Universal Journal of Mathematics and Mathematical Sciences
Volume 2, Number 1, 2012, Pages 103-118
Published Online: May 2012
Available online at http://pphmj.com/journals/ujmms.htm Published by Pushpa Publishing House, Allahabad, INDIA

COINCIDENCE POINTS AND FIXED POINT THEOREMS FOR MAPPINGS IN G-METRIC SPACES

Anchalee Kaewcharoen
Department of Mathematics
Faculty of Science
Naresuan University
Phitsanulok, 65000, Thailand
e-mail: anchaleeka@nu.ac.th

Abstract

In this paper, the existence of coincidence points of single-valued and multi-valued mappings in G-metric spaces is proven. Moreover, we also prove the coincidence points and fixed point theorems for singlevalued mappings satisfying the contractive conditions concerning the mapping ϕ in G-metric spaces.

1. Introduction

In 2006, Mustafa and Sims [10] introduced a generalization of metric spaces, namely, G-metric spaces. Since then, the fixed point theorems in metric spaces have been extended to G-metric spaces. In 1989, Mizoguchi and Takahashi [8] proved the generalization of Banach contraction principle as the following:
© 2012 Pushpa Publishing House
2010 Mathematics Subject Classification: 47H09, 54H25.
Keywords and phrases: G-metric spaces, coincidence points, fixed points, multi-valued mappings, weakly compatible mappings.

This research is supported by the Commission on Higher Education and the Thailand Research Fund under grant MRG5380208.

Theorem 1.1 ([8, Theorem 5]). Let (X, d) be a complete metric space and $T: X \rightarrow C B(X)$ be a multi-valued mapping satisfying

$$
H(T x, T y) \leq \varphi(d(x, y)) d(x, y),
$$

for all $x, y \in K$, where $\varphi:[0, \infty) \rightarrow[0,1)$ is a function such that $\sup _{r \rightarrow t^{+}} \varphi(r)<1$ for every $t \in[0, \infty)$. Then T has a fixed point in X.

In this paper, we prove a generalization of Theorem 1.1 ([8, Theorem 5]) in G-metric spaces.

The common fixed point theorems for mappings satisfying certain contractive conditions in metric spaces have been continually studied for decade (see [2, 4-7, 13] and references contained therein). In this paper, we obtain the unique common fixed point theorem for a pair of weakly compatible single-valued mappings in G-metric spaces. Furthermore, we prove the existence of coincidence points for single-valued mappings satisfying a certain contractive condition and this result is a generalization of Theorem 2.1 [3].

2. Preliminaries

We now recall some of the basic concepts and results in G-metric spaces that have been established in [10].

Definition 2.1. Let X be a nonempty set and $G: X \times X \times X \rightarrow \mathbb{R}^{+}$be a function satisfying:
(G1) $G(x, y, z)=0$ if $x=y=z$,
(G2) $0<G(x, x, y)$, for all $x, y \in X$ with $x \neq y$,
(G3) $G(x, x, y) \leq G(x, y, z)$, for all $x, y, z \in X$ with $z \neq y$,
(G4) $G(x, y, z)=G(x, z, y)=G(y, z, x)=\cdots$ (symmetry in all three variables), and
(G5) $G(x, y, z) \leq G(x, a, a)+G(a, y, z)$, for all $x, y, z, a \in X$ (rectangle inequality).

Then the function G is called a generalized metric or more specifically a G-metric on X, and the pair (X, G) is called a G-metric space.

Since then, the fixed point theory in G-metric spaces has been studied and developed by many authors (see [1, 3, 10-12, 14]).

Definition 2.2. A G-metric is said to be symmetric if $G(x, y, y)=$ $G(y, x, x)$, for all $x, y \in X$.

Proposition 2.3. Every G-metric space (X, G), defines a metric space (X, d_{G}) by

$$
d_{G}(x, y)=G(x, y, y)+G(x, x, y), \text { for all } x, y \in X .
$$

Definition 2.4. Let (X, G) be a G-metric space. Then we say that a sequence $\left\{x_{n}\right\}$ in X is:
(i) a G-convergent sequence if, for any $\varepsilon>0$, there exist $x \in X$ and $N \in \mathbb{N}$ such that $G\left(x, x_{n}, x_{m}\right)<\varepsilon$, for all $n, m \geq N$;
(ii) a G-Cauchy sequence if, for any $\varepsilon>0$, there exists $N \in \mathbb{N}$ such that $G\left(x_{n}, x_{m}, x_{l}\right)<\varepsilon$, for all $n, m, l \geq N$.

