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Abstract 

In this paper, we show that every ideal of an N -class of an ordered 
Γ-semigroup does not contain proper prime ideals. Similar results on 
ordered semigroups were presented by Kehayopulu and Tsingelis in 
[2] and on semigroups can be founded in [3, II.2.11]. 

1. Preliminaries 

In 1986, Sen and Saha [4] defined Γ-semigroup as a generalization of 
semigroup as follows: 

Definition 1.1. Let S and Γ be two nonempty sets. Then S is called a 
Γ-semigroup if there is a mapping ,SSS →×Γ×  written as ( )yx ,, γ  

,yxγ  such that ( ) ( )zyxzyx βγ=βγ  for all Szyx ∈,,  and all ., Γ∈βγ  
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Let ( )⋅,S  be a semigroup and Γ be a nonempty set. For Syx ∈,  and 

,Γ∈γ  let yxγ  be defined by .yxyx ⋅=γ  Then S is a Γ-semigroup. 

Let S be a Γ-semigroup. For ,, SBA ⊆  let 

{ }.,, Γ∈γ∈∈|γ=Γ BbAabaBA  

For ,Sx ∈  let { }xAxA Γ=Γ  and { } .AxAx Γ=Γ  

In [5], Sen and Seth introduced an ordered Γ-semigroup as a 
generalization of a Γ-semigroup as follows: 

Definition 1.2. A Γ-semigroup S is called an ordered Γ-semigroup (po-
Γ-semigroup) if there is a relation ≤ on S such that yx ≤  implies zyzx γ≤γ  

and yzxz γ≤γ  for any Szyx ∈,,  and all .Γ∈γ  

Let S be a Γ-semigroup. For ,, Syx ∈  let yx ≤  if .yx =  Then S is an 

ordered Γ-semigroup. 

Definition 1.3. Let ( )≤Γ,,S  be an ordered Γ-semigroup. A nonempty 

subset T of S is called a Γ-subsemigroup of S if .TTT ⊆Γ  

Definition 1.4. Let ( )≤Γ,,S  be an ordered Γ-semigroup. A nonempty 

subset I of S is called an ideal of S if the following hold: 

 (i) IIS ⊆Γ  and .ISI ⊆Γ  

(ii) If Ix ∈  and Sy ∈  such that ,xy ≤  then .Iy ∈  

Definition 1.5. An ideal I of an ordered Γ-semigroup ( )≤Γ,,S  is said to 

be prime if for Syx ∈,  and Iyx ∈γΓ∈γ ,  implies Ix ∈  or .Iy ∈  

In [1], the author introduced filters in ordered Γ-semigroups as follows: 

Definition 1.6. A Γ-subsemigroup F of an ordered Γ-semigroup 
( )≤Γ,,S  is called a filter of S if the following hold: 

 (i) For Syx ∈,  and ,Γ∈γ  Fyx ∈γ  implies Fx ∈  and .Fy ∈  

(ii) For Fx ∈  and ,Sy ∈  yx ≤  implies .Fy ∈  
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An ideal (resp. filter) F of an ordered Γ-semigroup S is said to be proper 
if .SF ≠  

Let { }IiFF i ∈|=  be a nonempty family of filters of an ordered 

Γ-semigroup ( ).,, ≤ΓS  If ,∅≠F∩  then ∅≠F∩  is a filter of S. In fact: 

Assume that ,∅≠F∩  then ∅≠F∩  is a Γ-subsemigroup of S. Let 
Syx ∈,  and Γ∈γ  be such that .Fyx ∩∈γ  Since iFyx ∈γ  for all ,Ii ∈  

we have Fx ∩∈  and .Fy ∩∈  Let Fx ∩∈  and Sy ∈  be such that .yx ≤  

For ,Ii ∈  since ,iFx ∈  we obtain .iFy ∈  Thus .Fy ∩∈  

For an element x of an ordered Γ-semigroup ( ),,, ≤ΓS  let ( )xN  be the 

filter of S generated by ( ( )xNx  is the intersection of all filters of S containing 

).x  The equivalent relation N  is defined on S by 

( ) ( ) ( ){ }., yNxNSSyx =|×∈=N  

For ,Sx ∈  the N -class of S containing x will be denoted by ( ) .Nx  N  is a 

congruence on S (that is, for Szyx ∈,,  and ( ) N∈Γ∈γ yx,,  implies 

( ) N∈γγ zyzx ,  and ( ) )., N∈γγ yzxz  Using this fact, the set =NS  

{( ) }Sxx ∈|N  forms a Γ-semigroup defined by 

( ) ( ) ( )NNN yxyx γ=γ  

for all Syx ∈,  and .Γ∈γ  For ,, Syx ∈  the following hold: 

