
also prove the coincidence points and fixed point theorems for single-
valued mappings satisfying the contractive conditions concerning the
mapping ¢ in G-metric spaces.

1. Introduction

In 2006, Mustafa and Sims [10] introduced a generalization of metric
spaces, namely, G-metric spaces. Since then, the fixed point theorems in
metric spaces have been extended to G-metric spaces. In 1989, Mizoguchi
and Takahashi [8] proved the generalization of Banach contraction principle
as the following:
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Theorem 1.1 ([8, Theorem 5]). Let (X, d) be a complete metric space

and T : X — CB(X) be a multi-valued mapping satisfying

H(Tx, Ty) < o(d(x, y))d(x, ¥),

for all x,ye K, where ¢:[0, ©) - [0,1) is a function such that

Sup, o+ o(r) <1 forevery t € [0, ). Then T has a fixed point in X.
In this paper, we prove a generalization of Theorem 1.1 ([8, Theorem 5])
in G-metric spaces.

The common fixed point theorems for mappings satisfying certain
contractive conditions in metric spaces have been continually studied for
decade (see [2, 4-7, 13] and references contained therein). In this paper, we
obtain the unique common fixed point theorem for a pair of weakly
compatible single-valued mappings in G-metric spaces. Furthermore, we
prove the existence of coincidence points for single-valued mappings
satisfying a certain contractive condition and this result is a generalization of
Theorem 2.1 [3].

2. Preliminaries

We now recall some of the basic concepts and results in G-metric spaces
that have been established in [10].

Definition 2.1. Let X be a nonempty setand G : X x X x X — R" bea
function satisfying:

(Gl) G(x, y,2)=0if x=y =z,

(G2) 0 < G(x, x, y), forall x, y e X with x =y,

(G3) G(x, X, y) < G(x, y, z), forall x, y, ze X with z =y,

(G4) G(x, y, z) = G(x, z, y) = G(y, z, X) = - (symmetry in all three
variables), and
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(G5 G(x,y,2)<G(x,a,a)+G(a,y,z), for all x,vy,z,aeX
(rectangle inequality).

Then the function G is called a generalized metric or more specifically a
G-metric on X, and the pair (X, G) is called a G-metric space.

Since then, the fixed point theory in G-metric spaces has been studied
and developed by many authors (see [1, 3, 10-12, 14]).

Definition 2.2. A G-metric is said to be symmetric if G(x, y, y)=
G(y, x, x), forall x, y e X.

Proposition 2.3. Every G-metric space (X, G), defines a metric space
(X, dg) by

dg(X, ¥y) =G(X, y, y)+ G(x, x, y), forall x, y € X.

Definition 2.4. Let (X, G) be a G-metric space. Then we say that a

sequence {X,} in Xis:

(i) a G-convergent sequence if, for any ¢ > 0, there exist x € X and
N e N such that G(X, Xy, Xm) < &, forall n, m > N;

(if) a G-Cauchy sequence if, for any & > 0, there exists N € N such

that G(xp, Xm, X ) < &, forall n, m, I > N.

Theorem 2.5. Let (X, G) be a G-metric space and {x,} be a sequence
in X. Then the following are equivalent:

(i) {x,} is G-convergent to X,
(i) G(Xy, X, X) = 0 @s N — oo,
(iii) G(Xy, X, X) = 0 as n — oo,

(iv) G(Xm, Xn, X) > 0 @as m, n — .
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Theorem 2.6. Let (X, G) be a G-metric space and {x,} be a sequence
in X. Then the following are equivalent:

(i) {x,} is G-Cauchy.
(ii) For every ¢ > 0, there exists N € N such that G(X,, Xm, Xm) < &,
forall n, m > N.
(iii) {x,} is a Cauchy sequence in the metric space (X, dg).

A G-metric space X is said to be complete if every G-Cauchy sequence in
X is a G-convergent sequence in X.

Proposition 2.7. Let (X, G) be a G-metric space. Then the function

G(x, v, z) is jointly continuous in all three of its variables.

