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Abstract 

Based on the deformation technique for the hyperbolic secant (HS) 
function, the p-deformed hyperbolic secant (p-DHS) distribution is 
presented. This technique is used to deform the balance between 
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exponential growth and decay parts in the hyperbolic secant (HS) 
distribution. Some fundamental properties of the constructed p-DHS 
distribution are discussed. Our study aims to derive some important 
corresponding functions in closed forms, to explain some fundamental 
measures and to summarize some results for the mentioned 
distribution. 

1. Introduction 

Many techniques for generalization the probability distributions have 
been studied in [5-8, 11-12]. In terms of density functions – provided their 
existence – most of these techniques can be introduced as multiplication of a 
probability density function (pdf) of the original distribution by an 
appropriate weighting function of the original cumulative distribution 
function (cdf) with parameter vector on a fixed interval [9]. Recently, a 
deformation technique has been suggested generally and it has been proposed 
in some works in the mathematics, physics and statistics [1-6, 10]. In [6], the 
authors discussed the deformation technique of the HS distribution with 
respect to the exponential decay part and introduced the so-called q-DHS 
distribution. This study will be concerned on the exponential growth part of 
the HS distribution. We construct the p-DHS distribution by applying the 
p-deformation technique to the HS distribution. According to [9] and other 
literatures, we study some fundamental properties of the constructed 
p-deformed hyperbolic secant family of distributions. 

This paper is organized as follows: Section 2 reviews the HS distribution 
and its fundamental properties. In Section 3, we introduce the concept of the 
deformed hyperbolic functions and the p-DHS distribution. A moment- 
generating function (mgf), a characteristic function (cf) and the moments of 
the p-DHS distribution are proposed in Section 4. Section 5 gives some 
attention to the maximum likelihood estimates (MLE) for the parameter p. 
We summarize the results and give some features and comments in Section 6. 

2. Definition of the Hyperbolic Secant Distribution 

According to [5-6, 8], the continuous random variable X has a HS 
distribution if its pdf is given by 
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where  
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This distribution is symmetric with zero mean and unit variance, and it has 
zero value for the skewness γ and its excess kurtosis β is equal to 2. 
Moreover, its mgf and cf are given respectively as follows: 
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3. The p-deformed Hyperbolic Secant Distribution 

3.1. Definition of the p-DHS distribution 

Throughout this paper, we consider the deformation technique for which 
a positive parameter is introduced as scalar factor of the exponential growth 
part of the HS function. The p-DHS distribution is defined by means of the 
p-deformation for the hyperbolic functions [2-4, 6, 10]. Firstly, we explain 
the concept and some properties of the deformed hyperbolic functions. 

Definition 1. Let p be a positive real parameter. We define the deformed 
hyperbolic functions to be a family of the functions ,sinh xp  ,cosh xp  

xxx ppp coth,sech,tanh  and xpcsch  as 
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The parameter p is called deformation parameter.  

Lemma 1 [1-4]. A family of the deformed hyperbolic functions satisfies 
the following relations: 

( ) ( ) ,sinhcosh,coshsinh xxxx pppp =′=′  

( ) ( ) ,tanhsechsech,sechtanh 2 xxxxpx ppppp −=′=′  

.sech1tanh,sinhcosh 2222 xpxpxx pppp −==−  (5) 

Furthermore, if ,1≠p  then xpsinh  is not odd function and xpcosh  is not 

even function, i.e., ( ) ,sinhsinh 1 xpx
p

p −=−  ( ) ;coshcosh 1 xpx
p

p =−  
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As an immediate consequence of previous definition and lemma, one can 
write the following function: 
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Definition 2. Let DHSpX -  be a continuous random variable. The variable 

DHSpX -  has a p-DHS distribution with a positive real parameter p, if its pdf 

given by, 
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In this case, DHSpX -  is said to be a p-DHS random variable with one 

parameter p, defined over .R  Furthermore, the cdf ( )pxF DHSp ;-  is 
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with the inverse cdf (critical value) 
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The values DHSpx -
α  for some different values of p using equation (9) can 

be computed. 

3.2. Properties of the p-DHS distribution 

By the definition of the expectation of DHSpX -  and ,2
-DHSpX  

respectively, take the forms 
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which implies that .12 =σ  

Proposition 1. The p-DHS distribution with a positive real valued 
parameter p is symmetric about 0 for .1=p  Moreover, it skewed more to 

the right for ( )∞∈ ,1p  and skewed more to the left for ( ).1,0∈p  For all 

positive real values of the parameter p, the kurtosis is always constant.  

Different densities for the p-DHS distribution with ( )1,0∈p  and their 

corresponding densities with ( )∞∈ ,1p  for some positive real values of p 

are plotted in Figure 1. 
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Figure 1. Probability density function for the p-DHS distribution for 
different values of the parameter p. 

Moreover, Figure 2 illustrates the pdf for the p-DHS distribution with 
.1=p  

 

Figure 2. Probability density function for the p-DHS distribution for the case 
.1=p  

By analysis the previous figures, Proposition 1 is valid. Graphically and 
in compare with the results in [6], it is clear that the DHS distribution with a 
unit value parameter is symmetric and independent on the used deformation 
parameters. Moreover, the direction of the skewness of shape of the DHS 
distribution depends on both the deformed exponential part in the 
corresponding used HS function and the value of the deformation parameter. 
Computationally, we can find that, the density corresponding to (8) has 
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smaller mean when p is increasing and it has larger mean when p is 
decreasing. In compare with [6] we find that, the mean value of the density 
corresponding to (8) depends on the deformed exponential part in the HS 
function of the studied original distribution. 

