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Abstract 

In this paper, the existence of coincidence points of single-valued and 
multi-valued mappings in G-metric spaces is proven. Moreover, we 
also prove the coincidence points and fixed point theorems for single-
valued mappings satisfying the contractive conditions concerning the 
mapping φ in G-metric spaces. 

1. Introduction 

In 2006, Mustafa and Sims [10] introduced a generalization of metric 
spaces, namely, G-metric spaces. Since then, the fixed point theorems in 
metric spaces have been extended to G-metric spaces. In 1989, Mizoguchi 
and Takahashi [8] proved the generalization of Banach contraction principle 
as the following: 
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Theorem 1.1 ([8, Theorem 5]). Let ( )dX ,  be a complete metric space 

and ( )XCBXT →:  be a multi-valued mapping satisfying 

( ) ( )( ) ( ),,,, yxdyxdTyTxH ϕ≤  

for all ,, Kyx ∈  where [ ) [ )1,0,0: →∞ϕ  is a function such that 

( ) 1sup <ϕ+→
r

tr
 for every [ ).,0 ∞∈t  Then T has a fixed point in X. 

In this paper, we prove a generalization of Theorem 1.1 ([8, Theorem 5]) 
in G-metric spaces. 

The common fixed point theorems for mappings satisfying certain 
contractive conditions in metric spaces have been continually studied for 
decade (see [2, 4-7, 13] and references contained therein). In this paper, we 
obtain the unique common fixed point theorem for a pair of weakly 
compatible single-valued mappings in G-metric spaces. Furthermore, we 
prove the existence of coincidence points for single-valued mappings 
satisfying a certain contractive condition and this result is a generalization of 
Theorem 2.1 [3]. 

2. Preliminaries 

We now recall some of the basic concepts and results in G-metric spaces 
that have been established in [10]. 

Definition 2.1. Let X be a nonempty set and +→×× RXXXG :  be a 

function satisfying: 

(G1) ( ) 0,, =zyxG  if ,zyx ==  

(G2) ( ),,,0 yxxG<  for all Xyx ∈,  with ,yx ≠  

(G3) ( ) ( ),,,,, zyxGyxxG ≤  for all Xzyx ∈,,  with ,yz ≠  

(G4) ( ) ( ) ( ) === xzyGyzxGzyxG ,,,,,,  (symmetry in all three 

variables), and 
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(G5) ( ) ( ) ( ),,,,,,, zyaGaaxGzyxG +≤  for all Xazyx ∈,,,  

(rectangle inequality). 

Then the function G is called a generalized metric or more specifically a      
G-metric on X, and the pair ( )GX ,  is called a G-metric space. 

Since then, the fixed point theory in G-metric spaces has been studied 
and developed by many authors (see [1, 3, 10-12, 14]). 

Definition 2.2. A G-metric is said to be symmetric if ( ) =yyxG ,,  

( ),,, xxyG  for all ., Xyx ∈  

Proposition 2.3. Every G-metric space ( ),, GX  defines a metric space 

( )GdX ,  by 

( ) ( ) ( ),,,,,, yxxGyyxGyxdG +=  for all ., Xyx ∈  

Definition 2.4. Let ( )GX ,  be a G-metric space. Then we say that a 

sequence { }nx  in X is: 

 (i) a G-convergent sequence if, for any ,0>ε  there exist Xx ∈  and 

N∈N  such that ( ) ,,, ε<mn xxxG  for all ;, Nmn ≥  

(ii) a G-Cauchy sequence if, for any ,0>ε  there exists N∈N  such 

that ( ) ,,, ε<lmn xxxG  for all .,, Nlmn ≥  

Theorem 2.5. Let ( )GX ,  be a G-metric space and { }nx  be a sequence 

in X. Then the following are equivalent: 

  (i) { }nx  is G-convergent to x, 

 (ii) ( ) 0,, →xxxG nn  as ,∞→n  

(iii) ( ) 0,, →xxxG n  as ,∞→n  

(iv) ( ) 0,, →xxxG nm  as ., ∞→nm  
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Theorem 2.6. Let ( )GX ,  be a G-metric space and { }nx  be a sequence 

in X. Then the following are equivalent: 

  (i) { }nx  is G-Cauchy. 

