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Abstract
We extend a curious observation by Fermat about points on a
semicircle on a side of a special rectangle to a theorem that holds for
all points on an ellipse.

1. Introduction

Among the numerous questions that Pierre Fermat formulated, the
following geometric problem has drawn some attention (see Figure 1).
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P.

A B
Figure 1. The Fermat configuration for a semicircle.

Fermat Problem. Let P be a point on the semicircle that has the top side

AB of the rectangle ABB'A’ as a diameter. Let || 2\5’ || = /2. Let the segments

PA" and PB' intersect the side AB in the points C and D. Then | AD |2 +
|BC|* =| ABJ%.

The great Leonard Euler in [2] has provided the first rather long proof,
which is old fashioned (for his time), and avoids the analytic geometry
(which offers rather simple proofs as we shall see below). Several more
concise synthetic proofs are now known (see [6], [3, pp. 602, 603], [1, pp.
168, 169] and [4, pp. 181, 264]).
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Figure 2. The Fermat configuration for a circle.
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Here is an adaptation of Lionnet’s proof from [3, p. 602] that applies
wherever P might be on the complete circle (see Figure 2).

Let the directed lengths E, Eﬁ, ﬁé be a, b, ¢. Then

AD? + BC? - AB? = (a+b)> + (b + ¢)> — (a+ b + ¢)* = b? - 2ac.
So
AD? + BC? = AB? < b? = 2ac. (1)

Now draw CY and DZ perpendicular to AB, with Y on PA and Z on PB.
Using pairs of similar triangles, we have

YC PC CD PD 27D

AN PAY AB PB BB

Hence, YCDZ is a rectangle similar to AA'B'B. The triangles YCA, BDZ
are equiangular, so % - % ButYC=DZ-= cb = L Thus b? - 2ac

DZ" V2o 2
vanishes, hence AD? + BC? = ABZ.
The analytic proof was recently recalled in [5] where it was observed that

the above relation holds for all points on the circle with the segment AB as a
diameter.

Figure 3. Simple analytic proof.
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We can also use the equivalence (1) to obtain a simple analytic proof
(see Figure 3). There is no loss of generality in taking the radius of the circle
l1+x b 2

, —=—F—— an
V2ryly 24y
c 1-

_—x Simplifying b2 - 2ac and putting X2 =1- y2, we find

ﬁzﬁer

that this difference vanishes.

d

. .. . a
as the unit of length. By similar triangles — =
V2

Our goal is to extend the above problem to any ellipse. Instead of a point
P on a (semi)circle that has the side AB as a diameter, we consider a point P
on an ellipse that has the segment AB as a principal diameter. It turns out

AB .. .
that when | ,| = 2 5> where e denotes the eccentricity of the ellipse,
| AN Vi-e

then the relation | AD |2 +|BC |2 =| AB |2 again holds for all points P (see

Figure 4).
A B
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Figure 4. The Fermat configuration for an ellipse.

For an ellipse, we shall consider a slightly more general situation when
| AB|
| AA']

the quotient

is a positive real number m.

| PP, > +| P3Py |2'

For four points B, Py, Ps, Py, let o(RP;, P3P;) = | |2
AB
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In this notation, the above Fermat Problem for ellipse is the implication

(a) = (b) in the following theorem. Let f = VI — e?.

Theorem 1. The following statements are equivalent:

V2

(a) The ratio m of side lengths of the rectangle ABB'A’ is 3

(b) ¢(AD, BC) = 1.

Proof. We shall use analytic geometry that offers a simple proof. Let the
origin of the rectangular coordinate system be the midpoint O of the side AB

so that the points A and B have coordinates (—a, 0) and (a, 0) for some

positive real number a. The foci are the points Ay(—ae, 0) and By(ae, 0)

2 2
and the equation of the ellipse is a standard X_+y_2

a2
{ 2
1—b—2<1andb=a\/1—e2 = af.
a

The coordinates of the points A, B’, A" and B" are (—a, —2—”?),

=1, where e =

(a, - E), (—a, Z—a) and (a, Ej For any real number t, let u =1 — t2,
m m m

V=1+t2, w=fm, z=fmt, n=v -2z and 8 = Vv + z. An arbitrary point

P on the ellipse has the coordinates (%, %) Writing down the linear

equations of lines joining two points and solving systems of two equations to

. .. . . alu—2z
determine their intersections, we easily find that C(Q, O) and

9
o222

3 Oj. The equivalence of the statements (a) and (b) follows from

_ tz(w2 -2)

the identity ¢(AD, BC) -1 5
9

O
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In Figure 5, we see how the implication (a) = (b) (for an ellipse) could
be proved using the Fermat Problem (for a circle). Since an ellipse is the
affine image of a circle, all we have to do is stretch the y-coordinate of every

point P on the ellipse for a factor % in order to get the associated point Q on

the circle. The points A" and B’ must be pushed down for the same ratio to
the points X and Y. The points A, B, C and D remain fixed so that the

implication (a) = (b) follows from the claim of the Fermat Problem.

