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Abstract 

We extend a curious observation by Fermat about points on a 
semicircle on a side of a special rectangle to a theorem that holds for 
all points on an ellipse. 

1. Introduction 

Among the numerous questions that Pierre Fermat formulated, the 
following geometric problem has drawn some attention (see Figure 1). 
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Figure 1. The Fermat configuration for a semicircle. 

Fermat Problem. Let P be a point on the semicircle that has the top side 

AB of the rectangle ABAB ′′  as a diameter. Let .2=
′AA

AB  Let the segments 

AP ′  and BP ′  intersect the side AB in the points C and D. Then +2AD  

.22 ABBC =  

The great Leonard Euler in [2] has provided the first rather long proof, 
which is old fashioned (for his time), and avoids the analytic geometry 
(which offers rather simple proofs as we shall see below). Several more 
concise synthetic proofs are now known (see [6], [3, pp. 602, 603], [1, pp. 
168, 169] and [4, pp. 181, 264]). 

 
Figure 2. The Fermat configuration for a circle. 
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Here is an adaptation of Lionnet’s proof from [3, p. 602] that applies 
wherever P might be on the complete circle (see Figure 2). 

Let the directed lengths DBCDAC ,,  be a, b, c. Then 

( ) ( ) ( ) .22222222 acbcbacbbaABBCAD −=++−+++=−+  

So 

 .22222 acbABBCAD =⇔=+  (1) 

Now draw CY and DZ perpendicular to AB, with Y on PA and Z on PB. 
Using pairs of similar triangles, we have 

.
BB

ZD
BP

PD
BA

CD
AP

PC
AA

YC
′

=
′

=
′′

=
′

=
′

 

Hence, YCDZ is a rectangle similar to .BBAA ′′  The triangles YCA, BDZ 

are equiangular, so .DZ
c

a
YC =  But .

22
bCDDZYC ===  Thus acb 22 −  

vanishes, hence .222 ABBCAD =+  

The analytic proof was recently recalled in [5] where it was observed that 
the above relation holds for all points on the circle with the segment AB as a 
diameter. 

 

Figure 3. Simple analytic proof. 
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We can also use the equivalence (1) to obtain a simple analytic proof 
(see Figure 3). There is no loss of generality in taking the radius of the circle 

as the unit of length. By similar triangles 
yy

b
y

xa
+

=
+
+=

2
2,

2
1

2
 and 

.
2

1
2 y

xc
+
−=  Simplifying acb 22 −  and putting ,1 22 yx −=  we find 

that this difference vanishes. 

Our goal is to extend the above problem to any ellipse. Instead of a point 
P on a (semi)circle that has the side AB as a diameter, we consider a point P 
on an ellipse that has the segment AB as a principal diameter. It turns out         

that when ,
1

2
2eAA

AB
−

=
′

 where e denotes the eccentricity of the ellipse,        

then the relation 222 ABBCAD =+  again holds for all points P (see 

Figure 4). 

 

Figure 4. The Fermat configuration for an ellipse. 

For an ellipse, we shall consider a slightly more general situation when 

the quotient 
AA

AB
′

 is a positive real number m. 

For four points ,,,, 4321 PPPP  let ( ) ., 2

2
43

2
21

4321
AB

PPPPPPPP +
=ϕ  
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In this notation, the above Fermat Problem for ellipse is the implication 

(a) ⇒ (b) in the following theorem. Let .1 2ef −=  

Theorem 1. The following statements are equivalent: 

(a) The ratio m of side lengths of the rectangle ABAB ′′  is .2
f

 

(b) ( ) .1, =ϕ BCAD  

Proof. We shall use analytic geometry that offers a simple proof. Let the 
origin of the rectangular coordinate system be the midpoint O of the side AB 
so that the points A and B have coordinates ( )0,a−  and ( )0,a  for some 

