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Abstract 

We discuss the oscillations of first order nonlinear functional 
differential equations and obtain the conditions that ensure all 
solutions oscillate. These conditions are necessary and sufficient when 
the coefficient function reduces to a constant. 

1. Introduction 

Oscillatory properties of first order linear differential equations of neutral 
type are studied in [1-6]. In this paper, we discuss a nonlinear equation of 
neutral type, 
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Denote { },...,,2,1,,max nirm i =σ=  and ( )tp  is not identically zero 

on any closed subinterval of the interval [ ).,0 ∞+t  If ,1=n  then (1) reduces 

to 

 ( ) ( ) ( )[ ] ( ) ( ) .0=σ−+−− txtqrtxtptxdt
d  (2) 

As customary, a solution of (1) is called oscillatory if it has arbitrarily 
large zeros. Equation (1) is said to be oscillatory if all its solutions are 
oscillatory. 

2. Main Result 

In order to obtain main result, we need the following lemmas: 

Lemma 1. Assume q is positive and q is bounded and nonnegative, and 

there exists a 0tt ≥∗  such that 

 ( ) ....,2,1,0,1 =≤+∗ nnrtp  (3) 

Let ( )tx  be an eventually positive solution of equation (1) and set 

 ( ) ( ) ( ) ( ).rtxtptxtz −−=  (4) 

Then eventually ( ) 0>tz  and ( ) .0<′ tz  

Proof. It follows from (1) that ( ) 0<′ tz  eventually. It remains to show 

that ( ) 0>tz  eventually. Otherwise, ( )tz  is eventually negative. Thus, there 

exists a sufficiently large T such that ( ) 0<−< dtz  for ,Tt ≥  where d is a 

positive constant. Hence 

( ) ( ) ( )rtxtpdtx −+−≤  for .Tt ≥  

In particular, [ ( ) ] [ ( ) ],1 rNtxndrNntx −++−≤++ ∗∗  ,2,1=n  if 

,TNrt ≥+∗  hence ( )tx  cannot be eventually positive. This contradiction 

proves the lemma. 
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Lemma 2. Assume 

,0>σ   [ ) ( )( ),,0,,0 ∞+∞+∈ tCq   [ ) ( )( )∞+∞+σ−∈λ ,0,,0tC  

satisfying 

 ( )∫ σ−+∞→
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t

tt
dssq 0inflim  (5) 

and 

 ( ) ( ) ( ) .,exp 0ttdsstqt
t

t
≥⎟

⎠
⎞

⎜
⎝
⎛ λ≥λ ∫ σ−

 (6) 

Then 

 ( ) .inflim ∫ σ−+∞→
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Proof. Define ( ) ( )∫=
t
t

dssqtQ
0

,  ,0tt ≥  (5) implies that ( )tQ
t +∞→
lim  

,+∞=  and ( )tQ  is strictly increasing. Then ( )tQ 1−  is well defined, strictly 

increasing, and ( ) ,lim 1 +∞=−

+∞→
tQ

t
 (5) implies that there exist 0>c  and 

01 tT ≥  such that ( ) ( ) 2
ctQtQ ≥σ−−  for 1Tt ≥  and thus 

( ) .,2 1
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Set ( ) ( ) ,exp ⎟
⎠
⎞⎜

⎝
⎛ λ−=Φ ∫

t
T

dsst  then 

(6) implies that ( ) ( ) ( ),σ−Φ−≤Φ′ ttqt  ,0tt ≥  

[2] (5) implies the (7) is true. 

We are now ready to prove the following result: 

Theorem. In addition to the assumptions of Lemma 1, assume (5) holds, 
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Then every solution of (1) is oscillatory. 

Proof. First, we assume (8) holds. Without loss of generality, assume 
that equation (1) has an eventually positive solution ( ).tx  Let ( ) ,0>tx  

( ) ,0>− mtx  for .01 tTt ≥≥  Then by Lemma 1, ( ) ,0>tz  ( ) 0<′ tz  for 

,1Tt ≥  where ( )tz  is defined by (4). From (1), we have 
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−=λ  then (10) reduces to 
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It is obvious that ( ) 0>λ t  for .1Tt ≥  From (11), we have 
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From (8), there exists an ( )1,0∈α  such that 
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In view of (12), we assume that 

 ( ) ., 2Ttht ≥α>λ  (14) 

Substituting (14) into (11), we obtain 
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which contradicts (13) and completes the proof of this theorem under 
condition (8). 

If (9) holds, we let ( ) ( ) ( )
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By Lemma 2, we know that 
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By a similar argument to the first part of the proof, we reach a contradiction. 

Corollary. In addition to the assumptions of Lemma 1 assume (5) holds 
and 
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Then every solution of (2) is oscillatory. 

Example. Consider 

 ( ) ( ) ( )[ ] ( ) ( ) .,0sin23sin2 π≥=π−++π−+− ttxttxttxdt
d  (18) 

It is easy to see that (17) holds. Therefore, every solution of (18) is 
oscillatory. In fact, ( ) ttx sin=  is such a solution. 
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