(1) ( ) N∈γxxx,  for all .Γ∈γ  Indeed: Since ( ),xNxx ∈γ  we have 

( ) ( ).xxNxN γ⊆  Since ( ),xxNxx γ∈γ  we obtain ( ).xxNx γ∈  Then 

( ) ( ).xNxxN ⊆γ  

(2) ( ) N∈βγ xyyx ,  for all ., Γ∈βγ  In fact: Since ( ),yxNyx γ∈γ  we 

have ( )yxNx γ∈  and ( ).yxNy γ∈  Since ( ),yxNxy γ∈β  we have ( ) ⊆βxyN  

( ).yxN γ  Similarly, ( ) ( ).xyNyxN β⊆γ  

(3) ( )Nx  is a Γ-subsemigroup of S. Indeed: Clearly, ( ) .∅≠∈ Nxx  Let 

( )Nxzy ∈,  and .Γ∈γ  Since ( ) ( )NN xy =  and ( ) ( ) ,NN xz =  we have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) .NNNNNNN xxxxxzyzy =γ=γ=γ=γ  Then ( ) .Nxzy ∈γ  
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The purpose of this paper is to show that every ideal of an N -class of 
an ordered Γ-semigroup does not contain proper prime ideals. Similar results 
on ordered semigroups were presented by Kehayopulu and Tsingelis in [2]. 

2. Main Results 

Lemma 2.1. Let ( )≤Γ,,S  be an ordered Γ-semigroup and ., Syx ∈  If 

,yx ≤  then ( ) N∈γyxx,  for all .Γ∈γ  

Proof. Assume that yx ≤  and .Γ∈γ  Since ( )xNx ∈  and ,yx ≤  we 

have ( ).xNy ∈  Since ( ),xNyx ∈γ  we obtain ( ) ( ).xNyxN ⊆γ  Since ∈γyx  

( ),yxN γ  we have ( ).yxNx γ∈  Then ( ) ( ).yxNxN γ⊆  Therefore, ( ) =xN  

( ).yxN γ  

Lemma 2.2. An ordered Γ-semigroup ( )≤Γ,,S  does not contain proper 
filters if and only if S does not contain proper prime ideals. 

Proof. (⇒) Assume that an ordered Γ-semigroup ( )≤Γ,,S  does not 
contain proper filters. Suppose that I is a proper prime ideal of S. Then 

.\ ∅≠IS  Note that ( )ISS \\  is a prime ideal of S. Moreover, IS \  is a filter. 
Indeed: Let ISyx \, ∈  and .Γ∈γ  Since Iyx ∉,  and I is prime, we have 

.Iyx ∉γ  Thus ISyx \∈γ  for all .Γ∈γ  Since I is an ideal of S, it follows 
that for Syx ∈,  and ,Γ∈γ  Ix ∈  or Iy ∈  implies .Iyx ∈γ  Let ISx \∈  
and Sy ∈  be such that .yx ≤  If ,Iy ∈  then ,Ix ∈  a contradiction. 
Therefore, IS \  is a filter of S. By assumption, .\ SIS =  Then .∅=I  A 
contradiction. 

(⇐) Assume that S does not contain proper prime ideals. Let T be a 
proper filter of S. Then .\ ∅≠TS  Let ( ) STSz Γ∈ \  and .\TSz ∉  Then 

yxz γ=  for some ,\TSx ∈  Γ∈γ  and .Sy ∈  Since ., TyxTz ∈γ∈  Since 
T is filter, we have Tx ∈  and .Ty ∈  Thus .Tx ∈  A contradiction 

( ).\TSx ∈  This proves that ( ) .\\ TSSTS ⊆Γ  Similarly, ( ) .\\ TSTSS ⊆Γ  
For Syx ∈,  and ,Γ∈γ  if ,\, TSyx ∉  then .\TSyx ∉γ  Therefore, TS \  is 
a prime ideal of S. Since ,\ STS =  we obtain .∅=T  A contradiction. 
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Lemma 2.3. Let T be a filter of an ordered Γ-semigroup ( )≤Γ,,S  and 

., Sxz ∈  If ( ) ,NzTx ∩∈  then ( ) .Tz ⊆N  

Proof. Assume that ( ) .NzTx ∩∈  Since ( ) ,Nzx ∈  we have ( ) =Nx  

( ) ,Nz  that is, ( ) ( ).zNxN =  Let ( ) .Nzy ∈  Then ( ) ( ) ( ).xNzNyN ==  

So ( ).xNy ∈  Since ,Tx ∈  we have ( ) .TxN ⊆  Thus .Ty ∈  

Now, we prove the main result. 

