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Abstract

In this paper we will present a comparative size-power study of several

known tests of symmetry. We discuss both the tests with a known and

an unknown symmetry point. We propose a new tail symmetry based

test, that appears to often outperform the other tests under study,

especially at large sample size. We illustrate the use of the tests on stock

index returns.

1. Introduction

The question whether data exhibit skewness has been an issue of

general interest. In finance, the role of higher order moments has become

increasingly important since traditional risk measures fail to capture the

true down-side risk (such as variance) under skewed asset distributions.

Harvey and Siddique [11] is only one example of an asset pricing model
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that explicitly incorporates skewness. Still in finance, the option pricing

literature [7, 8] and the theory of portfolio selection [15, 5] have

suggested new models to take potential skewness into account.

The hypothesis of symmetry is often an assumption in application of

parametric or non-parametric procedures. For instance, in adaptive

estimation of regression coefficients the conditional density function of

the error terms should be symmetrical around zero [2]. Moreover, the

Wilcoxon signed-rank test asks that the parent population is symmetric

[10]. Nevertheless, despite its importance, the empirical testing of

(unconditional) symmetry has not received much attention. Notable

exceptions to this, is a series of papers by Peiró [18, 19, 20] and Kim and

White [13]. Using a parametric Kolmogorov-Smirnov based symmetry

test Peiró concludes that symmetry often cannot be rejected and that

hence a multitude of skewness based models is superfluous and of little

use. Kim and White argue that S&P index returns are better described as

a mixture containing a predominant component that is nearly symmetric

with mild kurtosis and a relatively rare component that generates highly

extreme behaviour. Crucial to the underlying economic discussion are the

statistical properties of the tests used since it is not clear whether the

non-rejection of the null of symmetry is due to the true symmetric nature

of the data or due to a lack of power in the tests used. Kim and White

examine the performance of robust skewness tests. Also in this paper we

will study size and power properties of several symmetry tests.

It is possible to classify tests of symmetry in those with symmetry

point θ known and those with θ unknown. Most tests belong to the first

group (see, e.g., [6, 17, 23] and many others). As Lehmann [16] pointed

out, the problem of testing symmetry with θ unknown is more difficult. A

possible solution is given by estimating θ first, but this may lead to the

loss of interesting asymptotic properties (see, e.g., [12] with regard to the

sign test). Being aware of the incompleteness of this empirical study, we

will restrict ourselves to some symmetry tests as it is cumbersome to

handle all available tests. To compare both types of symmetry tests we

will assume 0=θ  in our simulations.
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Let { }nxxxX ...,,, 21=  be a random sample drawn from a

continuous distribution function F. Then we will discuss tests of

symmetry about the symmetry point θ, i.e., tests of

( ) ( )θ+−−=θ− xFxFH 1:0  for all R∈x

against

( ) ( )θ+−−≠θ− xFxFHa 1:  for some R∈x

in which the need of knowing θ depends on the test.

In Section 2 we give an overview of the different symmetry tests
discussed in the paper. We also contribute to the literature by suggesting

new tests which we label the tail symmetry test ( )kTS  and the

medcouple symmetry test ( ).MSF  Section 3 presents the results of a

simulation study in which the mis-specification of several tests is
detected. The power of different tests is assessed vis-à-vis a wide range of
alternative distributions. Section 4 applies the tests on real data. Finally,
Section 5 concludes.

2. Tests of Symmetry

Here we will present the different tests of symmetry compared in this

paper. Firstly, we discuss those with symmetry point θ known and

secondly those with θ unknown. An obvious drawback of the first is that

they cannot always be applied as in empirical applications θ is not always
known. Note that the Matlab code of all tests is available at

http://www.agoras.ua.ac.be/.