positive real number a. The foci are the points ( )0,0 aeA −  and ( )0,0 aeB  

and the equation of the ellipse is a standard ,12

2

2

2
=+

b
y

a
x  where =e  

11 2

2
<−

a
b  and .1 2 afeab =−=  

The coordinates of the points ,A′  ,B′  A ′′  and B ′′  are ,2, ⎟
⎠
⎞⎜

⎝
⎛ −− m

aa  

,2, ⎟
⎠
⎞⎜

⎝
⎛ − m

aa  ⎟
⎠
⎞⎜

⎝
⎛− m

aa 2,  and .2, ⎟
⎠
⎞⎜

⎝
⎛

m
aa  For any real number t, let ,1 2tu −=  

,1 2tv +=  ,fmw =  ,fmtz =  zv −=η  and .zv +=ϑ  An arbitrary point 

P on the ellipse has the coordinates .2, ⎟
⎠
⎞⎜

⎝
⎛

mv
az

v
au  Writing down the linear 

equations of lines joining two points and solving systems of two equations to 

determine their intersections, we easily find that ( )
⎟
⎠
⎞⎜

⎝
⎛

ϑ
− 0,zuaC  and 

( ) .0, ⎟
⎠
⎞⎜

⎝
⎛

ϑ
+ zuaD  The equivalence of the statements (a) and (b) follows from 

the identity ( ) ( ) .21, 2

22

ϑ

−
=−ϕ

wtBCAD  ~ 
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In Figure 5, we see how the implication (a) ⇒ (b) (for an ellipse) could 
be proved using the Fermat Problem (for a circle). Since an ellipse is the 
affine image of a circle, all we have to do is stretch the y-coordinate of every 

point P on the ellipse for a factor 
b
a  in order to get the associated point Q on 

the circle. The points A′  and B′  must be pushed down for the same ratio to 
the points X and Y. The points A, B, C and D remain fixed so that the 
implication (a) ⇒ (b) follows from the claim of the Fermat Problem. 

 

Figure 5. Ellipse with its associated circle. 

Let PBA ′′′′′ ,,  be the reflections of the points PBA ,, ′′  in the line AB. 

We close this introduction with a remark that most of our results come in 
related pairs. The second version, which requires no extra proof, comes (for 
example in Theorem 1) by replacing the points C and D with the points C′  
and ,D′  which are the intersections of the line AB with the lines AP ′′  (or 

)AP ′′  and BP ′′  (or )BP ′′  (see Figure 4). 

2. Invariants of the Fermat Configuration 

Our first goal is to introduce several statements similar to (b) that could 
be added to Theorem 1. In other words, we explore what other relationships 
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in the Fermat configuration remain invariant as the point P changes position 
on the ellipse. 

We begin with the diagonals of the trapezium DCBA ′′  and the sides of 
the trapezium .DCBA ′′′′  

(c) ( ) ( ) .1,, 2fCBDACBDA +=′′′′ϕ=′′ϕ  

Proof of (c). With straightforward computations, one can easily check 

that ( ) ( ) ( ) .2,1 22

2222
2

ϑ

−ϑ−=′′ϕ−+
m

tmwCBDAf  

Pythagoras’ theorem might be useful in computing the function ϕ. For 
instance, for ( ),, CBDA ′′ϕ=ξ  we have 

( ) ( ) .222222 BCADBBAACBDA ++′+′=′+′  

But ( ) ( ) 2222 ABfBBAA =′+′  and ,222 ABBCAD =+  so .1 2f+=ξ  ~ 

For points X and Y, let YX ⊕  be the centre of the square built on the 
segment XY such that the triangle ( )YYXX ⊕  has the positive orientation 

(counterclockwise). When the point YX ⊕  is shortened to M, then ∗M  
denotes .XY ⊕  

The midpoints G, H, HG ′′,  of the segments AC, BD, DBCA ′′,  and the 

top N of the semicircle over AB are used in the next two statements. In other 
words, .ABN ⊕=  The centre O of the circle (i.e. the midpoint of the 
segment AB; the origin of the rectangular coordinate system) appears in the 
statement (e). 

(d) ( ) ( ) .4
3,, =′′ϕ=ϕ HNGNNHNG  

(e) ( ) ( ) .4
1,, =′′ϕ=ϕ HOGOOHOG  

Proof of (d) and (e). This time the differences ( ) 4
3, −ϕ NHNG  and 
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( ) 4
1, −ϕ OHOG  both simplify to the following quotient ( )

2

22

4
2

ϑ
−wt  that 

has the factor 22 −w  again. 

The following synthetic proof shows that the statements (a) and (b) 
together imply (d) and (e). 