Theorem 2.5. Let (X, G) be a G-metric space and $\left\{x_{n}\right\}$ be a sequence in X. Then the following are equivalent:
(i) $\left\{x_{n}\right\}$ is G-convergent to x,
(ii) $G\left(x_{n}, x_{n}, x\right) \rightarrow 0$ as $n \rightarrow \infty$,
(iii) $G\left(x_{n}, x, x\right) \rightarrow 0$ as $n \rightarrow \infty$,
(iv) $G\left(x_{m}, x_{n}, x\right) \rightarrow 0$ as $m, n \rightarrow \infty$.

Theorem 2.6. Let (X, G) be a G-metric space and $\left\{x_{n}\right\}$ be a sequence in X. Then the following are equivalent:
(i) $\left\{x_{n}\right\}$ is G-Cauchy.
(ii) For every $\varepsilon>0$, there exists $N \in \mathbb{N}$ such that $G\left(x_{n}, x_{m}, x_{m}\right)<\varepsilon$, for all $n, m \geq N$.
(iii) $\left\{x_{n}\right\}$ is a Cauchy sequence in the metric space $\left(X, d_{G}\right)$.

A G-metric space X is said to be complete if every G-Cauchy sequence in X is a G-convergent sequence in X.

Proposition 2.7. Let (X, G) be a G-metric space. Then the function $G(x, y, z)$ is jointly continuous in all three of its variables.

Definition 2.8. Let f and g be single-valued self mappings on a set X. If $w=f x=g x$ for some $x \in X$, then x is called a coincidence point of f and g, and w is called a point of coincidence of f and g.

Abbas and Rhoades [1] proved the unique common fixed point for a pair of weakly compatible mappings by using the following key proposition.

Proposition 2.9 ([1, Proposition 1.5]). Let f and g be weakly compatible self mappings on a set X. If f and g have a unique point of coincidence $w=f x=g x$, then w is the unique common fixed point of f and g.

Let X be a G-metric space. We shall denote $C B(X)$ the family of all nonempty G-closed bounded subsets of X. Let $H_{G}(,, \cdot, \cdot)$ be the Hausdorff G-distance on $C B(X)$, i.e.,

$$
H_{G}(A, B, C)=\max \left\{\sup _{x \in A} G(x, B, C), \sup _{x \in B} G(x, C, A), \sup _{x \in C} G(x, A, B)\right\},
$$

where

$$
\begin{aligned}
& G(x, B, C)=d_{G}(x, B)+d_{G}(B, C)+d_{G}(x, C), \\
& d_{G}(x, B)=\inf \left\{d_{G}(x, y): y \in B\right\}, \\
& d_{G}(A, B)=\inf \left\{d_{G}(a, b): a \in A, b \in B\right\} .
\end{aligned}
$$

A mapping $T: X \rightarrow 2^{X}$ is called a multi-valued mapping. A point $x \in X$ is called a fixed point of T if $x \in T x$.

3. Coincidence Points and Fixed Points

We first prove the following lemma.
Lemma 3.1. Let (X, G) be a G-metric space and let $A, B \in C B(X)$. Suppose that $\varepsilon>0$ and $H_{G}(A, B, B)<\varepsilon$. Then for each $a \in A$, there exists $b \in B$ such that $G(a, b, b)<\varepsilon$.

Proof. Suppose that there exists $a \in A$ such that

$$
G(a, b, b) \geq \varepsilon, \text { for all } b \in B
$$

Therefore,

$$
\varepsilon \leq G(a, b, b) \leq G(a, b, b)+G(a, a, b)=d_{G}(a, b), \text { for all } b \in B .
$$

It follows that

$$
\varepsilon \leq d_{G}(a, B) \leq G(a, B, B) \leq H_{G}(A, B, B)
$$

which contradicts to the assumption. This completes the proof.
Theorem 3.2. Let (X, G) be a G-metric space. Suppose that $T: X \rightarrow$ $C B(X)$ is a multi-valued mapping and $f: X \rightarrow X$ is a single-valued mapping satisfying
(i) $T(X) \subseteq f(X)$,
(ii) $f(X)$ is complete,
(iii) there exists a function $\varphi:[0, \infty) \rightarrow[0,1)$ such that

$$
\begin{equation*}
\limsup _{r \rightarrow t^{+}} \varphi(r)<1, \text { for all } t \in[0, \infty), \tag{1}
\end{equation*}
$$

and for all $x, y, z \in X$,

$$
\begin{equation*}
H_{G}(T x, T y, T z) \leq \varphi(G(f x, f y, f z)) G(f x, f y, f z) \tag{2}
\end{equation*}
$$

Then T and f have a coincidence point in X. That is, there exists $p \in X$ such that $f p \in T p$.