2.1. Symmetry tests with θ known

2.1.1. Butler-Smirnov test (BS)

The Butler-Smirnov test (BS) is designed to decide whether the
cumulative distribution function is symmetric about zero. In case the

symmetry point θ differs from zero, we will subtract it from all
observations. As described in Chatterjee and Sen [4] the asymptotic
p-value is given by

(( )( )( )( ) )25.025.0 11ln dd ddne
+−−− −+



w
w

w
.p

ph
m

j.c
om

J. ANNAERT, G. BRYS and M. DE CEUSTER356

with

( ) ( ) 1sup 0 −+= −≥ xFxFd XXx

and with ( ) ( )∑ = ≤=
n
i xxX in

xF
1

1
1  and ( ) ( )∑ = ≤−− =

n
i xxX in

xF
1

.1
1  Hereby

( )⋅1  stands for the indicator function. Intuitively, this test searches for

the largest deviation d between the empirical distribution function of the

upper half and that of the lower half of the sample. If this value is too

large for certain x, then the null hypothesis of symmetry, i.e., ( ) =xFX

( )xF X−−1  for all ,0≥x  is rejected.

2.1.2. Kolmogorov-Smirnov symmetry test (KS)

The second test we study is the Kolmogorov-Smirnov symmetry test

(KS) which is based on the goodness-of-fit test of Kolmogorov-Smirnov

[22]. Consider ( )−θ−X  and ( ) ,+θ−X  the negative and positive halves

of the sample after subtracting the symmetry point θ, with

{ } { }−−− =∈<|−=
1

...,,,0 1 nxxXxxxX  and { } =∈>|=+ XxxxX ,0

{ }....,,
21
++
nxx  If X is symmetric around θ, then these two random

variables have the same distribution. The Kolmogorov-Smirnov goodness-

of-fit test based on ( )−θ−X  and ( )+θ−X  gives us the p-value of the test.

2.1.3. Kozubowski test (KO)

The Kozubowski symmetry test (KO) [14] was designed under a skew

Laplace model, but the same paper also gives the extension towards a
general skew model. They propose to use

( )
4

22

1

1

κ+

κ+
=τ

with

4

1

1

2

1

∑
∑

=
+

=
−

=κ
n

j j

n

j j

x

x

as absolute measure of skewness (i.e., it leads to the same skewness
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value when applied on the mirror image of the distribution). Note that κ

varies between zero and infinity and τ between one and two. In case of a

symmetric distribution 1=κ  and .2=τ  When κ (resp. τ) tends to zero or

infinity (resp. one), the distribution becomes skewed. When testing for

symmetry we intrinsically assume that 1=κ  as the observations at both

sides of the symmetry point are equal in absolute value, and then the test

statistic is given by

( )
γ

τ−22

which is asymptotically 2
1χ  distributed with

( ) ( )

( )

( )

( )

( )

.
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1 2

1 2
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2.2. Symmetry tests with θ unknown

2.2.1. Triples test (TR)

An asymptotically distribution-free test of symmetry with θ unknown

is given by Randles et al. [21]. To apply the Triples test (TR) each triple

{ } ( )kjixxx kji <<,,  is labeled as right, neutral or left in the following

manner:

( ) triple,right,,
3

⇒>
++

kji
kji xxxmed

xxx

( ) triple,neutral,,
3

⇒=
++

kji
kji xxxmed

xxx

( ) triple,left,,
3

⇒<
++

kji
kji xxxmed

xxx

in which ( )⋅med  stands for the median. Let T be the number of right
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triples minus the number of left triples, iB  be the same difference

between the right and left triples but only counting the triples involving

,ix  and analogously ijB  but only counting those triples involving ix  and

.jx  Then, the test statistic is given by ,TT σ  where

( ) ( )
( ) ( )

( ) ( )∑ ∑
= ≤<≤

−−
+

−
−+

−−
−−

=σ
n

i nkji
jkiT

nnn
B

n
nB

nn
nn

1

222
6

21
4
3

21
43

( ) ( ) ( )
( ) ( ) .

21
543

1 2T
nnn

nnn








−−
−−−

−−

It is shown in [21] that this test statistic is asymptotically standard

normal distributed. A serious drawback of the TR test is its

computational complexity as it needs to handle 
( ) ( )

6
21 −− nnn

 possible

triples.