A dilatation with centre A and scale factor 2 maps GO on to CB, thus 

;
2

CBGO =  similarly .
2

ADOH =  Consequently for ( ),, OHOGϕ  we have 

.
4
1

44
2

22
22 ABADBCOHOG =+=+  Similarly, for ( ),, NHNGϕ  we 

have 222 OGNONG +=  and 222 OHNONH +=  so that 

 .
4
3

424
2 2

2222
222 ABABABADBCNONHNG =+=++=+  ~ 

Let ssss HGHG ′′ ,,,  be the points that divide the segments NG, NH, 

HNGN ′′,  in the same ratio 1−≠s  (i.e. ,1:: sGGNG ss =  etc.). 

(f) ( ) ( )
( )

.
14

2,, 2

22

+
+=′′ϕ=ϕ

s
fsHOGOOHOG ssss  

(g) ( ) ( ) ( )
( )

.
14

21,, 2

22

+

+=′′ϕ=ϕ
s

sfHNGNNHNG ssss  

Proof of (f). Since ( )
( )

⎟
⎠
⎞

⎜
⎝
⎛

+ϑ+
+−=

1
,

1 s
a

s
twastGs  and ( )

( )
,

1
,

1
1

⎟
⎠
⎞

⎜
⎝
⎛

+ϑ+
+=

s
a

s
zasHs  

the difference ( )
( )2

22

14
2,
+

+−ϕ
s

fsOHOG ss  is ( )
( )

.
14

2
22

222

ϑ+

−

s
wts  ~ 

Let 4321 ,,, NNNN  denote the highest points on the semicircles built 

on the segments AC, BD, DBCA ′′,  above the line AB. In other words, =1N  

,AC ⊕  ,2 DBN ⊕=  ,3 ACN ⊕′=  .4 DBN ′⊕=  
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(h) ( ) ( ) .2
3,, 4321 =ϕ=ϕ ANBNANBN  

(i) ( ) ( ) .2
1,, 4321 =ϕ=ϕ NNNNNNNN  

Proof of (h). Since ( )
⎟
⎠
⎞⎜

⎝
⎛

ϑϑ
+−= atwatN ,1  and ( ) ,,1 2

2 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ϑϑ

+= atzaN  

we get that ( )
2
3, 21 −ϕ ANBN  is ( ) .

2
2

2

22

ϑ

−wt  

The synthetic proof of the implication (a) ⇒ (h) uses the right-angled 

triangles 2AHN  and 1BGN  to get 
42

22
2
2

ccbaAN +⎟
⎠
⎞⎜

⎝
⎛ ++=  and =2

1BN  

.42

22 acba +⎟
⎠
⎞⎜

⎝
⎛ ++  But acb 22 =  implies .

2
3 22

1
2
2 ABBNAN =+  

Let ,
2

aa =′  etc. From the isosceles right-angled triangles ABN, ,1ACN  

,2BDN  we get ( )22
1 cbNN ′+′=  and ( ) .22

2 baNN ′+′=  But acb 22 =  

implies .2
1 22

2
2
1 ABNNNN =+  ~ 

The following statements also use the summits ,1N  ,2N  3N  and .4N  

However, they do not use the function ϕ. 

(j) .4321 ANNNNN ==  

(k) .2 22
14

2
43

2
32

2
21 ABNNNNNNNN =+++  

Proof of (j). The differences 22
21 ANNN −  and 2

21
2

43 NNNN −  

are equal to ( )
2

222 22
ϑ

−wta  and ( ) ,28
22

222

ϑη
−wzvta  respectively. ~ 

Let us note that 22
14

2
43

2
32

2
21 2 ABNNNNNNNN =+++ ∗∗∗∗  

if and only if .1
f

m =  
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Let ,5 DAN ⊕=  ,6 BCN ⊕=  DAN ′⊕=7  and .8 BCN ⊕′=  

(l) ( ) ( ) .2
1,, 8765 =ϕ=ϕ BNANBNAN  

(m) ( ) ( ) .4
3,, 7856 =′′ϕ=ϕ NHNGHNGN  

(n) ( ) ( ) .2
3,, 8765 =ϕ=ϕ NNNNNNNN  

Proof of (l). Since ( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ϑ
+−

ϑ
−= zaatN 1,

2
5  and ( ) ,,6 ⎟

⎠
⎞⎜

⎝
⎛

ϑ
+−

ϑ
= twataN  

the difference ( ) 2
1, 65 −ϕ BNAN  is again ( ) .