 (ii) For every ,0>ε  there exists N∈N  such that ( ) ,,, ε<mmn xxxG  

for all ., Nmn ≥  

(iii) { }nx  is a Cauchy sequence in the metric space ( )., GdX  

A G-metric space X is said to be complete if every G-Cauchy sequence in 
X is a G-convergent sequence in X. 

Proposition 2.7. Let ( )GX ,  be a G-metric space. Then the function 

( )zyxG ,,  is jointly continuous in all three of its variables. 

Definition 2.8. Let f and g be single-valued self mappings on a set X. If 
gxfxw ==  for some ,Xx ∈  then x is called a coincidence point of f and 

g, and w is called a point of coincidence of f and g. 

Abbas and Rhoades [1] proved the unique common fixed point for a pair 
of weakly compatible mappings by using the following key proposition. 

Proposition 2.9 ([1, Proposition 1.5]). Let f and g be weakly compatible 
self mappings on a set X. If f and g have a unique point of coincidence 

,gxfxw ==  then w is the unique common fixed point of f and g. 

Let X be a G-metric space. We shall denote ( )XCB  the family of all 

nonempty G-closed bounded subsets of X. Let ( )⋅⋅⋅ ,,GH  be the Hausdorff 

G-distance on ( ),XCB  i.e., 

( ) { ( ) ( ) ( )},,,sup,,,sup,,,supmax,, BAxGACxGCBxGCBAH
CxBxAx

G
∈∈∈

=  

where 
( ) ( ) ( ) ( ),,,,,, CxdCBdBxdCBxG GGG ++=  

( ) ( ){ },:,inf, ByyxdBxd GG ∈=  

( ) ( ){ }.,:,inf, BbAabadBAd GG ∈∈=  
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A mapping XXT 2: →  is called a multi-valued mapping. A point 
Xx ∈  is called a fixed point of T if .Txx ∈  

3. Coincidence Points and Fixed Points 

We first prove the following lemma. 

Lemma 3.1. Let ( )GX ,  be a G-metric space and let ( )., XCBBA ∈  

Suppose that 0>ε  and ( ) .,, ε<BBAHG  Then for each ,Aa ∈  there 

exists Bb ∈  such that ( ) .,, ε<bbaG  

Proof. Suppose that there exists Aa ∈  such that 

( ) ,,, ε≥bbaG  for all .Bb ∈  

Therefore, 

( ) ( ) ( ) ( ),,,,,,,, badbaaGbbaGbbaG G=+≤≤ε  for all .Bb ∈  

It follows that 

( ) ( ) ( ),,,,,, BBAHBBaGBad GG ≤≤≤ε  

which contradicts to the assumption. This completes the proof. ~ 

Theorem 3.2. Let ( )GX ,  be a G-metric space. Suppose that →XT :  

( )XCB  is a multi-valued mapping and XXf →:  is a single-valued 
mapping satisfying 

  (i) ( ) ( ),XfXT ⊆  

 (ii) ( )Xf  is complete, 

(iii) there exists a function [ ) [ )1,0,0: →∞ϕ  such that 

 ( ) ,1suplim <ϕ
+→

r
tr

 for all [ ),,0 ∞∈t  (1) 

and for all ,,, Xzyx ∈  

 ( ) ( )( ) ( ).,,,,,, fzfyfxGfzfyfxGTzTyTxHG ϕ≤  (2) 

Then T and f have a coincidence point in X. That is, there exists Xp ∈  such 
that .Tpfp ∈  
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Proof. Let 0x  be an arbitrary element in X. Since ( ) ( ),XfXT ⊆  there 