Definition 2.8. Let f and g be single-valued self mappings on a set X. If
w = fx = gx for some x € X, then x is called a coincidence point of f and

g, and w is called a point of coincidence of f and g.

Abbas and Rhoades [1] proved the unique common fixed point for a pair
of weakly compatible mappings by using the following key proposition.

Proposition 2.9 ([1, Proposition 1.5]). Let f and g be weakly compatible
self mappings on a set X. If f and g have a unique point of coincidence
w = fx = gx, then w is the unique common fixed point of f and g.

Let X be a G-metric space. We shall denote CB(X) the family of all
nonempty G-closed bounded subsets of X. Let Hg(-, -, -) be the Hausdorff
G-distance on CB(X), i.e.,

Hg (A, B, C) = max{sup G(x, B, C), sup G(x, C, A), sup G(x, A, B)},
xeA xeB xeC
where
G(X, B, C) = dG(X, B) + dG(B, C) + dG(X, C),

dg(x, B) =inf{dg(x, y):y e B},
dg(A, B) =inf{dg(a,b):a e A beB}.
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A mapping T : X — 2% is called a multi-valued mapping. A point
X € X is called a fixed point of T if x € Tx.

3. Coincidence Points and Fixed Points

We first prove the following lemma.

Lemma 3.1. Let (X, G) be a G-metric space and let A, B € CB(X).
Suppose that € >0 and Hg(A, B, B) <& Then for each a e A, there
exists b € B such that G(a, b, b) < «.

Proof. Suppose that there exists a € A such that

G(a, b, b) > ¢, forall b € B.
Therefore,
e <G(a, b, b) < G(a, b, b)+ G(a, a, b) =dg(a, b), forall b € B.
It follows that
e <dg(a B)<G(a B, B)< Hg(A B, B),
which contradicts to the assumption. This completes the proof. O

Theorem 3.2. Let (X, G) be a G-metric space. Suppose that T : X —
CB(X) is a multi-valued mapping and f : X — X is a single-valued
mapping satisfying

() T(X) = f(X),
(i) f(X) is complete,
(iii) there exists a function ¢ : [0, o) — [0, 1) such that

limsup o(r) < 1, forall t € [0, ), 1)

rott

and forall x, y, z € X,

Ha (Tx, Ty, Tz) < o(G(fx, fy, f2))G(fx, fy, fz). @
Then T and f have a coincidence point in X. That is, there exists p € X such
that fp € Tp.
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Proof. Let xqg be an arbitrary element in X. Since T(X) < f(X), there

exists x; € X such that fx; e Txy. Define a function o : [0, ) — [0, 1) by

o(t) = % forall t € [0, o). Thus we can see that

limsupw(r) <1, ¢(t) < w(t), and 0 < w(t) <1, forall t € [0, ).
rot*

By the definition of Hausdorff G-distance and (2), we have
G(fx, Txq, Tx) < Hg(Txg, Txq, TXq)
< o(G(fxg, X, ))G(fxg, g, fXq)
< o(G(fxg, X, Tq))G(fxg, X, fXq).

If fxg = fxq, then fand T have a coincidence point. Assume that fxy = fx.

Therefore, by Lemma 3.1, there exists x, € X such that
X, € Txg and G(fx, Xy, fxo) < o(G(fXg, X, X))G(fxg, X1, fXp).
Again, by the definition of Hausdorff G-distance and (2), we obtain that
G(fx9, Txy, TXy) < Hg(Txq, TXg, TXs)
< @(G(fxq, o, fX2))G(fxy, X, fX2)
< o(G(fx, fXo, X))G(fx, fxp, fXo).

If fx; = fX,, then fand T have a coincidence point. Assume that fx; = fx,.

Therefore, by Lemma 3.1, there exists x3 € X such that
fx3 € Txo and G(fxy, fXz, fX3) < o(G(fx, Xy, fX2))G(fxq, Xy, fXo).

Continuing this process, we can construct a sequence {fx,} such that

Xn41 € TX, and
G(fXn41, Mni2, Mny2) < o(G(fXn, Xny1, Mny1))G(Xn, Xnig, o)
< G(fXn, Xni1, Mnia).