X v

Figure 5. Ellipse with its associated circle.

Let A", B", P' be the reflections of the points A’, B’, P in the line AB.
We close this introduction with a remark that most of our results come in
related pairs. The second version, which requires no extra proof, comes (for
example in Theorem 1) by replacing the points C and D with the points C'
and D’, which are the intersections of the line AB with the lines PA" (or

P'A’) and PB" (or P'B’) (see Figure 4).
2. Invariants of the Fermat Configuration

Our first goal is to introduce several statements similar to (b) that could

be added to Theorem 1. In other words, we explore what other relationships
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in the Fermat configuration remain invariant as the point P changes position

on the ellipse.

We begin with the diagonals of the trapezium A'B'DC and the sides of
the trapezium A'B'C'D'.

(c) o(A'D, B'C) = ¢(AD, B'C') =1+ f2.

Proof of (c). With straightforward computations, one can easily check

w? = 2)(9% - m?t?)
m282 ’

that 1 + f2 — o(A'D, B'C) = (

Pythagoras’ theorem might be useful in computing the function ¢. For
instance, for & = ¢(A'D, B'C), we have

AD? + BC? = (AN)? + (BB')? + AD? + BC?.
But (AA')? + (BB')? = f2AB? and AD? + BC? = AB%,so £ =1+ f2. O
For points X and Y, let X @Y be the centre of the square built on the

segment XY such that the triangle X(X @ Y)Y has the positive orientation

(counterclockwise). When the point X @Y is shortened to M, then M”*
denotes Y @ X.

The midpoints G, H, G', H' of the segments AC, BD, AC’, BD' and the
top N of the semicircle over AB are used in the next two statements. In other
words, N = B® A The centre O of the circle (i.e. the midpoint of the
segment AB; the origin of the rectangular coordinate system) appears in the

statement (e).

(d) (NG, NH) = ¢(NG', NH') =

Bl

(¢) 9(0G, OH) = ¢(OG', OH') = %

Proof of (d) and (e). This time the differences ¢(NG, NH)—% and
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t2(w? - 2)

¢(OG, OH)—% both simplify to the following quotient 5
49

that

has the factor w? — 2 again.

The following synthetic proof shows that the statements (a) and (b)
together imply (d) and (e).

A dilatation with centre A and scale factor 2 maps GO on to CB, thus

GO = %; similarly OH = % Consequently for ¢(OG, OH), we have

2 2
0G? + OH? = % +% - %ABZ. Similarly, for (NG, NH), we

have NG2 = NO? + OG? and NH? = NO? + OH? so that

2 2 2 2
NG2 + NH2 = 2NO2 4+ BC ZAD :AS +A§ :%ABz. 0

Let Gg, Hg, Gg, Hg be the points that divide the segments NG, NH,
NG’, NH' in the same ratio S # —1 (i.e. NGg : GG = s : 1, etc.).

2 2
' , s”+2f
(f) 9(0Gs, OHs) = ¢(0Gg, OHg) = ———-.
4(s+1)
' ' 1+2f2 52
(2) 9(NGs, NH) = o(NG, NHY) =(—)2‘
4(s +1)

Proof of (f). Since Ggq =[_a5t(w+t) a j and H —[M ij,

(s+1)9 s+1 Sl (s+1)9 " s+1

s?+2f2 s s?t2(w? - 2)

the difference @(OGg, OH,) — .
VU 4s 41 4s+1)%92

O

Let N;, N, N3, Ny denote the highest points on the semicircles built
on the segments AC, BD, AC’, BD" above the line AB. In other words, N; =
C®A N,=B®D, N3=C'®A Ny,=B@D"
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3
(h) @(BN;, AN,) = @(BN3, ANy) = 5
. 1
(1) ®(NNy, NN») = @(NN3, NNy) = 3

_ 2
Proof of (h). Since N; = (%ﬁ-t), %) and N, = (%, %]’

2002
we get that @(BN;, AN,) —% is M
29

The synthetic proof of the implication (a) = (h) uses the right-angled
2 2
triangles AHN, and BGN; to get AN22 = (a+b+%) +CT and BN12 =

a 2 al 3
(E +b+ c) + - But b? = 2ac implies AN3 + BN/ = EABZ.