Theorem 2.4. Let ( )≤Γ,,S  be an ordered Γ-semigroup and .Sz ∈  If I 

is an ideal of ( ) ,Nz  then I does not contain proper prime ideals of I. 

Proof. Assume that I is an ideal of ( ) .Nz  By Lemma 2.2, we shall show 

that I does not contain proper filters. Let F be a filter of I and .Fa ∈  Let 

{ }.FxaaSxT ⊆ΓΓ|∈=  

(1) .ITF ∩=  Indeed: Let .Fy ∈  Clearly, .Iy ∈  Since ,Faa ⊆Γ  we 

have .Fyaa ⊆ΓΓ  Then .Ty ∈  Thus .ITF ∩⊆  Let .ITy ∩∈  Since 

,Ty ∈  we have .Fyaa ⊆ΓΓ  Since F is filter, .Fy ∈  Then .FIT ⊆∩  

(2) T is a filter of S. In fact: since ., ∅≠∈⊆ΓΓ TaFaaa  

Let ., Tyx ∈  Since Fyaa ⊆ΓΓ  and ( ) ,NzIF ⊆⊆  we have yaa ΓΓ  

( ) .Nz⊆ Thus ( ) .Nzay ⊆Γ  Since ,Ia ∈  by assumption, we obtain aay ΓΓ   

.I⊆  Since ( ) ( ) ( ) ( ) ,Faayaaaayaa ⊆ΓΓΓΓ=ΓΓΓΓ  we have aay ΓΓ .F⊆  

Similarly, Fxaa ⊆ΓΓ  implies ( ) .Nzxa ⊆Γ  For ,, Γ∈βγ  we have 

( ) ( ) ( ) ( ) .NNNN zyaxayxa ⊆γβγ=βγ  

This implies ( ) .Nzyxa ⊆ΓΓ  Therefore, .Iyxaa ⊆ΓΓΓ  This proves that 

Faayxaa ⊆ΓΓΓΓ ,  implies ( ) ( ) .Faayxaa ⊆ΓΓΓΓΓ  Since ( )ΓΓΓΓ yxaa  

( ) ,Faa ⊆Γ  .Fyxaa ⊆ΓΓΓ  Then .Tyx ⊆Γ  Let Tx ∈  and Sy ∈  be such 

that .yx ≤  Since ,Fxaa ⊆ΓΓ  .Fyaa ⊆ΓΓ  Then .Ty ∈  
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(3) Since ( ) ,NzTa ∩∈  by Lemma 2.3, ( ) .Tz ⊆N  Then ITF ∩=  

.I=  

Corollary 2.5. Let ( )≤Γ,,S  be an ordered Γ-semigroup and I be prime 

ideal of S. Then 
{( ) }.IxxI ∈|= N∪  

Proof. Let ( )Nxt ∈  for some .Ix ∈  Since ( )Nx  is an ideal of ( ) ,Nx  

by Theorem 2.4, ( )Nx  does not contain proper prime ideals. We claim that 

( ) Ix ∩N  is a prime ideal of ( ) .Nx  Using the claim, ( ) ( ) .NN xIx =∩  

Thus .It ∈  

Clearly, ( ) ( ) .NN xIx ⊆≠∅ ∩  We have 

( ) (( ) ) ( ) ( ) ( ) IxxxIxx ΓΓ⊆Γ NNNNN ∩∩  

( ) ( ) Ixxx ΓΓ⊆ NN ∩  

( ) ( ) Ixx Γ= NN ∩  

( ) ISx Γ⊆ ∩N  

( ) Ix ∩N⊆  

and 

(( ) ) ( ) ( ) ( ) ( )NNNNN xIxxxIx ΓΓ⊆Γ ∩∩  

( ) SIx Γ⊆ ∩N  

( ) .Ix ∩N⊆  

Let ( ) Ixy ∩N∈  and ( )Nxz ∈  be such that .zy ≤  Since ,Iy ∈  

.Iz ∈  Then ( ) .Ixz ∩N∈  

Let ( ) Ixzy ∩N∈,  and Γ∈γ  be such that ( ) .Ixzy ∩N⊆γ  Since 

,Iyx ∈γ  Ix ∈  or .Iy ∈  Thus ( ) Ixy ∩N∈  or ( ) .Ixz ∩N∈  

Hence, we have the claim. 
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