ON THE DECOMPOSITION OF PRIME IDEALS OF ORDERED Γ -SEMIGROUPS INTO THEIR $\mathcal N$ -CLASSES

Thawhat Changphas

Department of Mathematics
Faculty of Science
Khon Kaen University
Khon Kaen 40002, Thailand
Centre of Excellence in Mathematics, CHE
Si Ayuttaya Rd., Bangkok 10400, Thailand

Abstract

In this paper, we show that every ideal of an \mathcal{N} -class of an ordered Γ -semigroup does not contain proper prime ideals. Similar results on ordered semigroups were presented by Kehayopulu and Tsingelis in [2] and on semigroups can be founded in [3, II.2.11].

1. Preliminaries

In 1986, Sen and Saha [4] defined Γ -semigroup as a generalization of semigroup as follows:

Definition 1.1. Let S and Γ be two nonempty sets. Then S is called a Γ -semigroup if there is a mapping $S \times \Gamma \times S \to S$, written as $(x, \gamma, y) \mapsto x\gamma y$, such that $(x\gamma y)\beta z = x\gamma(y\beta z)$ for all $x, y, z \in S$ and all $\gamma, \beta \in \Gamma$.

© 2012 Pushpa Publishing House

2010 Mathematics Subject Classification: 20N99.

Keywords and phrases: ideals, prime ideals, filters, ordered Γ -semigroups.

This research is supported by the Centre of Excellence in Mathematics, the Commission on Higher Education, Thailand.

Received October 4, 2011

Let (S, \cdot) be a semigroup and Γ be a nonempty set. For $x, y \in S$ and $\gamma \in \Gamma$, let $x\gamma y$ be defined by $x\gamma y = x \cdot y$. Then S is a Γ -semigroup.

Let S be a Γ -semigroup. For $A, B \subseteq S$, let

$$A\Gamma B = \{a\gamma b \mid a \in A, b \in B, \gamma \in \Gamma\}.$$

For $x \in S$, let $A\Gamma x = A\Gamma\{x\}$ and $x\Gamma A = \{x\}\Gamma A$.

In [5], Sen and Seth introduced an ordered Γ -semigroup as a generalization of a Γ -semigroup as follows:

Definition 1.2. A Γ -semigroup S is called an *ordered* Γ -semigroup (po- Γ -semigroup) if there is a relation \leq on S such that $x \leq y$ implies $x\gamma z \leq y\gamma z$ and $z\gamma x \leq z\gamma y$ for any $x, y, z \in S$ and all $\gamma \in \Gamma$.

Let *S* be a Γ -semigroup. For $x, y \in S$, let $x \le y$ if x = y. Then *S* is an ordered Γ -semigroup.

Definition 1.3. Let (S, Γ, \leq) be an ordered Γ-semigroup. A nonempty subset T of S is called a Γ-subsemigroup of S if $T\Gamma T \subseteq T$.

Definition 1.4. Let (S, Γ, \leq) be an ordered Γ -semigroup. A nonempty subset I of S is called an *ideal* of S if the following hold:

- (i) $S\Gamma I \subseteq I$ and $I\Gamma S \subseteq I$.
- (ii) If $x \in I$ and $y \in S$ such that $y \le x$, then $y \in I$.

Definition 1.5. An ideal *I* of an ordered Γ-semigroup (S, Γ, \leq) is said to be *prime* if for $x, y \in S$ and $\gamma \in \Gamma$, $x\gamma y \in I$ implies $x \in I$ or $y \in I$.

In [1], the author introduced filters in ordered Γ -semigroups as follows:

Definition 1.6. A Γ -subsemigroup F of an ordered Γ -semigroup (S, Γ, \leq) is called a *filter* of S if the following hold:

- (i) For $x, y \in S$ and $\gamma \in \Gamma$, $x\gamma y \in F$ implies $x \in F$ and $y \in F$.
- (ii) For $x \in F$ and $y \in S$, $x \le y$ implies $y \in F$.

On the Decomposition of Prime Ideals of Ordered Γ -semigroups ... 123

An ideal (resp. filter) F of an ordered Γ -semigroup S is said to be *proper* if $F \neq S$.

Let $F = \{F_i \mid i \in I\}$ be a nonempty family of filters of an ordered Γ -semigroup (S, Γ, \leq) . If $\bigcap F \neq \emptyset$, then $\bigcap F \neq \emptyset$ is a filter of S. In fact: Assume that $\bigcap F \neq \emptyset$, then $\bigcap F \neq \emptyset$ is a Γ -subsemigroup of S. Let $x, y \in S$ and $\gamma \in \Gamma$ be such that $x\gamma y \in \Gamma$. Since $x\gamma y \in F_i$ for all $i \in I$, we have $x \in \Gamma$ and $y \in \Gamma$. Let $x \in \Gamma$ and $y \in S$ be such that $x \leq y$. For $i \in I$, since $x \in F_i$, we obtain $y \in F_i$. Thus $y \in \Gamma$.