Leta' = i, etc. From the isosceles right-angled triangles ABN, ACN|,

V2
BDN 2_ ’ 72 2_ ’ !2 2_
5, we get NNi =(b'+c')” and NN5 =(a’+b')". But b =2ac

implies NN2 + NN2 = %ABz. 0

The following statements also use the summits N;, N,, N3 and Ny.

However, they do not use the function ¢.

(j)|N1N2|=|N3N4|=|AN |
() [ NNo [+ NoN3 |2+ N3Ny [+ NgN; |2 = 2] AB 2.

Proof of (j). The differences | NyN, |* —| AN > and | N3N4 | =| NyN, [*

20212 20200012
2a°t7(w” - 2) and 3t v(w” — 2)
92 292

are equal to , respectively. O

Let us note that | NyN3 [> +| NSN3 |2 +| N3Ng [> +| NN [ = 2| AB

ifand only if m = %
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Let Ny=A®D, Ny =C®B, N, = A® D’ and Ng = C' ® B.
1
(1) @(ANs, BNg) = 9(AN7, BNg) = .
, 3
(m) @(GNg, HNs) = 0(G'Ng, HN7) = 1

3
(m) (NNs, NNg) = (NN, NNg) = 5

—_ 2 _ _
Proof of (). Since N = at” al+z) | N6:(E, at(WH))’
) ) 9 9
202
the difference @(ANs, BNg) — 1 is again t(w 2_ 2)'
2 29

From the isosceles right-angled triangles ADNs and BCNg, we get

, AD? BC?
= — 4+ —

ANZ + BN/ > = %ABz. O

The next six statements use the centres of squares on the segments CD
and C'D". Let M| =C@®D and M, =C'® D"

(0) INM;[=[NM, | =|AN|.

Proof of (o). Since M; = (a—\;j, —%), the difference | MN | -
2a2t2(w? - 2)

| AN |2 is equal to
82

Similarly, |M,N|* —| M;N|? =

8a’t2vz(w? — 2)
0292

2
From the right-angled triangle NN;M;, since b? = ac, we get NMI2 =

@+ +(+c) =a?+b?>+c?+ab+bc=(a +b +c)? = NAZ

O
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The same argument proves also the following:
1
() 9(MN;, MiN2) = 9(MN3, MoNy) = 5.

For any point X in the plane, let G, G,, Gz, G4, G5 and G4 denote the
centroids of the triangles ACX, CDX, DBX, AC'X, C'D'X and BD'X,

respectively.
1
(@ 9(G2Gy, G2G3) = 0(GsGy, GsGg) = 5 -

Proof of (q). If X = (X, y), then the points G;, G, and G3 have the

same ordinate % while their abscissae are X_ 2at(w * t) X + Zau

3 35 > 3t 39

X 2a(z + 1)'

3 39

t2(w? - 2)
99%

It follows that the difference ¢(G,G, G2G3)—é is

The implication (b) = (q) could be proved as follows. Let | denote the
midpoint of the segment CD. A dilatation with centre C and scale factor 2

maps Gl on to AD, thus GI = %; similarly HI = % Hence ¢(Gl, HI)
= % On the other hand, a dilatation with centre X and scale factor 3 maps
2 - 2
GG, on to GI, thus GG, = gGI; similarly G3G, = 3 HI. Hence
1
(p(Gle, G3Gz) = § Ul

Let U and V be the midpoints of the segments CC" and DD’'.

1+ 2

(r) o(NU, NV) = 5

1
(s) @(OU, OV) = o(NgU, NsV) = o(NgU, N;V) = .
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2 2
Proof of (r) and (s). Since U = a(uv—+z)’ 0,V = M, 0,
no no

1+ f2 1t (w? - 2)

we get o(NU, NV) — = o(0OU, OV)—§= 252 O

LetW =U ®V.
(t) The centre W lies on the circle that has the segment AB as a diameter.