exists Xx ∈1  such that .01 Txfx ∈  Define a function [ ) [ )1,0,0: →∞ω  by 

( ) ( ) ,2
1+ϕ=ω tt  for all [ ).,0 ∞∈t  Thus we can see that 

( ) ( ) ( ),,1suplim ttr
tr

ω<ϕ<ω
+→

 and ( ) ,10 <ω< t  for all [ ).,0 ∞∈t  

By the definition of Hausdorff G-distance and (2), we have 

 ( ) ( )110111 ,,,, TxTxTxHTxTxfxG G≤  

( )( ) ( )110110 ,,,, fxfxfxGfxfxfxGϕ≤  

( )( ) ( ).,,,, 110110 fxfxfxGfxfxfxGω<  

If ,10 fxfx =  then f and T have a coincidence point. Assume that .10 fxfx ≠  

Therefore, by Lemma 3.1, there exists Xx ∈2  such that 

12 Txfx ∈  and ( ) ( )( ) ( ).,,,,,, 110110221 fxfxfxGfxfxfxGfxfxfxG ω<  

Again, by the definition of Hausdorff G-distance and (2), we obtain that 

( ) ( )221222 ,,,, TxTxTxHTxTxfxG G≤  

( )( ) ( )221221 ,,,, fxfxfxGfxfxfxGϕ≤  

( )( ) ( ).,,,, 221221 fxfxfxGfxfxfxGω<  

If ,21 fxfx =  then f and T have a coincidence point. Assume that .21 fxfx ≠  

Therefore, by Lemma 3.1, there exists Xx ∈3  such that 

23 Txfx ∈  and ( ) ( )( ) ( ).,,,,,, 221221332 fxfxfxGfxfxfxGfxfxfxG ω<  

Continuing this process, we can construct a sequence { }nfx  such that 

nn Txfx ∈+1  and 

( ) ( )( ) ( )1111221 ,,,,,, +++++++ ω< nnnnnnnnn fxfxfxGfxfxfxGfxfxfxG  

 ( ).,, 11 ++< nnn fxfxfxG  

From the above argument, we can conclude that the sequence 
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( ){ }11,, ++ nnn fxfxfxG  is a nonincreasing sequence in [ ).,0 ∞  This implies 

that ( ){ }11,, ++ nnn fxfxfxG  is convergent. Since ( ) ,1suplim <ω
+→

r
tr

 we obtain 

that 

( )( ) sfxfxfxG nnn
n

=ω ++
∞→

11,,suplim  for some [ ).1,0∈s  

Therefore, for each ( ),1,sk ∈  there exists N∈N  such that 

( )( ) ,,,1 kfxfxfxG nnn <ω −  for all .Nn ≥  

For each ,Nn ≥  we have 

( ) ( )( ) ( )nnnnnnnnn fxfxfxGfxfxfxGfxfxfxG ,,,,,, 1111 −−++ ω<  

 ( ).,,1 nnn fxfxfxkG −<  

Thus, for each ,Nnm ≥>  we obtain that 

 ( ) ( ) ( )mmmnnnmmn fxfxfxGfxfxfxGfxfxfxG ,,,,,, 111 −++ ++≤  

( ) ( )11
1 ,, ++
−−− ++≤ NNN

NmNn fxfxfxGkk  

( ).,,1 11 ++

−

−
≤ NNN

Nn
fxfxfxGk

k  

Taking the limit of both sides, we get that ( ) 0,, →mmn fxfxfxG  as 

., ∞→nm  It follows that { }nfx  is a G-Cauchy sequence. By the 

completeness of ( ),Xf  we have { }nfx  is G-convergent to some .Xq ∈  
Therefore, there exists Xp ∈  such that .qfp =  By using (2), we obtain 
that 

 ( ) ( )TpTpTxHTpTpfxG nGn ,,,,1 ≤+  

( )( ) ( )fpfpfxGfpfpfxG nn ,,,,ϕ≤  

( ).,, fpfpfxG n<  

Taking the limit of both sides as ,∞→n  we have ( ) 0,, =TpTpfpG  and 
hence .Tpfp ∈  ~ 
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Corollary 3.3. Let ( )GX ,  be a G-metric space. Suppose that →XT :  

( )XCB  is a multi-valued mapping and XXf →:  is a single-valued 
mapping satisfying 

  (i) ( ) ( ),XfXT ⊆  

 (ii) ( )Xf  is complete, 

(iii) ( ) ( ),,,,, gzfyfxkGTzTyTxHG ≤  for all ,,, Xzyx ∈  where ≤0  
.1<k  

Then T and f have a coincidence point in X. That is, there exists Xp ∈  such 

that .Tpfp ∈  

Proof. Define [ ) [ )1,0,0: →∞ϕ  by ( ) ,ks =ϕ  for all [ ).,0 ∞∈s  

Therefore, (1) and (2) in Theorem 3.2 are now satisfied. This completes the 
proof. ~ 

By setting f in Theorem 3.2 to be the identity function on X, we 
immediately have the following corollary: 

Corollary 3.4. Let ( )GX ,  be a complete G-metric space and →XT :  

( )XCB  be a multi-valued mapping satisfying 

( ) ( )( ) ( ),,,,,,,, zyxGzyxGTzTyTxHG ϕ≤  

for all ,,, Xzyx ∈  where [ ) [ )1,0,0: →∞ϕ  is a function such that 

( ) ,1suplim <ϕ+→
r

tr
 for all [ ).,0 ∞∈t  Then T has a fixed point in X. 