For an element x of an ordered Γ -semigroup (S, Γ, \leq) , let N(x) be the filter of S generated by x(N(x)) is the intersection of all filters of S containing x). The equivalent relation \mathcal{N} is defined on S by

$$\mathcal{N} = \{(x, y) \in S \times S \mid N(x) = N(y)\}.$$

For $x \in S$, the \mathcal{N} -class of S containing x will be denoted by $(x)_{\mathcal{N}}$. \mathcal{N} is a congruence on S (that is, for $x, y, z \in S$ and $\gamma \in \Gamma$, $(x, y) \in \mathcal{N}$ implies $(x\gamma z, y\gamma z) \in \mathcal{N}$ and $(z\gamma x, z\gamma y) \in \mathcal{N}$). Using this fact, the set $S/\mathcal{N} = \{(x)_{\mathcal{N}} \mid x \in S\}$ forms a Γ -semigroup defined by

$$(x)_{\mathcal{N}} \gamma(y)_{\mathcal{N}} = (x\gamma y)_{\mathcal{N}}$$

for all $x, y \in S$ and $\gamma \in \Gamma$. For $x, y \in S$, the following hold:

- (1) $(x, x\gamma x) \in \mathcal{N}$ for all $\gamma \in \Gamma$. Indeed: Since $x\gamma x \in N(x)$, we have $N(x) \subseteq N(x\gamma x)$. Since $x\gamma x \in N(x\gamma x)$, we obtain $x \in N(x\gamma x)$. Then $N(x\gamma x) \subseteq N(x)$.
- (2) $(x\gamma y, y\beta x) \in \mathcal{N}$ for all $\gamma, \beta \in \Gamma$. In fact: Since $x\gamma y \in N(x\gamma y)$, we have $x \in N(x\gamma y)$ and $y \in N(x\gamma y)$. Since $y\beta x \in N(x\gamma y)$, we have $N(y\beta x) \subseteq N(x\gamma y)$. Similarly, $N(x\gamma y) \subseteq N(y\beta x)$.
- (3) $(x)_{\mathcal{N}}$ is a Γ -subsemigroup of S. Indeed: Clearly, $x \in (x)_{\mathcal{N}} \neq \emptyset$. Let $y, z \in (x)_{\mathcal{N}}$ and $\gamma \in \Gamma$. Since $(y)_{\mathcal{N}} = (x)_{\mathcal{N}}$ and $(z)_{\mathcal{N}} = (x)_{\mathcal{N}}$, we have $(y\gamma z)_{\mathcal{N}} = (y)_{\mathcal{N}} \gamma(z)_{\mathcal{N}} = (x)_{\mathcal{N}} \gamma(x)_{\mathcal{N}} = (x\gamma x)_{\mathcal{N}} = (x)_{\mathcal{N}}$. Then $y\gamma z \in (x)_{\mathcal{N}}$.

The purpose of this paper is to show that every ideal of an \mathcal{N} -class of an ordered Γ -semigroup does not contain proper prime ideals. Similar results on ordered semigroups were presented by Kehayopulu and Tsingelis in [2].

2. Main Results

Lemma 2.1. Let (S, Γ, \leq) be an ordered Γ -semigroup and $x, y \in S$. If $x \leq y$, then $(x, x\gamma y) \in \mathcal{N}$ for all $\gamma \in \Gamma$.

Proof. Assume that $x \le y$ and $\gamma \in \Gamma$. Since $x \in N(x)$ and $x \le y$, we have $y \in N(x)$. Since $x\gamma y \in N(x)$, we obtain $N(x\gamma y) \subseteq N(x)$. Since $x\gamma y \in N(x\gamma y)$, we have $x \in N(x\gamma y)$. Then $N(x) \subseteq N(x\gamma y)$. Therefore, $N(x) = N(x\gamma y)$.

Lemma 2.2. An ordered Γ -semigroup (S, Γ, \leq) does not contain proper filters if and only if S does not contain proper prime ideals.