Proof. Let x_{0} be an arbitrary element in X. Since $T(X) \subseteq f(X)$, there exists $x_{1} \in X$ such that $f x_{1} \in T x_{0}$. Define a function $\omega:[0, \infty) \rightarrow[0,1)$ by $\omega(t)=\frac{\varphi(t)+1}{2}$, for all $t \in[0, \infty)$. Thus we can see that

$$
\underset{r \rightarrow t^{+}}{\limsup } \omega(r)<1, \varphi(t)<\omega(t) \text {, and } 0<\omega(t)<1 \text {, for all } t \in[0, \infty) \text {. }
$$

By the definition of Hausdorff G-distance and (2), we have

$$
\begin{aligned}
G\left(f x_{1}, T x_{1}, T x_{1}\right) & \leq H_{G}\left(T x_{0}, T x_{1}, T x_{1}\right) \\
& \leq \varphi\left(G\left(f x_{0}, f x_{1}, f x_{1}\right)\right) G\left(f x_{0}, f x_{1}, f x_{1}\right) \\
& <\omega\left(G\left(f x_{0}, f x_{1}, f x_{1}\right)\right) G\left(f x_{0}, f x_{1}, f x_{1}\right)
\end{aligned}
$$

If $f x_{0}=f x_{1}$, then f and T have a coincidence point. Assume that $f x_{0} \neq f x_{1}$. Therefore, by Lemma 3.1, there exists $x_{2} \in X$ such that

$$
f x_{2} \in T x_{1} \text { and } G\left(f x_{1}, f x_{2}, f x_{2}\right)<\omega\left(G\left(f x_{0}, f x_{1}, f x_{1}\right)\right) G\left(f x_{0}, f x_{1}, f x_{1}\right) .
$$

Again, by the definition of Hausdorff G-distance and (2), we obtain that

$$
\begin{aligned}
G\left(f x_{2}, T x_{2}, T x_{2}\right) & \leq H_{G}\left(T x_{1}, T x_{2}, T x_{2}\right) \\
& \leq \varphi\left(G\left(f x_{1}, f x_{2}, f x_{2}\right)\right) G\left(f x_{1}, f x_{2}, f x_{2}\right) \\
& <\omega\left(G\left(f x_{1}, f x_{2}, f x_{2}\right)\right) G\left(f x_{1}, f x_{2}, f x_{2}\right) .
\end{aligned}
$$

If $f x_{1}=f x_{2}$, then f and T have a coincidence point. Assume that $f x_{1} \neq f x_{2}$. Therefore, by Lemma 3.1, there exists $x_{3} \in X$ such that

$$
f x_{3} \in T x_{2} \text { and } G\left(f x_{2}, f x_{3}, f x_{3}\right)<\omega\left(G\left(f x_{1}, f x_{2}, f x_{2}\right)\right) G\left(f x_{1}, f x_{2}, f x_{2}\right) .
$$

Continuing this process, we can construct a sequence $\left\{f x_{n}\right\}$ such that $f x_{n+1} \in T x_{n}$ and

$$
\begin{aligned}
G\left(f x_{n+1}, f x_{n+2}, f x_{n+2}\right) & <\omega\left(G\left(f x_{n}, f x_{n+1}, f x_{n+1}\right)\right) G\left(f x_{n}, f x_{n+1}, f x_{n+1}\right) \\
& <G\left(f x_{n}, f x_{n+1}, f x_{n+1}\right) .
\end{aligned}
$$

From the above argument, we can conclude that the sequence
$\left\{G\left(f x_{n}, f x_{n+1}, f x_{n+1}\right)\right\}$ is a nonincreasing sequence in [0, ∞). This implies that $\left\{G\left(f x_{n}, f x_{n+1}, f x_{n+1}\right)\right\}$ is convergent. Since $\limsup \omega(r)<1$, we obtain

$$
r \rightarrow t^{+}
$$

that

$$
\limsup _{n \rightarrow \infty} \omega\left(G\left(f x_{n}, f x_{n+1}, f x_{n+1}\right)\right)=s \text { for some } s \in[0,1) .
$$