Theorem 3.5. Let ( )GX ,  be a G-metric space. Suppose that Xgf :,  

X→  are single-valued mappings satisfying 

  (i) ( ) ( ),XgXf ⊆  

 (ii) ( )Xg  is complete, 

(iii) there exists a function [ ) [ )1,0,0: →∞ϕ  such that 

 ( ) ,1suplim <ϕ
+→

r
tr

 for all [ ),,0 ∞∈t  (3) 
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and for all ,,, Xzyx ∈  

 ( ) ( )( ) ( ).,,,,,, gzgygxGgzgygxGfzfyfxG ϕ≤  (4) 

Then f and g have a unique point of coincidence in X. Moreover, if f and g 
are weakly compatible, then f and g have a unique common fixed point. 

Proof. By applying Theorem 3.2, we obtain that f and g have a point of 
coincidence in X, say p. We now prove that f and g have a unique point of 
coincidence. Suppose that fqgq =  for some .Xq ∈  By applying (4), we 

get that 

( ) ( )fqfqfpGgqgqgpG ,,,, =  

 ( )( ) ( ).,,,, gqgqgpGgqgqgpGϕ≤  

This implies that ( ) 0,, =gqgqgpG  and hence .gqgp =  Therefore, f and g 

have a unique point of coincidence. By Proposition 2.9, we obtain that f and 
g have a unique common fixed point. ~ 

Corollary 3.6. Let ( )GX ,  be a G-metric space. Suppose that Xgf :,  

X→  are single-valued mappings satisfying 

 ( ) ( ),,,,, gzgygxkGfzfyfxG ≤  (5) 

for all ,,, Xzyx ∈  where .10 <≤ k  Then f and g have a unique point of 

coincidence in X. Moreover, if f and g are weakly compatible, then f and g 
have a unique common fixed point. 

From now on, let [ ) [ )∞→∞φ ,0,0:  be a nondecreasing function 

satisfying 

( )1φ  ( ) ,00 =φ  

( )2φ  ( ) ,tt <φ  for all ( ),,0 ∞∈t  

( )3φ  ( ) ,1∑∞
= ∞<φn

n t  for all ( ).,0 ∞∈t  

We next prove the existence of coincidence points of two single-valued 
mappings concerning the mappings φ which is mentioned as above. 
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Theorem 3.7. Let ( )GX ,  be a G-metric space. Suppose that the 

mappings XXgf →:,  satisfy 

( )fzfyfxG ,,  

( ) ( ) ( ) ( )⎜
⎝
⎛

⎩
⎨
⎧φ≤ ,,,,,,,,,,,,max fzfzgzGfyfygyGfxfxgxGgzgygxG  

( ) ( )[ ] ( ) ( )[ ]
2

,,,,,2
,,,, fxfxgyGfyfygxGfxfxgzGfyfygxG ++  

( ) ( )[ ] ( ) ( )[ ] ,2
,,,,,2

,,,,
⎟
⎠
⎞

⎭
⎬
⎫++ fxfxgzGfzfzgxGfyfygzGfzfzgyG  (6) 

for all .,, Xzyx ∈  If the range of g contains the range of f and ( )Xg  is a 

complete subspace of X, then f and g have a coincidence point in X. That is, 
there exists Xp ∈  such that .gpfp =  