2.2.2. Kolmogorov-Smirnov-based symmetry tests (PM, HS and

kTS )

Based on the Kolmogorov-Smirnov symmetry test of Subsection 2.1.2.

some other tests can be constructed in case θ is unknown. Peiró [18]

proposes to estimate θ by the sample mean ,X  and than applying the

Kolmogorov-Smirnov goodness-of-fit test as has been done in Subsection

2.1.2. We label this test as the Peiró-Mean symmetry test (PM).

Alternatively, but not considered by Peiró, the median ( )50Q  can also be

used as symmetry point estimator. In this case, we label the test as Half

Symmetry test (HS).

Pushing the idea of the HS test further, we propose to use the Tail

Symmetry test ( )kTS  with θ unknown. Here we only consider the tails of

the distribution in order to determine the (a)symmetric character of the

distribution. In order to let each tail start at the same numerical value,

we subtract 
2

100 kk QQ −+
 from the observations, before applying the two-

sample Kolmogorov-Smirnov test in which kQ  represents the kth
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percentile of sample X. Hence the TS test applies the Kolmogorov-

Smirnov test on −Y  and +Y  given by

,,
2

100







 ∈<|−

+
= −− XxQxx

QQ
Y k

kk

.
2 ,100

100







 ∈>|

+
−= −

−+ XxQx
QQ

xY k
kk

Obviously the choice of k is arbitrarily. A trade-off must be made

depending on the number of observations available and the power of the

Kolmogorov-Smirnov test. We use { }.25,20,15∈k  It is clear that the

kTS  test encompasses the HS test for .50=k

2.2.3. Medcouple symmetry test ( )FMS

Another approach is by noting that symmetry implies that skewness

is equal to zero. Therefore the asymptotic distribution of any skewness

measure under the null hypothesis of a symmetric distribution can be

used to test for the presence of skewness. Unfortunately, the asymptotic

variance of a skewness measure differs across different symmetric

distributions. The latter property is remarkably less pronounced for

robust skewness measures as these measures are less influenced by

outlying values. Therefore, we propose to use the medcouple, which is a

robust skewness measure proposed by Brys et al. [3], and which is

defined by

( )21,
2501

xxhmedMC xQx ≤≤=

with XxXx ∈∈ 21 ,  and with the kernel function h given by

( )
( ) ( )

., 5050

ij

ij
ji xx

xQQx
xxh

−
−−−

=

Note that MC can be computed in ( )( )nnO log  time due to the fast

algorithm given in Brys et al. [3]. Depending on the underlying

distribution, we have an asymptotic variance 2
MCσ  of 1.246 (Normal,

),MSN  1.331 (Uniform, )MSU  and 2.029 (Cauchy, ),MSC  and thus the
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test statistic of the Medcouple Symmetry test FMS  becomes

MC

MC
σ

which is according to [3] asymptotically standard normal distributed.

3. Simulation Results

In this section we present the simulation results of the given tests for
a variety of distributions. The results of our simulation studies are
summarised by looking at tables of size and power, and through the use
of size-size and size-power curves proposed by Wilk and Gnanadesikan
[25] and recently reviewed by Davidson and MacKinnon [9].

3.1. Families of distributions considered

We investigate the given tests by generating samples from the

Normal Inverse Gaussian (NIG) family [1]. The NIG-distribution emerges

as the marginal distribution of X in ( ),, ZX  where

( )ZZNZX ,~ β+µ|

with

( )22,~ β−αδIGZ

in which N stands for the normal distribution and IG for the inverse

Gaussian distribution. Shortly, a NIG-distributed variable is uniquely

determined by giving its four parameters ( ),,,, δµβα  and so we will

denote it as ( ).,,, δµβαNIG  The domain of the NIG-family is the so-

called NIG-shape triangle ,10 <ξ<χ≤  where ( ) 21221 −β−αδ+=ξ

and .αβξ=χ  For 0<χ  we get negatively skewed distributions, for

0=χ  we get symmetric distributions and for 0>χ  we get positively

skewed distributions. Also, tail thickness enlarges with increasing ξ and

0=ξ  yield normal tails.