Therefore, for each $k \in(s, 1)$, there exists $N \in \mathbb{N}$ such that

$$
\omega\left(G\left(f x_{n-1}, f x_{n}, f x_{n}\right)\right)<k, \text { for all } n \geq N .
$$

For each $n \geq N$, we have

$$
\begin{aligned}
G\left(f x_{n}, f x_{n+1}, f x_{n+1}\right) & <\omega\left(G\left(f x_{n-1}, f x_{n}, f x_{n}\right)\right) G\left(f x_{n-1}, f x_{n}, f x_{n}\right) \\
& <k G\left(f x_{n-1}, f x_{n}, f x_{n}\right) .
\end{aligned}
$$

Thus, for each $m>n \geq N$, we obtain that

$$
\begin{aligned}
G\left(f x_{n}, f x_{m}, f x_{m}\right) & \leq G\left(f x_{n}, f x_{n+1}, f x_{n+1}\right)+\cdots+G\left(f x_{m-1}, f x_{m}, f x_{m}\right) \\
& \leq\left(k^{n-N}+\cdots+k^{m-N-1}\right) G\left(f x_{N}, f x_{N+1}, f x_{N+1}\right) \\
& \leq \frac{k^{n-N}}{1-k} G\left(f x_{N}, f x_{N+1}, f x_{N+1}\right) .
\end{aligned}
$$

Taking the limit of both sides, we get that $G\left(f x_{n}, f x_{m}, f x_{m}\right) \rightarrow 0$ as $m, n \rightarrow \infty$. It follows that $\left\{f x_{n}\right\}$ is a G-Cauchy sequence. By the completeness of $f(X)$, we have $\left\{f x_{n}\right\}$ is G-convergent to some $q \in X$. Therefore, there exists $p \in X$ such that $f p=q$. By using (2), we obtain that

$$
\begin{aligned}
G\left(f x_{n+1}, T p, T p\right) & \leq H_{G}\left(T x_{n}, T p, T p\right) \\
& \leq \varphi\left(G\left(f x_{n}, f p, f p\right)\right) G\left(f x_{n}, f p, f p\right) \\
& <G\left(f x_{n}, f p, f p\right)
\end{aligned}
$$

Taking the limit of both sides as $n \rightarrow \infty$, we have $G(f p, T p, T p)=0$ and hence $f p \in T p$.

Corollary 3.3. Let (X, G) be a G-metric space. Suppose that $T: X \rightarrow$ $C B(X)$ is a multi-valued mapping and $f: X \rightarrow X$ is a single-valued mapping satisfying
(i) $T(X) \subseteq f(X)$,
(ii) $f(X)$ is complete,
(iii) $H_{G}(T x, T y, T z) \leq k G(f x, f y, g z)$, for all $x, y, z \in X$, where $0 \leq$ $k<1$.

Then T and f have a coincidence point in X. That is, there exists $p \in X$ such that $f p \in T p$.

Proof. Define $\varphi:[0, \infty) \rightarrow[0,1)$ by $\varphi(s)=k$, for all $s \in[0, \infty)$. Therefore, (1) and (2) in Theorem 3.2 are now satisfied. This completes the proof.

By setting f in Theorem 3.2 to be the identity function on X, we immediately have the following corollary:

Corollary 3.4. Let (X, G) be a complete G-metric space and $T: X \rightarrow$ CB (X) be a multi-valued mapping satisfying

$$
H_{G}(T x, T y, T z) \leq \varphi(G,(x, y, z)) G(x, y, z),
$$

for all $x, y, z \in X$, where $\varphi:[0, \infty) \rightarrow[0,1)$ is a function such that $\limsup _{r \rightarrow t^{+}} \varphi(r)<1$, for all $t \in[0, \infty)$. Then T has a fixed point in X.