- **Proof.** (\Rightarrow) Assume that an ordered Γ -semigroup (S, Γ, \leq) does not contain proper filters. Suppose that I is a proper prime ideal of S. Then $S \setminus I \neq \emptyset$. Note that $S \setminus (S \setminus I)$ is a prime ideal of S. Moreover, $S \setminus I$ is a filter. Indeed: Let $x, y \in S \setminus I$ and $\gamma \in \Gamma$. Since $x, y \notin I$ and I is prime, we have $x\gamma y \notin I$. Thus $x\gamma y \in S \setminus I$ for all $\gamma \in \Gamma$. Since I is an ideal of S, it follows that for $x, y \in S$ and $\gamma \in \Gamma$, $x \in I$ or $y \in I$ implies $x\gamma y \in I$. Let $x \in S \setminus I$ and $y \in S$ be such that $x \leq y$. If $y \in I$, then $x \in I$, a contradiction. Therefore, $S \setminus I$ is a filter of S. By assumption, $S \setminus I = S$. Then $I = \emptyset$. A contradiction.
- (\Leftarrow) Assume that S does not contain proper prime ideals. Let T be a proper filter of S. Then $S \setminus T \neq \emptyset$. Let $z \in (S \setminus T) \Gamma S$ and $z \notin S \setminus T$. Then $z = x \gamma y$ for some $x \in S \setminus T$, $\gamma \in \Gamma$ and $y \in S$. Since $z \in T$, $x \gamma y \in T$. Since T is filter, we have $x \in T$ and $y \in T$. Thus $x \in T$. A contradiction $(x \in S \setminus T)$. This proves that $(S \setminus T) \Gamma S \subseteq S \setminus T$. Similarly, $S\Gamma(S \setminus T) \subseteq S \setminus T$. For $x, y \in S$ and $y \in \Gamma$, if $x, y \notin S \setminus T$, then $x \gamma y \notin S \setminus T$. Therefore, $S \setminus T$ is a prime ideal of S. Since $S \setminus T = S$, we obtain $T = \emptyset$. A contradiction.

On the Decomposition of Prime Ideals of Ordered Γ -semigroups ... 125

Lemma 2.3. Let T be a filter of an ordered Γ -semigroup (S, Γ, \leq) and $z, x \in S$. If $x \in T \cap (z)_N$, then $(z)_N \subseteq T$.

Proof. Assume that $x \in T \cap (z)_{\mathcal{N}}$. Since $x \in (z)_{\mathcal{N}}$, we have $(x)_{\mathcal{N}} = (z)_{\mathcal{N}}$, that is, N(x) = N(z). Let $y \in (z)_{\mathcal{N}}$. Then N(y) = N(z) = N(x). So $y \in N(x)$. Since $x \in T$, we have $N(x) \subseteq T$. Thus $y \in T$.

Now, we prove the main result.

Theorem 2.4. Let (S, Γ, \leq) be an ordered Γ -semigroup and $z \in S$. If I is an ideal of $(z)_N$, then I does not contain proper prime ideals of I.

Proof. Assume that *I* is an ideal of $(z)_{\mathcal{N}}$. By Lemma 2.2, we shall show that *I* does not contain proper filters. Let *F* be a filter of *I* and $a \in F$. Let

$$T = \{ x \in S \, | \, a\Gamma a\Gamma x \subseteq F \}.$$

- (1) $F = T \cap I$. Indeed: Let $y \in F$. Clearly, $y \in I$. Since $a\Gamma a \subseteq F$, we have $a\Gamma a\Gamma y \subseteq F$. Then $y \in T$. Thus $F \subseteq T \cap I$. Let $y \in T \cap I$. Since $y \in T$, we have $a\Gamma a\Gamma y \subseteq F$. Since F is filter, $y \in F$. Then $T \cap I \subseteq F$.
 - (2) T is a filter of S. In fact: since $a\Gamma a\Gamma a \subseteq F$, $a \in T \neq \emptyset$.

Let $x, y \in T$. Since $a\Gamma a\Gamma y \subseteq F$ and $F \subseteq I \subseteq (z)_{\mathcal{N}}$, we have $a\Gamma a\Gamma y \subseteq (z)_{\mathcal{N}}$. Thus $y\Gamma a \subseteq (z)_{\mathcal{N}}$. Since $a \in I$, by assumption, we obtain $y\Gamma a\Gamma a \subseteq I$. Since $(a\Gamma a)\Gamma(y\Gamma a\Gamma a)=(a\Gamma a\Gamma y)\Gamma(a\Gamma a)\subseteq F$, we have $y\Gamma a\Gamma a\subseteq F$. Similarly, $a\Gamma a\Gamma x \subseteq F$ implies $a\Gamma x \subseteq (z)_{\mathcal{N}}$. For $\gamma, \beta \in \Gamma$, we have

$$(a\gamma x\beta y)_{\mathcal{N}} = (a\gamma x)_{\mathcal{N}}\beta(a\gamma y)_{\mathcal{N}} \subseteq (z)_{\mathcal{N}}.$$