To get an idea about the shape of the studied distributions, Table 1
shows for the studied parameter sets the theoretical mean, variance,
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skewness and kurtosis, together with the average median based on 1000

samples of size 10000 (between brackets the p-value of the Student t-test

is given). Venter and De Jongh [24] provide the formulas to compute the
theoretical values. In all blocks of Table 1 the kurtosis of the first two
distributions is more or less the same, but skewness differs (i.e., the first
distribution is symmetric while the second one is skewed to the right).
The third distribution always shows more kurtosis (and skewness)
compared to the second one.

Table 1. Theoretical mean, variance, skewness and kurtosis at a

variety of NIG-distributions and the empirical averaged median

based on 1000 samples of size 10000. Between brackets the p-value of

the Student t-test is given

mean variance skewness kurtosis 50Q

NIG(30, 0, 0, 30) 0 1 0 0.003   0.000 (0.888)

NIG(30, 25, – 22.613, 15) 0 2.96 0.159 0.046 – 0.030 (0.000)

NIG(30, 29, – 4.531, 1.2) 0 2.383 0.955 1.542 – 0.058 (0.000)

NIG(1.9, 0, 0, 1.9) 0 1 0 0.831   0.001 (0.023)

NIG(2.37, 0.8, – 0.85, 2.37) 0 1.199 0.440 0.826 – 0.009 (0.000)

NIG(2, 1.2, – 1.125, 1.5) 0 1.465 1.162 3.050 – 0.050 (0.000)

NIG(1, 0, 0, 1) 0 1 0 3   0.000 (0.273)

NIG(1.14, 0.2, – 0.178, 1) 0 0.919 0.497 3.002 – 0.001 (0.000)

NIG(1, 0.5, – 0.577, 1) 0 1.540 1.612 6.928 – 0.040 (0.000)

3.2. Tables of size and power

In our simulation study, we generated 10000=m  samples of size n

from the NIG-family. Table 2 gives the percentage of p-values of the kTS

and the FMF  tests, respectively, in the simulated m samples smaller

than the significance level. In case the underlying distribution is truly

symmetric, we expect this percentage, the (empirical) size of the test, to

be equal to the significance level. Then, the test is said to be well

specified. The power of a test is given by the number of appropriate

rejections of the null hypothesis. Alternatively, the power equals the

percentage of p-values smaller than the chosen significance level.
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Statistical tests with power values close to one are preferred. In Table 2
we used a significance level of 5% and a sample size of .2500=n

From the table it becomes clear that all the selected tests show a
percentage nearly equal to 5% in case of symmetry. They also tend
towards one in case of asymmetry, although it is straightforward to see
that the kTS  tests have the highest power values. Indeed, the FMS

tests hardly detect small positive skewness, which is due to the fact that
the medcouple suffers the same problem [3]. Nevertheless, with regard to
robustness issues, these tests remain interesting. In the remainder of this
paper we will focus upon 20TS  (abbreviated to TS) and UMS  (abbreviated

to MS) as they showed in this table good results regarding size and
power.

Table 2. Percentage of rejections of the null hypothesis of symmetry
at the significance level of 5% (i.e., size or power) at a variety of
NIG-distributions, simulated by 10000=m  samples of size

2500=n

15TS 20TS 25TS NMS UMS CMS

NIG(30, 0, 0, 30) 0.055 0.054 0.059 0.052 0.044 0.012

NIG(30, 25, – 22.613, 15) 0.832 0.856 0.861 0.402 0.376 0.220

NIG(30, 29, – 4.531, 1.2) 1.000 1.000 1.000 1.000 1.000 1.000

NIG(1.9, 0, 0, 1.9) 0.053 0.053 0.054 0.053 0.046 0.013

NIG(2.37, 0.8, – 0.85, 2.37) 0.999 1.000 1.000 0.824 0.807 0.657

NIG(2, 1.2, – 1.125, 1.5) 1.000 1.000 1.000 1.000 1.000 1.000

NIG(1, 0, 0, 1) 0.049 0.049 0.052 0.057 0.049 0.015

NIG(1.14, 0.2, – 0.178, 1) 0.947 0.946 0.945 0.558 0.530 0.350

NIG(1, 0.5, – 0.577, 1) 1.000 1.000 1.000 1.000 1.000 1.000

A similar table can be made of BS, KS, KO, TR, PM and HS. We
omitted it here because such a table actually does not give much
information as it is based on a single sample size ( )n  and on a single