Theorem 3.5. Let (X, G) be a G-metric space. Suppose that $f, g: X$ $\rightarrow X$ are single-valued mappings satisfying
(i) $f(X) \subseteq g(X)$,
(ii) $g(X)$ is complete,
(iii) there exists a function $\varphi:[0, \infty) \rightarrow[0,1)$ such that

$$
\begin{equation*}
\limsup _{r \rightarrow t^{+}} \varphi(r)<1, \text { for all } t \in[0, \infty) \text {, } \tag{3}
\end{equation*}
$$

and for all $x, y, z \in X$,

$$
\begin{equation*}
G(f x, f y, f z) \leq \varphi(G(g x, g y, g z)) G(g x, g y, g z) . \tag{4}
\end{equation*}
$$

Then f and g have a unique point of coincidence in X. Moreover, if f and g are weakly compatible, then f and g have a unique common fixed point.

Proof. By applying Theorem 3.2, we obtain that f and g have a point of coincidence in X, say p. We now prove that f and g have a unique point of coincidence. Suppose that $g q=f q$ for some $q \in X$. By applying (4), we get that

$$
\begin{aligned}
G(g p, g q, g q) & =G(f p, f q, f q) \\
& \leq \varphi(G(g p, g q, g q)) G(g p, g q, g q) .
\end{aligned}
$$

This implies that $G(g p, g q, g q)=0$ and hence $g p=g q$. Therefore, f and g have a unique point of coincidence. By Proposition 2.9, we obtain that f and g have a unique common fixed point.

Corollary 3.6. Let (X, G) be a G-metric space. Suppose that $f, g: X$ $\rightarrow X$ are single-valued mappings satisfying

$$
\begin{equation*}
G(f x, f y, f z) \leq k G(g x, g y, g z), \tag{5}
\end{equation*}
$$

for all $x, y, z \in X$, where $0 \leq k<1$. Then f and g have a unique point of coincidence in X. Moreover, if f and g are weakly compatible, then f and g have a unique common fixed point.

From now on, let $\phi:[0, \infty) \rightarrow[0, \infty)$ be a nondecreasing function satisfying
$\left(\phi_{1}\right) \phi(0)=0$,
$\left(\phi_{2}\right) \phi(t)<t$, for all $t \in(0, \infty)$,
$\left(\phi_{3}\right) \sum_{n=1}^{\infty} \phi^{n}(t)<\infty$, for all $t \in(0, \infty)$.
We next prove the existence of coincidence points of two single-valued mappings concerning the mappings ϕ which is mentioned as above.

Theorem 3.7. Let (X, G) be a G-metric space. Suppose that the mappings $f, g: X \rightarrow X$ satisfy
$G(f x, f y, f z)$
$\leq \phi(\max \{G(g x, g y, g z), G(g x, f x, f x), G(g y, f y, f y), G(g z, f z, f z)$,
$\frac{[G(g x, f y, f y)+G(g z, f x, f x)]}{2}, \frac{[G(g x, f y, f y)+G(g y, f x, f x)]}{2}$
$\left.\left.\frac{[G(g y, f z, f z)+G(g z, f y, f y)]}{2}, \frac{[G(g x, f z, f z)+G(g z, f x, f x)]}{2}\right\}\right)$,
for all $x, y, z \in X$. If the range of g contains the range of f and $g(X)$ is a complete subspace of X, then f and g have a coincidence point in X. That is, there exists $p \in X$ such that $f p=g p$.

Proof. Let x_{0} be an arbitrary element in X. Since $f(X) \subseteq g(X)$, there exists $x_{1} \in X$ such that $g x_{1}=f x_{0}$. Let $a \in \mathbb{R}$ be such that $\phi\left(G\left(g x_{0}, g x_{1}, g x_{1}\right)\right)$ $\leq \phi(a)$. Again, since $f(X) \subseteq g(X)$, there exists $x_{2} \in X$ such that $g x_{2}=$ $f x_{1}$. By (6), we have

$$
\begin{aligned}
& G\left(g x_{1}, g x_{2}, g x_{2}\right) \\
= & G\left(f x_{0}, f x_{1}, f x_{1}\right) \\
\leq & \phi\left(\operatorname { m a x } \left\{G\left(g x_{0}, g x_{1}, g x_{1}\right), G\left(g x_{0}, f x_{0}, f x_{0}\right), G\left(g x_{1}, f x_{1}, f x_{1}\right),\right.\right. \\
& G\left(g x_{1}, f x_{1}, f x_{1}\right), \frac{\left[G\left(g x_{0}, f x_{1}, f x_{1}\right)+G\left(g x_{1}, f x_{0}, f x_{0}\right)\right]}{2}, \\
& \frac{\left[G\left(g x_{0}, f x_{1}, f x_{1}\right)+G\left(g x_{1}, f x_{0}, f x_{0}\right)\right]}{2}, \\
& \frac{\left[G\left(g x_{1}, f x_{1}, f x_{1}\right)+G\left(g x_{1}, f x_{1}, f x_{1}\right)\right]}{2}
\end{aligned}
$$