Proposition 2. The score function ( )pxS DHSp ;-  of DHSpX -  is given by 
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( )xSHS  is the score function of the HS distribution. 
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probability distribution is defined by ( ) ( ) .
pdf
pdf ′
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Proposition 3. The p-DHS distribution with 0>p  is unimodal. 

Proof. The probability density function for the p-DHS distribution is 
given by equation (7). We want to show this density is unimodal for all 
choices of p. Since ( )pxf DHSp ;-  is a continuously differentiable function, 

the only critical points for this function satisfy the equation ( )pxf DHSp ;-′  
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has exactly one root. Set [ ],ln2 pyx −
π

=  then the last statement is 

equivalent to showing ( ) ( ) 0tanhsech =yy  has exactly one root 0=y  in 

the interval .R  This means that the equation ( ) 0;- =′ pxf DHSp  has only the 

root 
px

x 1ln2=∗  in .R  Since ( ) ,0
8

;
2

- <π−=′′ ∗ pxf DHSp  the point ∗x  is 

the maximum value of the p-DHS distribution. It then also follows this yields 
a relative maximum (and hence absolute maximum) since ( )pxf DHSp ;-′  is 

positive to the left of the root ,∗x  and negative to the right, see Figure 3.  

 

Figure 3. Derivative of the unimodal pdf of p-DHS distributions with 
( ).,0 ∞∈p  

Note that, the mode for the p-DHS distribution has the root ∗x  in the last 
proposition and this value is equal to the obtained value of the mean in (10) 
for the p-DHS distribution. 

Proposition 4. The median and the mode for the p-DHS distribution with 
( )∞∈ ,0p  have the same value of the mean. 

Proof. Due to the unimodality of the given distribution and the previous 
results and the fact that the median of the unimodal distribution lies between 
the mean and the mode, we can find that the mode and the median for the 
p-DHS distribution have the same value of the mean as in (10).  
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Note that, the case for the unit value of the deformation parameter, the 
HS distribution, is recovered. In compare with [6] we find that the 
unimodality of the DHS distribution is valid and it is independent on the used 
deformation parameters. Moreover, the mean, the median and the mode for 
the DHS distribution have the same value in each of the two directions, the 
exponential growth part and the decay part of the HS function. 

4. Moment-generating Function of the p-DHS Distribution 

In this section, the formula for the mgf, the moments and also the cf of 
the p-DHS distribution will be derived. Consequently, we can determine the 
skewness and kurtosis coefficients of the studied distribution. 

Proposition 5. The mgf of the p-DHS variable DHSpX -  with 0>p  is 

given by 

( ) .
2

;sec;
1ln2

-
π<= π tteptM p

t

DHSp  (12) 

In particular, all moments of the p-DHS distribution exist. 

Proof. By the definition of the mgf for the given variable and the 
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According to [6], we can find the integration in (13) as 

∫
∞
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<π= ,1;secsech BtydyeBy  (14) 

which can be worked out with the help of Maple or Mathematica. Substitute 
(14) in (13), then the required formula (12) of the mgf of DHSpX -  can be 

obtained.  
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Proposition 6. The 1st four non-central moments of DHSpX -  with 0>p  

are given by 
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Note that the formulas (15) can be worked out with the help of Maple or 
Mathematica. Using (15) and the relation between the central and non-central 
moments [6], we can obtain the first four central moments 4321 ,,, μμμμ  of 

DHSpX -  as .5,0,1,0 4321 =μ=μ=μ=μ  This implies that the skewness 

γ and the excess kurtosis β of DHSpX -  are 0 and 2, respectively. Using the 

relation between the cf and the mgf, we obtain the cf of the p-DHS 
distribution as 
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5. Maximum Likelihood Parameter Estimation 

Here, we review the maximum likelihood (ML) method to obtain the 
MLE for the deformation parameter p. Suppose that nXXX ...,,, 21  are an 

iid random sample from a p-DHS distribution. Then the likelihood function 
is given by 
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According to [6] and other literatures, computing the log-likelihood function 
and taking the partial derivative of this function with respect to the 
deformation parameter p and finally setting the result equal to 0 yields 
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The MLE p̂  for the parameter p can be deduced by solving (18) iteratively. 

6. Summary 

We applied the p-deformation technique of the hyperbolic functions to 
probability distribution by introducing a positive real valued parameter. We 
considered the so-called p-DHS distribution which arises as deformation for 
the HS distribution. This is a class of continuous probability distributions in 
which the shape parameter can be used to introduce skew. We found that the 
constructed p-DHS distribution is unimodal with unit variance and mean as a 
function of p. Moreover, the ML method to determine the MLE for the 
parameter p has been illustrated. It was shown that all moments exist. 
Moreover, each of the mgf, cf and score function are given in closed forms. 
Furthermore, some properties of the p-DHS distribution have been illustrated 
and discussed. 

In compare with other previous studies, the DHS distribution, either in 
the exponential growth or decay part of the corresponding used HS function, 
with a unit value parameter is symmetric. Moreover, the direction of the 
skewness of shape of the DHS distribution depends on the deformed 
exponential part and the value of the deformation parameter. We found that 
the mean value of the p-DHS density function depends on the deformed 
exponential part in the studied original HS distribution. In addition, we found 
that the unimodality of the DHS distribution is valid and independent on the 
used deformation parameters. Moreover, the mean, the median and the mode 
for the DHS distribution have the same value in each of the two exponential 
parts of the HS function. This paper is merely an initial work; more studies to 
other interesting hyperbolic or triangular probability distributions with 
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applications should be conducted. In the future, we hope to study the 
deformation technique to the HS distribution with respect to the both 
exponential growth and the decay parts simultaneously. 
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