2
2

2

22

ϑ
−wt  

From the isosceles right-angled triangles 5ADN  and ,6BCN  we get 

.
2
1

22
2

22
2
6

2
5 ABBCADBNAN =+=+  ~ 

The next six statements use the centres of squares on the segments CD 
and .DC ′′  Let DCM ⊕=1  and .2 DCM ′⊕′=  

(o) .21 ANNMNM ==  

Proof of (o). Since ,,1 ⎟
⎠
⎞⎜

⎝
⎛

ϑ
−

ϑ
= azauM  the difference −2

1NM  

2AN  is equal to ( ) .22
2

222

ϑ

−wta  Similarly, =− 2
1

2
2 NMNM  

( ) .28
22

222

ϑη

−wvzta  

From the right-angled triangle ,11MNN  since ,
2

2
acb =  we get =2

1NM  

( ) ( ) ( ) .2222222 NAcbabcabcbacbba =′+′+′=++′++′=′+′+′+′  

 ~ 



On the Fermat Problem for Ellipse 223 

The same argument proves also the following: 

(p) ( ) ( ) .2
1,, 42322111 =ϕ=ϕ NMNMNMNM  

For any point X in the plane, let 54321 ,,,, GGGGG  and 6G  denote the 

centroids of the triangles ACX, CDX, DBX, ,XCA ′  XDC ′′  and ,XDB ′  
respectively. 

(q) ( ) ( ) .9
1,, 65453212 =ϕ=ϕ GGGGGGGG  

Proof of (q). If ( ),, yxX =  then the points ,1G  2G  and 3G  have the 

same ordinate 
3
y  while their abscissae are ( ) ,3

2
3 ϑ

+− twatx  
ϑ

+ 3
2

3
aux  and 

( ) .
3

12
3 ϑ

++ zax  It follows that the difference ( ) 9
1, 3212 −ϕ GGGG  is 

( ) .
9

2
2

22

ϑ
−wt  

The implication (b) ⇒ (q) could be proved as follows. Let I denote the 
midpoint of the segment CD. A dilatation with centre C and scale factor 2 

maps GI on to AD, thus ;
2

ADGI =  similarly .
2

BCHI =  Hence ( )HIGI ,ϕ  

.
4
1=  On the other hand, a dilatation with centre X and scale factor 

2
3  maps 

21GG  on to GI, thus ;3
2

21 GIGG =  similarly .3
2

23 HIGG =  Hence 

( ) .9
1, 2321 =ϕ GGGG  ~ 

Let U and V be the midpoints of the segments CC ′  and .DD ′  

(r) ( ) .2
1,

2fNVNU +=ϕ  

(s) ( ) ( ) ( ) .2
1,,, 7856 =ϕ=ϕ=ϕ VNUNVNUNOVOU  



Zvonko Čerin and Gian Mario Gianella 224 

Proof of (r) and (s). Since ( ) ( ) ,0,,0,
22

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ηϑ
−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ηϑ
+= zuvaVzuvaU  

we get ( ) ( ) ( ) .2
2
1,2

1, 22

2222

ϑη
−=−ϕ=+−ϕ wvtOVOUfNVNU  ~ 

Let .VUW ⊕=  

(t) The centre W lies on the circle that has the segment AB as a diameter. 

Proof of (t). Since the coordinates of the point W is the pair 

,,
2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ηϑηϑ
azauv  we get that 22 aWO −  equals ( ) .22

22

2222

ϑη
−wvta  ~ 

(u) ( ) ( ) ,2
1,, =ϕ=ϕ ∗

ji WNWNWOOW  for { }3,1∈i  and { }.4,2∈j  

(v) ( ) .2
1,

2fWNNW +=ϕ ∗  

(w) The lines 1WN  and 2WN  are perpendicular. 

(x) The lines 3WN  and 4WN  are perpendicular. 

Proof of (w). The lines 1WN  and 2WN  have the equations 

( ) ( ) λ=−++ yzMxzM  and ( ) ( ) ,μ=−′−+′ yzMxzM  

where ,2 vzM −=  vwM −=′ 2  and λ and μ are real numbers. These lines 

are perpendicular if and only if the sum MM ′+  is zero. However, MM ′+  

( ).22 −= wv  ~ 

Let .,,, 44332211 ANKNBKANKNBK ⊕=⊕=⊕=⊕=  These 

points can be defined more simply. They all are at the same height as N and 
vertically above the points ,6N  ,5N  ,8N  ,7N  respectively. The next four 

statements use rather exotic numbers. 
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(y) ( ) ( ) .24
3,, 2

