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Abstract

In this paper, we show that every ideal of an A -class of an ordered
I'-semigroup does not contain proper prime ideals. Similar results on
ordered semigroups were presented by Kehayopulu and Tsingelis in
[2] and on semigroups can be founded in [3, 11.2.11].

1. Preliminaries

In 1986, Sen and Saha [4] defined I'-semigroup as a generalization of
semigroup as follows:

Definition 1.1. Let S and I" be two nonempty sets. Then S is called a
I-semigroup if there is a mapping SxI' xS — S, written as (X, y, Y)

> Xyy, such that (xyy)Bz = xy(yBz) forall x,y,ze S andall vy, B eT.
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Let (S, -) be a semigroup and ' be a nonempty set. For x, y € S and
vy €T, let xyy be defined by xyy = x - y. Then S is a I'-semigroup.
Let S be aT-semigroup. For A, B < S, let
AIB = {ayblae A, beB,yeTl}.
For x € S, let AI'x = Al'{x} and xT'A = {x|TA.

In [5], Sen and Seth introduced an ordered T-semigroup as a
generalization of a I"-semigroup as follows:

Definition 1.2. A T'-semigroup S is called an ordered I'"-semigroup (po-
I'-semigroup) if there is a relation < on S such that x < y implies xyz < yyz

and zyx < zyy forany x, y,ze S andall y e T.

Let S be a I'-semigroup. For X, y € S, let x <y if x =y. Then S is an

ordered I"-semigroup.

Definition 1.3. Let (S, T, <) be an ordered I'-semigroup. A nonempty
subset T of S is called a I"-subsemigroup of Sif TI'T < T.

Definition 1.4. Let (S, ', <) be an ordered I"-semigroup. A nonempty
subset | of S is called an ideal of S if the following hold:

() STl < I and ITS c I.

(ii)If xel and y € S suchthat y < x, then y € I.

Definition 1.5. An ideal | of an ordered I'-semigroup (S, T, <) is said to

be primeiffor x, ye S and y e I', xyy € | implies x e |l or y € I.
In [1], the author introduced filters in ordered I"-semigroups as follows:

Definition 1.6. A TI'-subsemigroup F of an ordered T'-semigroup
(S, T, <) is called afilter of S if the following hold:

(()For x, yeS and y eI, xyy € F implies xe F and y € F.

(ilFor xe F and y € S, x <y implies y € F.
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An ideal (resp. filter) F of an ordered I"-semigroup S is said to be proper
if F=S.

Let F={Fliel} be a nonempty family of filters of an ordered
I-semigroup (S, T, <). If NF = &, then N F = & is a filter of S. In fact:
Assume that N F = &, then NF = & is a I'-subsemigroup of S. Let
X, yeS and y e I' be such that xyy e NF. Since xyy € F forall i eI,
we have x e (\F and y e (\F. Let x e(\F and y € S be such that x <'y.
For i e I, since x € Fj, we obtain y € F. Thus y € NF.

For an element x of an ordered I'-semigroup (S, T, <), let N(x) be the
filter of S generated by x(N(x) is the intersection of all filters of S containing
X). The equivalent relation A is defined on S by

N ={(x, y) € Sx S|N(x) = N(y)}.
For x € S, the \ -class of S containing x will be denoted by (x),,. N isa
congruence on S (that is, for x,y,zeS and yeT, (x, y)e N implies
(xyz, yyz) e N and (zyx, zyy) € N). Using this fact, the set S/N =
{(x) | x € S} forms a "-semigroup defined by
YY) pr = (Xyy) v
forall x, ye S and y eT. For x, y € S, the following hold:

(1) (x, xyx) e N for all y e ". Indeed: Since xyx e N(x), we have
N(x) < N(xyx). Since xyx e N(xyx), we obtain x e N(xyx). Then
N(xyx) = N(x).

(2) (xyy, yBx) e N for all y, B € T. In fact: Since xyy € N(xyy), we
have x € N(xyy) and y e N(xyy). Since yBx e N(xyy), we have N(yBx)c
N(xyy). Similarly, N(xyy) = N(ypx).

(3) (x) s is a-subsemigroup of S. Indeed: Clearly, x € (x),, # . Let
Yy, 2 € (X)) and y e I. Since (y), = (X)p and (z)r = (X) s, We have
(W2) pr =V v(@)pr = ) v(¥) pr = (xyX) 5 = (X) pr- Then yyz € (x) 5.
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The purpose of this paper is to show that every ideal of an A -class of
an ordered I'-semigroup does not contain proper prime ideals. Similar results
on ordered semigroups were presented by Kehayopulu and Tsingelis in [2].

2. Main Results

Lemma 2.1. Let (S, T, <) be an ordered I"-semigroup and x, y € S. If

X <y, then (x, xyy) e N forall y e I.