Proof. Let 0x  be an arbitrary element in X. Since ( ) ( ),XgXf ⊆  there 

exists Xx ∈1  such that .01 fxgx =  Let R∈a  be such that ( )( )110 ,, gxgxgxGφ  

( ).aφ≤  Again, since ( ) ( ),XgXf ⊆  there exists Xx ∈2  such that =2gx  

.1fx  By (6), we have 

( )221 ,, gxgxgxG  

( )110 ,, fxfxfxG=  

( ) ( ) ( )⎜
⎝
⎛

⎩
⎨
⎧φ≤ ,,,,,,,,,max 111000110 fxfxgxGfxfxgxGgxgxgxG  

( ) ( ) ( )[ ] ,2
,,,,,,, 001110

111
fxfxgxGfxfxgxGfxfxgxG +  

( ) ( )[ ] ,2
,,,, 001110 fxfxgxGfxfxgxG +  

( ) ( )[ ] ,2
,,,, 111111 fxfxgxGfxfxgxG +  
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( ) ( )[ ]
⎟
⎠
⎞

⎭
⎬
⎫+

2
,,,, 001110 fxfxgxGfxfxgxG  

( ) ( ) ( )⎜
⎝
⎛

⎩
⎨
⎧φ≤ ,,,,,,,,,max 221110110 gxgxgxGgxgxgxGgxgxgxG  

( ) ( ) ( )[ ] ,2
,,,,,,, 111220

221
gxgxgxGfxfxgxGgxgxgxG +  

( ) ( )[ ] ,2
,,,, 111220 gxgxgxGgxgxgxG +  

( ) ( )[ ] ,2
,,,, 221221 gxgxgxGgxgxgxG +  

( ) ( )[ ]
⎟
⎠
⎞

⎭
⎬
⎫+

2
,,,, 111220 gxgxgxGgxgxgxG  

( ) ( ) ( )
⎟
⎠
⎞

⎜
⎝
⎛

⎭
⎬
⎫

⎩
⎨
⎧φ≤ 2

,,,,,,,,max 220
221110

gxgxgxGgxgxgxGgxgxgxG  

( ) ( )⎜
⎝
⎛

⎩
⎨
⎧φ≤ ,,,,,,max 221110 gxgxgxGgxgxgxG  

( ) ( )
⎟
⎠
⎞

⎭
⎬
⎫+

2
,,,, 221110 gxgxgxGgxgxgxG  

( ) ( ){ }( ).,,,,,max 221110 gxgxgxGgxgxgxGφ≤  

If ( ) ( ),,,,, 221110 gxgxgxGgxgxgxG ≤  then 

( ) ( )( ).,,,, 221221 gxgxgxGgxgxgxG φ≤  

This implies that ( ) 0,, 221 =gxgxgxG  and thus .11 fxgx =  Therefore, f and 

g have a coincidence point. 

Suppose that ( ) ( ).,,,, 110221 gxgxgxGgxgxgxG ≤  Thus 

( ) ( )( ) ( ).,,,, 110221 agxgxgxGgxgxgxG φ≤φ≤  



Anchalee Kaewcharoen 114 

Since the range of g contains the range of f, we can choose Xx ∈3  such 

that .23 fxgx =  By (6), we obtain that 

( )332 ,, gxgxgxG  

( )221 ,, fxfxfxG=  

( ) ( ) ( )⎜
⎝
⎛

⎩⎨
⎧φ≤ ,,,,,,,,,max 222111221 fxfxgxGfxfxgxGgxgxgxG  

( ) ( ) ( )[ ] ,2
,,,,,,, 112221

222
fxfxgxGfxfxgxGfxfxgxG +  

( ) ( )[ ] ,2
,,,, 112221 fxfxgxGfxfxgxG +  

( ) ( )[ ] ,2
,,,, 222222 fxfxgxGfxfxgxG +  

( ) ( )[ ]
⎟
⎠
⎞

⎭
⎬
⎫+

2
,,,, 112221 fxfxgxGfxfxgxG  

( ) ( ) ( )
⎟
⎠
⎞

⎜
⎝
⎛

⎭
⎬
⎫

⎩
⎨
⎧φ≤ 2

,,,,,,,,max 331
332221

gxgxgxGgxgxgxGgxgxgxG  

( ) ( ){ }( )332221 ,,,,,max gxgxgxGgxgxgxGφ≤  

( )( )221 ,, gxgxgxGφ≤  

( ).2 aφ≤  

By continuing this process, we can construct a sequence { }ngx  such that 

nn fxgx =+1  and ( ) ( )agxgxgxG n
nnn φ≤++ 11,,  for each n. 