This implies $a\Gamma x\Gamma y \subseteq (z)_{\mathcal{N}}$. Therefore, $a\Gamma a\Gamma x\Gamma y \subseteq I$. This proves that $a\Gamma a\Gamma x$, $y\Gamma a\Gamma a \subseteq F$ implies $(a\Gamma a\Gamma x)\Gamma(y\Gamma a\Gamma a) \subseteq F$. Since $(a\Gamma a\Gamma x\Gamma y)\Gamma(a\Gamma a) \subseteq F$, $a\Gamma a\Gamma x\Gamma y \subseteq F$. Then $x\Gamma y \subseteq T$. Let $x \in T$ and $y \in S$ be such that $x \leq y$. Since $a\Gamma a\Gamma x \subseteq F$, $a\Gamma a\Gamma y \subseteq F$. Then $y \in T$.

(3) Since $a \in T \cap (z)_{\mathcal{N}}$, by Lemma 2.3, $(z)_{\mathcal{N}} \subseteq T$. Then $F = T \cap I$ = I.

Corollary 2.5. Let (S, Γ, \leq) be an ordered Γ -semigroup and I be prime ideal of S. Then

$$I = \bigcup \{(x)_{\mathcal{N}} \mid x \in I\}.$$

Proof. Let $t \in (x)_{\mathcal{N}}$ for some $x \in I$. Since $(x)_{\mathcal{N}}$ is an ideal of $(x)_{\mathcal{N}}$, by Theorem 2.4, $(x)_{\mathcal{N}}$ does not contain proper prime ideals. We claim that $(x)_{\mathcal{N}} \cap I$ is a prime ideal of $(x)_{\mathcal{N}}$. Using the claim, $(x)_{\mathcal{N}} \cap I = (x)_{\mathcal{N}}$. Thus $t \in I$.

Clearly, $\emptyset \neq (x)_{\mathcal{N}} \cap I \subseteq (x)_{\mathcal{N}}$. We have

$$(x)_{\mathcal{N}} \Gamma((x)_{\mathcal{N}} \cap I) \subseteq (x)_{\mathcal{N}} \Gamma(x)_{\mathcal{N}} \cap (x)_{\mathcal{N}} \Gamma I$$

$$\subseteq (x\Gamma x)_{\mathcal{N}} \cap (x)_{\mathcal{N}} \Gamma I$$

$$= (x)_{\mathcal{N}} \cap (x)_{\mathcal{N}} \Gamma I$$

$$\subseteq (x)_{\mathcal{N}} \cap S\Gamma I$$

$$\subseteq (x)_{\mathcal{N}} \cap I$$

and

$$((x)_{\mathcal{N}} \cap I)\Gamma(x)_{\mathcal{N}} \subseteq (x)_{\mathcal{N}}\Gamma(x)_{\mathcal{N}} \cap I\Gamma(x)_{\mathcal{N}}$$
$$\subseteq (x)_{\mathcal{N}} \cap I\Gamma S$$
$$\subseteq (x)_{\mathcal{N}} \cap I.$$

Let $y \in (x)_{\mathcal{N}} \cap I$ and $z \in (x)_{\mathcal{N}}$ be such that $y \leq z$. Since $y \in I$, $z \in I$. Then $z \in (x)_{\mathcal{N}} \cap I$.

Let $y, z \in (x)_{\mathcal{N}} \cap I$ and $\gamma \in \Gamma$ be such that $y\gamma z \subseteq (x)_{\mathcal{N}} \cap I$. Since $x\gamma y \in I$, $x \in I$ or $y \in I$. Thus $y \in (x)_{\mathcal{N}} \cap I$ or $z \in (x)_{\mathcal{N}} \cap I$.

Hence, we have the claim.

References

- [1] K. Hila, Filters in ordered Γ -semigroups, Rocky Mountain J. Math. 41(1) (2011), 189-203.
- [2] N. Kehayopulu and M. Tsingelis, On the decomposition of prime ideals of ordered Γ -semigroups into their $\mathcal N$ -classes, Semigroup Forum 47 (1993), 393-395.
- [3] M. Petrich, Introduction to Semigroups, Merrill, Columbus, 1973.
- [4] M. K. Sen and N. K. Saha, On Γ-semigroup *I*, Bull. Cal. Math. Soc. 78 (1986), 180-186.
- [5] M. K. Sen and A. Seth, On po-Γ-semigroups, Bull. Cal. Math. Soc. 85(5) (1993), 445-450.