Proof. Assume that x <y and y e I'. Since x € N(x) and x <y, we
have y € N(x). Since xyy € N(x), we obtain N(xyy) = N(x). Since xyy e
N(xyy), we have x € N(xyy). Then N(x) < N(xyy). Therefore, N(x) =

N (xyy).

Lemma 2.2. An ordered I"'-semigroup (S, I', <) does not contain proper
filters if and only if S does not contain proper prime ideals.

Proof. (=) Assume that an ordered I'-semigroup (S, I', <) does not

contain proper filters. Suppose that | is a proper prime ideal of S. Then
S\I = . Note that S\(S\I) is a prime ideal of S. Moreover, S\I is a filter.

Indeed: Let x, y € S\l and y e I'. Since x, y ¢ | and | is prime, we have
xyy ¢ |. Thus xyy € S\I for all y € I". Since | is an ideal of S, it follows
thatfor x, ye S and yeTI, xel or y el implies xyy € I. Let x € S\I
and yeS be such that x<y. If yel, then xe I, a contradiction.
Therefore, S\I is a filter of S. By assumption, S\l =S. Then | =J. A
contradiction.

(<) Assume that S does not contain proper prime ideals. Let T be a
proper filter of S. Then S\T = &. Let z € (S\T)I'S and z ¢ S\T. Then

z =xyy forsome x e S\T, yeI' and y € S. Since z e T, xyy € T. Since
T is filter, we have xeT and yeT. Thus xeT. A contradiction
(x € S\T). This proves that (S\T)I'S < S\T. Similarly, SI'(S\T) < S\T.
For x, ye S and y €T, if x, y ¢ S\T, then xyy ¢ S\T. Therefore, S\T is
a prime ideal of S. Since S\T =S, we obtain T = &. A contradiction.
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Lemma 2.3. Let T be a filter of an ordered I"-semigroup (S, I, <) and

z,xeS. IfxeTN(z)y, then (2), < T.

Proof. Assume that x e T (1(z) /. Since x € (z),,, we have (x), =
(z) s, that is, N(x)= N(z). Let y e (z)y. Then N(y)= N(z)= N(x).
So y € N(x). Since x e T, we have N(x) < T. Thus y e T.

Now, we prove the main result.

Theorem 2.4. Let (S, T, <) be an ordered I'-semigroup and z € S. If |

is an ideal of (z),, then I does not contain proper prime ideals of .

Proof. Assume that | is an ideal of (z) . By Lemma 2.2, we shall show

that | does not contain proper filters. Let F be afilterof land a € F. Let
T ={xeS|ararx c F}.

(1) F=TN1. Indeed: Let y € F. Clearly, y € I. Since al'a < F, we
have al'al'y c F. Then yeT. Thus F<cT(I. Let yeTI. Since
y e T, we have al'al'y ¢ F. Since Fisfilter, ye F. Then TN | c F.

(2) Tis afilter of S. In fact: since al'ala c F,aeT # &.

Let x, y e T. Since al'al'y c F and F c | < (z),, we have alal'y
c (2)p-Thus yI'a < (z) . Since a € I, by assumption, we obtain yl'al'a
c |. Since (al'a)[(yral'a)=(alal'y)I'(ala)c F, we have yrara c F.

Similarly, al'al'’x c F implies al'x  (z) ». For v, B € I', we have

(ayxBy) = (@yx) v Bayy) \r < (2) p-

This implies aI'xI'y  (z) . Therefore, al'alxI'y < |. This proves that
alarx, yrara ¢ F implies (al'al'’x)['(yI'al’'a) < F. Since (al'al'xI'y)l’
(ala) c F, ararxl'y c F. Then xTy c T. Let x e T and y € S be such
that x <y. Since al'al'x c F, al'aly c F. Then y e T.
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(3) Since a e T N(z)y, by Lemma 2.3, (z),, < T. Then F =TI
=1.

Corollary 2.5. Let (S, T, <) be an ordered I"-semigroup and | be prime
ideal of S. Then

I =U{(X)\|x €1}

Proof. Let t € (x),, for some x e I. Since (x), is an ideal of (x),/,
by Theorem 2.4, (x),, does not contain proper prime ideals. We claim that
(X)p N1 is a prime ideal of (x), . Using the claim, (x), N1 = (x), .
Thust € I.

Clearly, @ = (x) N1 < (x) . We have

AT N = () TX) pr N () AT
< (XIX)pr N (X) T
= () N(X)p T
c (X) N ST
c (X)) NI

and

() NDT(X) pr = () pr T(X) pr N IT(X) 5
c (X)p NIrS
c (X NL

Let ye(x),y N1 and z € (x),  be such that y < z. Since y e I,
zel. Then z e (x) NI

Let y,ze(x),y N1 and y e ' be such that yyz < (x), N I. Since
xyyel, xeloryel. Thusye(x),y Nl orze(x),NIL

Hence, we have the claim.
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