significance level ( ).%5=α  Therefore, we will use further on graphical

tools to visualize size and power of a statistical test.
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3.3. Size-size and size-power curves

A drawback of Table 2 is its restriction to the chosen significance
level, and therefore we summarize more comprehensive results in size-
size and size-power curves. A size-size curve represents the empirical

distribution function ( )pF  of the p-values obtained by the simulation of a

symmetry test at the null distribution. Since significance values are
uniformly distributed, we expect this line to be as close to the 45 degree
line as possible for a well specified test. A 95% confidence bound (shaded
area) is plotted across this bissectrice to take into account of sampling
errors:

( ) ( )







 −+−−
m

pp
p

m
pp

p
1

96.1;
1

96.1

in which m stands for the number of simulations performed in the study

( )10000here =m  and p stands for nominal size.

In the Figures 1-5 the left, middle and right panel is based on a
sample size of respectively 500,100 == nn  and .2500=n  The size-size

plots of Figure 1 show that the KS and the KO tests are overall well
specified. Also the TR test follows closely the 45 degree line, but due to its
computational complexity, it is only simulated with .100=n  The size-

size curve of the TS test is stepwise, a conclusion which could also be
made with HS and BS, and mainly caused by the discreteness

of underlying statistical tests. Nevertheless, when n increases

( )2500.,e.i =n  their size-size curves become almost continuous, and we

may conclude the TS test to be well specified. Sometimes the MS test
deviates slightly from the confidence bound but overall it could be said
that it has correct size values. With the other given symmetry tests
actual size and true nominal size differ significantly. The actual size of
the PM and the BS symmetry test constantly underestimates the true
nominal size, while on the contrary the actual size of the HS test always
lies above the true nominal size.
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Figure 1. Size-size plots with ( )300,0,30,NIG  (upper panel) and

( )10,0,1,NIG  (lower panel) as null distribution.

A size-power curve plots the empirical distribution function of the

p-values at the null distribution against its counterpart at an alternative

distribution. In this way we are able to compare tests with different

empirical size values. A powerful test will have a size-power curve

converging very rapidly towards one.

The size-power curves of Figures 2-4 clearly show that overall the TS

test is superior. Nevertheless, for small samples ( )100=n  the TR test

clearly outperforms the TS test, but again due to its computational

complexity, it is prohibitive to simulate this test if 500=n  or .2500=n

The well specified symmetry tests (KO, KS and MS) always show worse

power values. The other tests are hard to interpret as they are biased at

symmetric distributions.
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Figure 2. Size-power curves with ( )300,0,30,NIG  and ( )1522.613,25,30, −NIG

(upper panel) and ( )300,0,30,NIG  and ( )1.24.531,29,30, −NIG  (lower panel) as

respectively null and alternative distributions.

Figure 3. Size-power curves with ( )1.90,0,1.9,NIG  and 2.37)0.85,0.8,(2.37, −NIG

(upper panel) and ( )1.90,0,1.9,NIG  and 1.5)1.125,1.2,(2, −NIG  (lower panel) as

respectively null and alternative distributions.
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Figure 4. Size-power curves with ( )10,0,1,NIG  and ( )10.178,0.2,14,1, −NIG

(upper panel) and ( )10,0,1,NIG  and ( )10.577,0.5,1, −NIG  (lower panel) as

respectively null and alternative distributions.