From the above argument, we can conclude that the sequence
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{G(fxp, fXn41, TXp41)} is @ nonincreasing sequence in [0, ). This implies

that {G(fx,, fXn41, fXn41)} is convergent. Since limsup w(r) < 1, we obtain
rott

that

limsup o(G( fx,, Xpi1, fXp11)) = S for some s e [0, 1).
n—o0

Therefore, for each k e (s, 1), there exists N € N such that
o(G(fxq_1, X, X)) <Kk, forall n > N.
For each n > N, we have
G(fXn, Xni1r Xne1) < o(G(fxn_1, X, Xp))G(fXq_1, X, fXy)
< kG(fxp_1, Xy, fXp).
Thus, for each m > n > N, we obtain that
G(fxy, Xy, Xm) < G(Xq, X1 Xnag) + o+ G(Xm_1, Xmy Xm)
< (K"N 4 k™ NThG(xy, L e

<K Gy Py, |
STk (XN, XNz XN

Taking the limit of both sides, we get that G(fx,, fX;,, fX,)—> 0 as
m, n — oo. It follows that {fx,} is a G-Cauchy sequence. By the
completeness of f(X), we have {fx,} is G-convergent to some g € X.
Therefore, there exists p € X such that fp = g. By using (2), we obtain
that

G(fXn41, TP, Tp) < Hg (Txp, Tp, Tp)

< o(G(fxy, fp, f0))G(fxy, fp, fp)
< G(fx,, fp, fp).

Taking the limit of both sides as n — o, we have G(fp, Tp, Tp) = 0 and
hence fp € Tp. O
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Corollary 3.3. Let (X, G) be a G-metric space. Suppose that T : X —
CB(X) is a multi-valued mapping and f : X — X is a single-valued
mapping satisfying

(i) T(X) < f(X),

(i) f(X) is complete,

(iii) Hg(Tx, Ty, Tz) < kG(fx, fy, gz), for all x, y, z € X, where 0 <
k <1
Then T and f have a coincidence point in X. That is, there exists p € X such

that fp € Tp.

Proof. Define ¢ :[0, ©) — [0,1) by ¢(s)=k, for all se]0, ).

Therefore, (1) and (2) in Theorem 3.2 are now satisfied. This completes the
proof. O

By setting f in Theorem 3.2 to be the identity function on X, we
immediately have the following corollary:

Corollary 3.4. Let (X, G) be a complete G-metric spaceand T : X —
CB(X) be a multi-valued mapping satisfying
He (Tx, Ty, Tz) < ¢(G, (x, ¥, 2))G(X, ¥, 2),
for all x,y,ze X, where ¢:[0, ©) — [0,1) is a function such that

lim SUp, .+ o(r) <1, forall t € [0, ). Then T has a fixed point in X.

Theorem 3.5. Let (X, G) be a G-metric space. Suppose that f, g : X
— X are single-valued mappings satisfying

(i) f(X) < g(X),
(i) g(X) is complete,
(iii) there exists a function ¢ : [0, ) — [0, 1) such that

limsupo(r) <1, forall t € [0, »), (3)

rot*
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andforall x, y, z € X,

G(fx, fy, fz) < (G(gx, gy, 9z))G(gx, gy, gz). 4)

Then f and g have a unique point of coincidence in X. Moreover, if f and g
are weakly compatible, then f and g have a unique common fixed point.

Proof. By applying Theorem 3.2, we obtain that f and g have a point of
coincidence in X, say p. We now prove that f and g have a unique point of
coincidence. Suppose that gq = fq for some g € X. By applying (4), we

get that
G(gp, 9g, 99) = G(fp, fq, fq)
< o(G(gp, 99, 99))G(gp, 9a, 9q).

This implies that G(gp, gq, gq) = 0 and hence gp = gq. Therefore, f and g

have a unique point of coincidence. By Proposition 2.9, we obtain that f and
g have a unique common fixed point. O

Corollary 3.6. Let (X, G) be a G-metric space. Suppose that f, g : X
— X are single-valued mappings satisfying

G(fx, fy, fz) < kG(gx, gy, 9z), (5)

for all x, y, z € X, where 0 <k <1. Then f and g have a unique point of

coincidence in X. Moreover, if f and g are weakly compatible, then f and g
have a unique common fixed point.