$$
\begin{aligned}
&\left.\left.\frac{\left[G\left(g x_{0}, f x_{1}, f x_{1}\right)+G\left(g x_{1}, f x_{0}, f x_{0}\right)\right]}{2}\right\}\right) \\
& \leq \phi\left(\operatorname { m a x } \left\{G\left(g x_{0}, g x_{1}, g x_{1}\right), G\left(g x_{0}, g x_{1}, g x_{1}\right), G\left(g x_{1}, g x_{2}, g x_{2}\right),\right.\right. \\
& G\left(g x_{1}, g x_{2}, g x_{2}\right), \frac{\left[G\left(g x_{0}, f x_{2}, f x_{2}\right)+G\left(g x_{1}, g x_{1}, g x_{1}\right)\right]}{2}, \\
& \frac{\left[G\left(g x_{0}, g x_{2}, g x_{2}\right)+G\left(g x_{1}, g x_{1}, g x_{1}\right)\right]}{2}, \\
& \frac{\left[G\left(g x_{1}, g x_{2}, g x_{2}\right)+G\left(g x_{1}, g x_{2}, g x_{2}\right)\right]}{2}, \\
& \leq \phi\left(\operatorname{GG(gx_{0},gx_{2},gx_{2})+G(gx_{1},gx_{1},gx_{1})]} \frac{2}{\left.\max \left\{G\left(g x_{0}, g x_{1}, g x_{1}\right), G\left(g x_{1}, g x_{2}, g x_{2}\right), \frac{G\left(g x_{0}, g x_{2}, g x_{2}\right)}{2}\right\}\right)}\right. \\
& \leq \phi\left(\operatorname { m a x } \left\{G\left(g x_{0}, g x_{1}, g x_{1}\right), G\left(g x_{1}, g x_{2}, g x_{2}\right),\right.\right. \\
&\left.\left.\frac{G\left(g x_{0}, g x_{1}, g x_{1}\right)+G\left(g x_{1}, g x_{2}, g x_{2}\right)}{2}\right\}\right)
\end{aligned}
$$

$\leq \phi\left(\max \left\{G\left(g x_{0}, g x_{1}, g x_{1}\right), G\left(g x_{1}, g x_{2}, g x_{2}\right)\right\}\right)$.
If $G\left(g x_{0}, g x_{1}, g x_{1}\right) \leq G\left(g x_{1}, g x_{2}, g x_{2}\right)$, then

$$
G\left(g x_{1}, g x_{2}, g x_{2}\right) \leq \phi\left(G\left(g x_{1}, g x_{2}, g x_{2}\right)\right) .
$$

This implies that $G\left(g x_{1}, g x_{2}, g x_{2}\right)=0$ and thus $g x_{1}=f x_{1}$. Therefore, f and g have a coincidence point.

Suppose that $G\left(g x_{1}, g x_{2}, g x_{2}\right) \leq G\left(g x_{0}, g x_{1}, g x_{1}\right)$. Thus

$$
G\left(g x_{1}, g x_{2}, g x_{2}\right) \leq \phi\left(G\left(g x_{0}, g x_{1}, g x_{1}\right)\right) \leq \phi(a) .
$$

Since the range of g contains the range of f, we can choose $x_{3} \in X$ such that $g x_{3}=f x_{2}$. By (6), we obtain that