To examine the influence of outlying values of the studied tests, we

take a look at Figure 5. Here, we generated samples of size ( )ε−1n  of

( )300,0,30,NIG  or of ( )10,0,1,NIG  and added a contaminated sample

of size nε with %.1=ε  The latter sample is respectively a normal sample

with mean 1.96 or 2.06 and variance 0.1. In this way, we have added a

cloud of (wrong) data points in the right tail of the (regular) distribution.

A robust symmetry test is said to base its results on the majority of the

data points, and thus it should conclude that these samples are

symmetric. Therefore, Figure 5 plots the size-size curves of these two

situations. Clearly, of the well specified tests, MS performs best here as it

often remains in the confidence region. Of course, this property is due to

the insensitivity of the medcouple at small positive skewness. Moreover,

in financial applications it often holds that any observation is important

and so the use of robust tests is only sometimes desirable. In that case, it

is important to note that of the well specified tests the TS and KO test

are well able to detect the asymmetry in these contaminated samples.
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Figure 5. Size-size curves of contaminated situations with %,1=ε  so with 99%

( )300,0,30,NIG  and 1% ( )1.0,96.1N  (upper panel) and 99% ( )10,0,1,NIG  and 1%

( )1.0,06.2N  (lower panel) as null distribution.

4. Applications on Stock Index Returns

From Datastream we downloaded the daily closing prices tP  of the

Standard and Poor’s (S&P), the FTSE 100 (FTSE) and the Nikkei (NIKK)

indices, starting respectively from 20 October 1982, from 2 April 1984

and from 4 January 1984 and all ending on 20 August 2004. Then daily

returns were obtained by logarithmic differences as .
1

log 







−
=

t

t
t P

P
R  For

the three stock index returns the sample size is above 5000. Table 3

shows the number of observations, the sample mean, variance, skewness

and kurtosis, together with the median of the three time series.
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Table 3. The mean, variance, skewness, kurtosis and the median ( )50Q

of the discussed data sets

mean variance skewness kurtosis 50Q

S&P 0.000 0.011 1.921 44.963 0.000

FTSE 0.000 0.011 0.537 10.818   – 0.001

NIKK 0.000 0.014 0.109 10.572 0.000

In Table 4 we list the significance values of the eight tests considered.
Here, the TR test was also performed, although it took some time. We
consider this test here as reference point as it was superior at small
samples, a conclusion which can probably also be made at large samples
due to the asymptotical properties of the test statistic. With a
significance level of 5% only the HS test succeeds to copy the results of
the TR test. But as this test is biased, we prefer the TS and the MS tests
who lead to the same conclusions as the TR test at a significance level of
6%. Also the PM test makes the same rejections of the null hypothesis of
symmetry, but already at a significance level of 23%. All other tests
detect symmetry in the S&P time series before they detect symmetry in
the other data sets.

Table 4. The significance values for the different symmetry tests at the
discussed data sets

TR PM HS KS BS KO TS MS

S&P 0.214 0.675 0.661 0.278 0.000 0.009 0.167 0.890

FTSE 0.002 0.222 0.032 0.388 0.001 0.069 0.003 0.055

NIKK 0.006 0.140 0.032 0.128 0.134 0.926 0.056 0.050

Also Peiró [20] finds symmetry in stock price indices, although, as we

have seen on the size-size and size-power curves, his result is merely

based on (good) luck. We made this conclusion statistically more exact

by using well specified tests as the TS and TR tests. Finding symmetry

in stock (index) returns, Peiró questions the validity of models

that explicitly incorporate skewness. The lack of evidence against
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unconditional skewness, however, does not preclude conditional

skewness. As such, the proposed skewness based asset and option pricing

models remain useful, if properly applied.

5. Conclusion

In this paper we examined several tests of symmetry, on simulated as

well as on real data. It became clear that the existing tests often suffer

lack of power. Also the proposed tail symmetry test (TS) is not very

powerful, but it nevertheless performs better than the other tests,

especially at large sample size. Moreover, the TS test can be regarded as

a good alternative to the triples test (TR) which is hard to perform at

large data sets ( ).500≥n  In small data sets ( )500<n  we propose to use

the TR test.
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