From now on, let ¢ :[0, ) — [0, ) be a nondecreasing function
satisfying

(62) 6(0)=0,
(d2) ¢(t) <t, forall t (0, ),

(93) D01 0"(t) < oo, forall t e (0, o).

We next prove the existence of coincidence points of two single-valued
mappings concerning the mappings ¢ which is mentioned as above.
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Theorem 3.7. Let (X, G) be a G-metric space. Suppose that the
mappings f, g : X —» X satisfy

G(fx, fy, fz)

< ¢[max{G(gx, ay, 9z), G(gx, fx, fx), G(ay, fy, fy), G(gz, fz, fz),

[G(gx, fy, fy)+G(gz, fx, fX)], [G(ox, fy, fy)+G(gy, fx, )]

2 2
G(ay, fz, fz) + G(gz, fy, G(ox, fz, fz) + G(gz, fx, f
oy fe 10 S . )] [0 fe 0 (g e B

for all x, y, z € X. If the range of g contains the range of f and g(X) isa

complete subspace of X, then f and g have a coincidence point in X. That is,
there exists p € X suchthat fp = gp.

Proof. Let xg be an arbitrary element in X. Since f(X) < g(X), there
exists x; € X such that gx = fXy. Let a € R be such that ¢(G(gxg, 9%, 9%))
< ¢(a). Again, since f(X) < g(X), there exists xo € X such that gx, =
fX;. By (6), we have

G(9x, 9%, 9%p)

= G(on, le, le)
< ¢(max{G(gxo, gx1, 9% ) G(g%o, fXo. fXo), G(gx1, fx, fxq),

[G(gxo, 1, fxg) + G(gxy, fXo, fxo)]
2 i)

Glgx, g, fx),

[G(gxo, fxq, fx) + G(gx1, g, fXp)]
2 1

[G(gx, fxg, X))+ G(ox, fxq, fxq)]
2 1
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[G(gxg, fxq, )+ G(gx, fXo, on)]}j
2

< ¢(max{G(gx0, gx, 9%), G(9%o, 9%1, 9x¢) G(9%, X2, OX2),

G(gx, 9%, O%p), [G(g%. fx, fXZ);G(gxly 9%, 9X1)],
[G(gXO’ gx2, gX2)+ G(gX].! 0Xq, gxl)]
2 )

[G(gx1, %2, 9%p) + G(g¥1, 9%p, 9Xp)]
2 L

[G(g%0, 9%z, 9%2) + G(g¥, 9%, gxl)]})
2

G(gXg, OXo, OX
< ¢(max{G(gx0, 9%, %), G(9x1, 9%y, OX5), (9% % 2: 9 2)})

< ¢(maX{G(gXo, gx, 9%), G(gx1, 9Xp, 9X2),

G(g%p, 9%, 9%) + G(9x1, gXo, ng)})
2

< (max{G(gxg, 9%, 9%1), G(9x1, X2, 9X2)}).
If G(gxg, 9%, 9%) < G(gx;, OXp, gXp), then
G(g%1, 9%2, OX2) < (G(9Xy, gXp, OX2)).

This implies that G(gx, gXo, gxo) = 0 and thus gx; = fx;. Therefore, f and
g have a coincidence point.

Suppose that G(gx, gXy, g%o) < G(9Xg, 9%, 9% ). Thus

G(gx1, 9%2, 9x2) < &(G(gXp, 9x1, 9%1)) < ().
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Since the range of g contains the range of f, we can choose X3 € X such

that gx3 = fX,. By (6), we obtain that

G(gx2, 9%3, OX3)

= G(le, fXZ, fX2)
< <|>(max{G(gx1, gx2. OX2), G(9x, g, fxp), G(gxz, fxa, ),

) [G(gx1, fXg, fXp) + G(gxp, fxg, fxq)]
2 ) ’