$$
\begin{aligned}
& G\left(g x_{2}, g x_{3}, g x_{3}\right) \\
= & G\left(f x_{1}, f x_{2}, f x_{2}\right) \\
\leq & \phi\left(\operatorname { m a x } \left\{G\left(g x_{1}, g x_{2}, g x_{2}\right), G\left(g x_{1}, f x_{1}, f x_{1}\right), G\left(g x_{2}, f x_{2}, f x_{2}\right),\right.\right. \\
& \quad G\left(g x_{2}, f x_{2}, f x_{2}\right), \frac{\left[G\left(g x_{1}, f x_{2}, f x_{2}\right)+G\left(g x_{2}, f x_{1}, f x_{1}\right)\right]}{2}, \\
& \quad \frac{\left[G\left(g x_{1}, f x_{2}, f x_{2}\right)+G\left(g x_{2}, f x_{1}, f x_{1}\right)\right]}{2}, \\
& \quad \frac{\left[G\left(g x_{2}, f x_{2}, f x_{2}\right)+G\left(g x_{2}, f x_{2}, f x_{2}\right)\right]}{2}, \\
\leq & \left.\phi\left(\max \left\{G\left(g x_{1}, g x_{2}, f x_{2}\right)+G\left(g x_{2}, f x_{1}, f x_{1}\right)\right]\right\}\right) \\
2 & \\
\leq & \left.\phi\left(\max \left\{G\left(g x_{1}\right), g x_{2}, g x_{2}\right), G\left(g x_{2}, g x_{3}, g x_{3}\right)\right\}\right) \\
\leq & \phi\left(G\left(g x_{1}, g x_{2}, g x_{2}\right)\right) \\
\leq & \phi 2(a) .
\end{aligned}
$$

By continuing this process, we can construct a sequence $\left\{g x_{n}\right\}$ such that

$$
g x_{n+1}=f x_{n} \text { and } G\left(g x_{n}, g x_{n+1}, g x_{n+1}\right) \leq \phi^{n}(a) \text { for each } n
$$

We will prove that $\left\{g x_{n}\right\}$ is a G-Cauchy sequence. Since

$$
\begin{aligned}
& d_{G}\left(g x_{n}, g x_{n+1}\right) \\
= & G\left(g x_{n}, g x_{n+1}, g x_{n+1}\right)+G\left(g x_{n}, g x_{n}, g x_{n+1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leq G\left(g x_{n}, g x_{n+1}, g x_{n+1}\right)+G\left(g x_{n}, g x_{n+1}, g x_{n+1}\right)+G\left(g x_{n+1}, g x_{n}, g x_{n+1}\right) \\
& =3 G\left(g x_{n}, g x_{n+1}, g x_{n+1}\right) \\
& \leq 3 \phi^{n}(a),
\end{aligned}
$$

we obtain that

$$
\sum_{n=0}^{\infty} d_{G}\left(x_{n}, x_{n+1}\right) \leq \sum_{n=0}^{\infty} 3 \phi^{n}(a)<\infty
$$

This implies that $\left\{g x_{n}\right\}$ is a Cauchy sequence in $\left(X, d_{G}\right)$. Using Theorem 2.6, we have $\left\{g x_{n}\right\}$ is a G-Cauchy sequence. By the completeness of $g(X)$, we have $\left\{g x_{n}\right\}$ is G-convergent to some $q \in X$. Therefore, there exists $p \in X$ such that $g p=q$. We will show that $g p=f p$. By using (6), we obtain that

$$
\begin{aligned}
& G\left(g x_{n+1}, f p, f p\right) \\
= & G\left(f x_{n}, f p, f p\right) \\
\leq & \phi\left(\operatorname { m a x } \left\{G\left(g x_{n}, g p, g p\right), G\left(g x_{n}, g x_{n+1}, g x_{n+1}\right), G(g p, f p, f p),\right.\right. \\
& G(g p, f p, f p), \frac{\left[G\left(g x_{n}, f p, f p\right)+G\left(g p, g x_{n+1}, g x_{n+1}\right)\right]}{2}, \\
& \frac{\left[G\left(g x_{n}, f p, f p\right)+G\left(g p, g x_{n+1}, g x_{n+1}\right)\right]}{2}, \\
& \frac{[G(g p, f p, f p)+G(g p, f p, f p)]}{2}, \\
& \left.\left.\frac{\left[G\left(g x_{n}, f p, f p\right)+G\left(g p, g x_{n+1}, g x_{n+1}\right)\right]}{2}\right\}\right) .
\end{aligned}
$$

Letting $n \rightarrow \infty$, we have

$$
G(g p, f p, f p) \leq \phi(G(g p, f p, f p)) .
$$

This implies that $G(g p, f p, f p)=0$ and so $g p=f p$.