Proof of (t). Since the coordinates of the point W is the pair

2 222002
[ﬂ, ij, we get that |WO |* — a® equals 2a’t vz(v; 2). O
nd " nd n-9
* 1 . .
(u) @(W'O, WO) = o(WN;, WN;) = 7 for i e{l,3} and j € {2, 4}.
2
) oW"N, wN) = 121

(w) The lines WN; and WN, are perpendicular.

(x) The lines WN5 and WN, are perpendicular.

Proof of (w). The lines WN; and WN, have the equations
M+2)x+(M=-2z)y=%A and (M'"+2)x-=(M'=2)y = p,

2 2

where M = z° —v, M’ =w” —v and A and p are real numbers. These lines
are perpendicular if and only if the sum M + M' is zero. However, M + M’

= v(w? - 2). O

Let Kl = B@Nl, K2 = Nz@A, K3 ZB@N3, K4 = N4@A. These
points can be defined more simply. They all are at the same height as N and
vertically above the points Ng, Ns, Ng, N7, respectively. The next four

statements use rather exotic numbers.
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() O(AKy, BK)) = (AKy, BI;) = 3+ 142 + £2

(2) o(AK3, BK]) = o(AKj, BKS) = % —- 2+ f2

2
Proof of (y). Since K, = [— %, a] and K; = (%, aj, it follows that
SR N 0(A'K,, B'K;) is equal to M, where M is the
4 4m?9?
sum (4(m +1)9% = m*t2)v2 + w(29 + mt)(29 — mt). O

Replacing A" and B’ with A and B in (y) and (z), we get the number %
as the common value of the function ¢ in all four cases.

Let S; and T; denote the midpoints of the segments A'C and B'D.

Similarly, let S, and T, be the midpoints of the segments A'C’ and B'D’.
f2(s+1+~2) +1

Note that @(GsSy, HsTq) = ¢(GsS,, HsT,) =

4(s +1)°
2
(al) (NS;, NT;) = ¢(NS,, NT,) = % . ff N fT'
I
(b1) ¢(0S;, OT}) = 9(0Sy, OTy) = 5 + .

Proof of (b1). From the right-angled triangles OGS; and OHT; and (e),
we get that the sum OS? + OT? = (0G? + GS?) + (OH? + HT?) is (OG>

f2AB? 1+ f2

2
7 7 AB~. O

+OH?) +

By replacing the point N = (0, a) with its reflection N* = (0, —a) in
(al) and (b1) on the right hand side, the first + changes into —.



226 Zvonko Cerin and Gian Mario Gianella
For points X and Y, let Q\;( be the reflection of the point X in the point Y.
D ' D' o !
Let Q = 05, R = 0§, Q = 0R . R = 0§ .

(c1) o(AQ, BR) = ¢(AQ, BR) =4+ .

Proof of (c1). Since Q :(a(“%”z), 0) and R = (w o),

2
we get that 4 + f2 — p(A'Q, B'R) is equal to n(w” - 22) (f * 22).
m-9
From the right-angled triangles AA'Q and BB'R, we get that A'Q2 and
B'R? are 4(a +b)> + AA% and 4(b + c)’ + B'B>. By adding we conclude
from (1) that @(A'Q, BR) = 4 + f2. Also, we have ¢(AQ, BR) =4 and

5
®(NsQ, NgR) = 3 O

In the last two statements, we use the foci Ay and B, of the ellipse. Let
mM=C®A),n=By®D,n; =C"® Ay, ng =B, ®D". Let | and J denote

the midpoints of the segments NM; and NM.

3+ 2e+ e2
(d1) ¢(Any, Bny) = ¢(Any, Bny) = —a
3-2f2

(1) o(Al, Bol) = ¢(Ad, Byd) = —

3. Common Properties for All Ratios

Of course, there are many properties that hold for all ratios m. The

following is an example of such properties.

Theorem 2. The triangles ADP and BCP have the same orthocenter that
lies on a circle with the segment CD as a diameter if and only if f =1 (i.e.

the ellipse is a circle).
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The triangles AD'P and BC'P have a common orthocenter. It lies on a
circle with the segment C'D’ as a diameter ifand only if f =1

Proof. The orthocenters of the triangles ADP and BCP both have the

. au 2amt2
coordinates | —, .
% v

If K is the midpoint of the segment CD and L is the orthocenter of the
Caa?mP (- 1)(f +1)

triangle ADP, then |CK > — | KL |* = . Hence, this
922
difference is equal to zero if and only if f =1. O
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