We will prove that { }ngx  is a G-Cauchy sequence. Since 

( )1, +nnG gxgxd  

( ) ( )111 ,,,, +++ += nnnnnn gxgxgxGgxgxgxG  



Coincidence Points and Fixed Point Theorems … 115 

( ) ( ) ( )111111 ,,,,,, ++++++ ++≤ nnnnnnnnn gxgxgxGgxgxgxGgxgxgxG  

( )11,,3 ++= nnn gxgxgxG  

( ),3 anφ≤  

we obtain that 

( ) ( )∑ ∑
∞

=

∞

=
+ ∞<φ≤

0 0
1 .3,

n n

n
nnG axxd  

This implies that { }ngx  is a Cauchy sequence in ( )., GdX  Using Theorem 

2.6, we have { }ngx  is a G-Cauchy sequence. By the completeness of ( ),Xg  

we have { }ngx  is G-convergent to some .Xq ∈  Therefore, there exists 

Xp ∈  such that .qgp =  We will show that .fpgp =  By using (6), we 

obtain that 

( )fpfpgxG n ,,1+  

( )fpfpfxG n ,,=  

( ) ( ) ( )⎜
⎝
⎛

⎩⎨
⎧φ≤ ++ ,,,,,,,,,max 11 fpfpgpGgxgxgxGgpgpgxG nnnn  

( ) ( ) ( )[ ] ,2
,,,,,,, 11 +++ nnn gxgxgpGfpfpgxGfpfpgpG  

( ) ( )[ ] ,2
,,,, 11 +++ nnn gxgxgpGfpfpgxG  

( ) ( )[ ] ,2
,,,, fpfpgpGfpfpgpG +  

( ) ( )[ ] .2
,,,, 11 ⎟

⎠
⎞

⎭
⎬
⎫+ ++ nnn gxgxgpGfpfpgxG  

Letting ,∞→n  we have 

( ) ( )( ).,,,, fpfpgpGfpfpgpG φ≤  

This implies that ( ) 0,, =fpfpgpG  and so .fpgp =  ~ 
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If we take g in Theorem 3.7 to be the identity on X, then we have the 
following results: 

Corollary 3.8. Let ( )GX ,  be a complete G-metric space. Suppose that 

the mapping XXf →:  satisfies 

( )fzfyfxG ,,  

( ) ( ) ( ) ( )⎜
⎝
⎛

⎩
⎨
⎧φ≤ fzfzzGfyfyyGfxfxxGzyxG ,,,,,,,,,,,max  

( ) ( )[ ] ( ) ( )[ ] ,2
,,,,,2

,,,, fxfxyGfyfyxGfxfxzGfyfyxG ++  

( ) ( )[ ] ( ) ( )[ ] ,2
,,,,,2

,,,,
⎟
⎠
⎞

⎭
⎬
⎫++ fxfxzGfzfzxGfyfyzGfzfzyG  (7) 

for all .,, Xzyx ∈  Then f has a fixed point in X. 

Corollary 3.9 ([3, Theorem 2.1]). Let ( )GX ,  be a complete G-metric 

space. Suppose that the mapping XXf →:  satisfies 

( )fzfyfxG ,,  

( ) ( ) ( ) ( )
⎩
⎨
⎧≤ fzfzzGfyfyyGfxfxxGzyxGk ,,,,,,,,,,,max  

( ) ( )[ ] ( ) ( )[ ] ,2
,,,,,2

,,,, fxfxyGfyfyxGfxfxzGfyfyxG ++  

( ) ( )[ ] ( ) ( )[ ] ,2
,,,,,2

,,,,
⎭
⎬
⎫++ fxfxzGfzfzxGfyfyzGfzfzyG  (8) 

for all .,, Xzyx ∈  Then f has a unique fixed point in X. 

Proof. Define [ ) [ )∞→∞φ ,0,0:  by ( ) ,ktt =φ  for all [ ).,0 ∞∈t  Therefore, 

φ is a nondecreasing function, ( ) ,00 =φ  ( ) tt <φ  and ( ) ,1∑∞
= ∞<φn

n t  for 

all ( ).,0 ∞∈t  It follows that the contractive condition (7) in Corollary 3.8 is 



Coincidence Points and Fixed Point Theorems … 117 

satisfied. Therefore, f has a fixed point in X. For proving the uniqueness of 
fixed point of f, see [3, Theorem 2.1]. ~ 
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