If we take g in Theorem 3.7 to be the identity on X, then we have the following results:

Corollary 3.8. Let (X, G) be a complete G-metric space. Suppose that the mapping $f: X \rightarrow X$ satisfies

$$
\begin{align*}
& G(f x, f y, f z) \\
& \leq \phi(\max \{G(x, y, z), G(x, f x, f x), G(y, f y, f y), G(z, f z, f z) \\
& \frac{[G(x, f y, f y)+G(z, f x, f x)]}{2}, \frac{[G(x, f y, f y)+G(y, f x, f x)]}{2}, \\
&\left.\left.\frac{[G(y, f z, f z)+G(z, f y, f y)]}{2}, \frac{[G(x, f z, f z)+G(z, f x, f x)]}{2}\right\}\right) \tag{7}
\end{align*}
$$

for all $x, y, z \in X$. Then f has a fixed point in X.
Corollary 3.9 ([3, Theorem 2.1]). Let (X, G) be a complete G-metric space. Suppose that the mapping $f: X \rightarrow X$ satisfies

$$
\begin{align*}
& G(f x, f y, f z) \\
\leq & k \max \{G(x, y, z), G(x, f x, f x), G(y, f y, f y), G(z, f z, f z) \\
& \frac{[G(x, f y, f y)+G(z, f x, f x)]}{2}, \frac{[G(x, f y, f y)+G(y, f x, f x)]}{2}, \\
& \left.\frac{[G(y, f z, f z)+G(z, f y, f y)]}{2}, \frac{[G(x, f z, f z)+G(z, f x, f x)]}{2}\right\} \tag{8}
\end{align*}
$$

for all $x, y, z \in X$. Then f has a unique fixed point in X.
Proof. Define $\phi:[0, \infty) \rightarrow[0, \infty)$ by $\phi(t)=k t$, for all $t \in[0, \infty)$. Therefore, ϕ is a nondecreasing function, $\phi(0)=0, \phi(t)<t$ and $\sum_{n=1}^{\infty} \phi^{n}(t)<\infty$, for all $t \in(0, \infty)$. It follows that the contractive condition (7) in Corollary 3.8 is
satisfied. Therefore, f has a fixed point in X. For proving the uniqueness of fixed point of f, see [3, Theorem 2.1].

Acknowledgement

The author would like to express her deep thanks to Professor Sompong Dhompongsa for his suggestions during the preparation of the manuscript.

References

[1] M. Abbas and B. E. Rhoades, Common fixed point results for noncommuting mappings without continuity in generalized metric spaces, Appl. Math. Comput. 215 (2009), 262-269.
[2] I. Beg and M. Abbas, Coincidence point and invariant approximation for mappings satisfying generalized weak contractive condition, Fixed Point Theory Appl. 2006 (2006) (Article ID 74503, 7 pages).
[3] R. Chugh, T. Kadian, A. Rani and B. E. Rhoades, Property P in G-metric spaces, Fixed Point Theory Appl. 2010 (2010) (Ariticle ID 401684, 12 pages).
[4] G. Jungck, Compatible mappings and common fixed points, Int. J. Math. Sci. 9(4) (1986), 771-779.
[5] G. Jungck, Common fixed points for commuting and compatible maps on compacta, Proc. Amer. Math. Soc. 103 (1988), 977-983.
[6] G. Jungck, Common fixed points for noncontinuous nonself maps on non-metric spaces, Far East J. Math. Sci. 4 (1996), 199-215.
[7] G. Jungck and N. Hussain, Compatible maps and invariant approximations, J. Math. Anal. Appl. 325(2) (2007), 1003-1012.
[8] N. Mizoguchi and W. Takahashi, Fixed point theorems for multi-valued mappings on complete metric spaces, J. Math. Anal. Appl. 141 (1989), 177-188.
[9] Z. Mustafa and B. Sims, Some remarks concerning D-metric spaces, Proceedings of the International Conference on Fixed Point Theory and Applications, Valencia (Spain), 2003, pp. 189-198.
[10] Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7(2) (2006), 289-297.
[11] Z. Mustafa, H. Obiedat and F. Awawdeh, Some common fixed point theorems for mappings on complete G-metric spaces, Fixed Point Theory Appl. 2008 (2008) (Article ID 189870, 12 pages).
[12] Z. Mustafa and B. Sims, Fixed point theorems for contractive mappings in complete G-metric spaces, Fixed Point Theory Appl. 2009 (2009) (Article ID 917175, 10 pages).
[13] R. P. Pant, Common fixed points of noncommuting mappings, J. Math. Anal. Appl. 188 (1994), 436-440.
[14] W. Shatanawi, Fixed point theory for contractive mapping satisfying Φ-maps in G-metric spaces, Fixed Point Theory Appl. 2010 (2010) (Article ID 181650, 9 pages).