G(gXZ, fX2, 5
[Ggx1, fxp, fxp) + G(gxp, fxy, fxy)]
2 1
[G(gx, fxo, fXp) + G(gXp, fXp, fxp)]
2 H
[G(gx1, fxo, fXp)+ G(gxp, g, fxl)]})
2

G(gXy, 0Xq, gx
< d)(max{G(gxl, 9%y, 9%), G(gXp, OX3, OX3), (9% %3 g 3)})

< ¢(max{G(gx1, 9%z, 9%2), G(X2, 9%3, 9%3)))
< 0(G(gx, 9%, 9X2))
< ¢2(a).
By continuing this process, we can construct a sequence {gx,} such that
OXn11 = X and G(9X,, 9Xn.1, OXnep) < 0"(@) for each n.
We will prove that {gx,} is a G-Cauchy sequence. Since

dG (an, gxn+1)

= G(an, OXn+1s gxn+1) + G(an, OXn, gxn+1)
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< G(g%n, Pn+1r Pns1) + G(GXn, OXns1s OXns1) + G(9Xns1, P¥ny OXns1)
= 3G(9%n, PXn11, IXns1)
<3¢"(a),

we obtain that

D" da (o, Xna1) € D 30"(a) < .
n=0 n=0

This implies that {gx,} is a Cauchy sequence in (X, dg). Using Theorem
2.6, we have {gx,} is a G-Cauchy sequence. By the completeness of g(X),
we have {gx,} is G-convergent to some g e X. Therefore, there exists
p € X such that gp = q. We will show that gp = fp. By using (6), we
obtain that

G(9%n41, fp, D)

= G(fxn: fpv fp)

< ¢(maX{G(gxn, gp, 9p), G(9Xn, IXni1, PXne1) G(OP, o, fp),

G(gp, fp, fp), [G(g%n, T, fp)+62(9p, PXn+1s an+1)],

[G(g%n, fp, fp)+ G(9P, OXni1, FXni1)]
2 1

[G(gp, fp, fp)+ G(gp, fp, p)]
5 :

[G(gx,, fp, )+ G(gp, PXn 1. an+1)]}j_

2

Letting n — o, we have

G(gp, fp, fp) < &(G(gp, fp, fp)).

This implies that G(gp, fp, fp) = 0 and so gp = fp. O
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If we take g in Theorem 3.7 to be the identity on X, then we have the
following results:

Corollary 3.8. Let (X, G) be a complete G-metric space. Suppose that
the mapping f : X — X satisfies

G(fx, fy, fz)
< ¢(max{G(x, y, 2), G(x, fx, x), G(y, fy, fy), G(z, fz, fz)

[G(x, fy, fy)+G(z, fx, X)] [G(x, fy, fy)+ G(y, fx, fx)]

2 2
G(y, fz, )+ G(z, fy, fy)] [G(x, fz, fz)+ G(z, fx, f
0. 2. 1) 62, . ) [6tx . ) Oe. b M)

forall x, y, z € X. Then f has a fixed point in X.

Corollary 3.9 ([3, Theorem 2.1]). Let (X, G) be a complete G-metric
space. Suppose that the mapping f : X — X satisfies

G(fx, fy, fz)

< kmax{G(x, y, 2), G(x, fx, fx), G(y, fy, fy), G(z, fz, fz)

[G(x, fy, fy)+G(z, fx, fx)] [G(x, fy, fy)+ G(y, fx, fx)]

2 2
[G(y, fz, f2) + G(z, fy, fy)] [G(X, fz, fz) + G(z, fx, X)] 8
2 ' 2 }’ ®)

forall x, y, z € X. Then f has a unique fixed point in X.
Proof. Define ¢ : [0, ) — [0, ) by ¢(t) = kt, for all t € [0, ). Therefore,
¢ is a nondecreasing function, #(0) =0, ¢(t) <t and Z::Nn(t) < oo, for

all t € (0, ). It follows that the contractive condition (7) in Corollary 3.8 is
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satisfied. Therefore, f has a fixed point in X. For proving the uniqueness of
fixed point of f, see [3, Theorem 2.1]. O
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