3412 ffKBKAKBKA ++=′′ϕ=′′ϕ  

(z) ( ) ( ) .24
3,, 2

3412 ffKBKAKBKA +−=′′ϕ=′′ϕ ∗∗∗∗  

Proof of (y). Since ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ϑ

−= aatK ,
2

2  and ,,1 ⎟
⎠
⎞⎜

⎝
⎛
ϑ

= aaK  it follows that 

( )12
2 ,24

3 KBKAff ′′ϕ−++  is equal to ( ) ,
4

2
22ϑ

−

m
wM  where M is the 

sum ( ( ) ) ( ) ( ).22214 222 mtmtwtmm −ϑ+ϑ+−ϑ+  ~ 

Replacing A′  and B′  with A and B in (y) and (z), we get the number 
4
3  

as the common value of the function ϕ in all four cases. 

Let 1S  and 1T  denote the midpoints of the segments CA′  and .DB′  

Similarly, let 2S  and 2T  be the midpoints of the segments CA ′′  and .DB ′′  

Note that ( ) ( ) ( )
( )

.
14

121,, 2

22
2211

+

+++=′′ϕ=ϕ
s

sfTHSGTHSG ssss  

(a1) ( ) ( ) .42
2

4
3,,

2
2211

ffNTNSNTNS ++=ϕ=ϕ  

(b1) ( ) ( ) .44
1,,

2
2211

fOTOSOTOS +=ϕ=ϕ  

Proof of (b1). From the right-angled triangles 1OGS  and 1OHT  and (e), 

we get that the sum ( ) ( )2
1

22
1

22
1

2
1 HTOHGSOGOTOS +++=+  is ( 2OG  

) .4
1

4
2

222
2 ABfABfOH +=++  ~ 

By replacing the point ( )aN ,0=  with its reflection ( )aN −=∗ ,0  in 

(a1) and (b1) on the right hand side, the first + changes into –. 
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For points X and Y, let Y
X  be the reflection of the point X in the point Y. 

Let .,,, C
B

D
A

C
B

D
A RQRQ ′′ =′=′==  

(c1) ( ) ( ) .4,, 2fRBQARBQA +=′′′′ϕ=′′ϕ  

Proof of (c1). Since ( )
⎟
⎠
⎞⎜

⎝
⎛

ϑ
++= 0,23zuaQ  and ( ) ,0,233

⎟
⎠
⎞⎜

⎝
⎛

ϑ
−−= zuaR  

we get that ( )RBQAf ′′ϕ−+ ,4 2  is equal to ( ) ( ) .22
22

2

ϑ

+ϑ−η

m
zw  

From the right-angled triangles QAA ′  and ,RBB ′  we get that 2QA′  and 
2RB′  are ( ) 224 AAba ′++  and ( ) .4 22 BBcb ′++  By adding we conclude 

from (1) that ( ) .4, 2fRBQA +=′′ϕ  Also, we have ( ) 4, =ϕ BRAQ  and 

( ) .2
5, 65 =ϕ RNQN  ~ 

In the last two statements, we use the foci 0A  and 0B  of the ellipse. Let 

.,,, 04030201 DBnACnDBnACn ′⊕=⊕′=⊕=⊕=  Let I and J denote 

the midpoints of the segments ∗
1NM  and .2

∗NM  

(d1) ( ) ( ) .4
23,,

2
3412

eeBnAnBnAn ++=ϕ=ϕ  

(e1) ( ) ( ) .4
23,,

2
0000

fJBJAIBIA −=ϕ=ϕ  

3. Common Properties for All Ratios 

Of course, there are many properties that hold for all ratios m. The 
following is an example of such properties. 

Theorem 2. The triangles ADP and BCP have the same orthocenter that 
lies on a circle with the segment CD as a diameter if and only if 1=f  (i.e. 

the ellipse is a circle). 
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The triangles PDA ′  and PCB ′  have a common orthocenter. It lies on a 
circle with the segment DC ′′  as a diameter if and only if .1=f  

Proof. The orthocenters of the triangles ADP and BCP both have the 

coordinates .2,
2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ϑv

amt
v

au  

If K is the midpoint of the segment CD and L is the orthocenter of the 

triangle ADP, then ( ) ( ) .114
22

422
22

v
fftmaKLCK

ϑ

+−=−  Hence, this 

difference is equal to zero if and only if .1=f  ~ 
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