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Abstract

In this paper, we study a class generalized KdV equation with
generalized evolution by using sine-cosine method. As a result, more
types of new exact solutions to the generalized KdV equation with
generalized evolution are obtained, which include more general soliton
solutions, compactons solutions and solitary patterns solutions.

1. Introduction

Studies of various physical structures of nonlinear dispersive equations
had attracted much attention in connection with the important problems that
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arise in scientific applications. Mathematically, these physical structures have
been studied by using various analytical methods such as inverse scattering
method [1], Darboux transformation method [2], Hirota bilinear method [3],
Fan-expansion method [4] and so on. Practically, there is no unified
technique that can be employed to handle all types of nonlinear differential
equations.

Recently, Ismail and Biswas [5] studied the following generalized
Korteweg-de Vries equation with generalized evolution (the GKdV (1, n)

equation in short)

(@) +2aa(a™), +b[a(aM)y ]y + €Ay = O, (1.1)

where a, b, ¢ are arbitrary constants and obtained the topological 1-soliton
solution by using the solitary wave ansédtz method. More recently, Sturdevant
and Biswas [6] studied equation (1.1) and the topological 1-soliton solution
by using another solitary wave ansitz method. These equations with | =1
first appeared in 2004 [7]. It was studied by Wazwaz with 1 =1 and a
number of soliton solutions were obtained.

In this paper, we will study equation (1.1) by using the sine-cosine
method and the GKdV (-1, —n) equation will be examined as well. The sine-
cosine method is one of most direct and effective algebraic methods for
finding exact solutions of nonlinear diffusion equations (see [7, 8] and the
references therein). The sine-cosine algorithm, that provides a systematic
framework for many nonlinear dispersive equations, will be employed to
back up our analysis to determine solitons, compactons and solitary patterns
traveling wave solutions.

In what follows, we highlight the main steps of the sine-cosine
algorithm.

2. The Sine-cosine Method

(1) We introduce the wave variable & = (x — vt) into the nonlinear PDE

P(9, Gt Ay, Gxx» Gxxxe ) = 0, (2.1)
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where q(x, t) is the traveling wave solution. This enables us to use the
following changes:

o_ 4 o _ pd* o _d & _d®

T a2 T g2 X de 2 ger 22

We can immediately reduce the nonlinear PDE (2.1) into a nonlinear
ODE

Q(q, qr, qn, qm' ) — 0 (23)

The ordinary differential equation (2.3) is then integrated as long as all terms
contain derivatives, where we neglect integration constants.

(2) The sine-cosine algorithm admits the use of the ansétz

p T
a(x, t) = Acos?(BE),  |&]< 2B’ (2.4)
0, otherwise,
or the ansatz
inP K3
qx, 1) = |ASINT(BE). el <5 2.5)
0, otherwise,

where A, B and p are parameters that will be determined.

(3) Substituting (2.4) or (2.5) into the reduced ODE obtained above after
integrating (2.3) gives a trigonometric equation of cosine or sine terms.

(4) The main task is to balance the exponents of the trigonometric

functions cosine or sine. Collect all terms with same power in cosk(Ba) or

sink(Ba) and set to zero their coefficients to get a system of algebraic

equations among the unknowns A, B and p. The problem is now completely
reduced to an algebraic one. Having determined A, B and p by algebraic
calculations or by using computerized symbolic calculations, the solutions
proposed in (2.4) and in (2.5) follow immediately. The algorithm described
above certainly works well for a large class of very interesting nonlinear
equations.
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3. Using the Sine-cosine Method

3.1. For positive exponents

We first consider the GKdV (1, n) equation

@) +aa(@"), +b[a(@)yJy +ca@M ) =0, I, neZ™.

Using the wave variable & = x — vt carries (3.1) into the ODE
~v(q') +aq(q") +b[a(a") ] +ca(a™) =o.

Substituting (2.4) into (3.2) gives

AlBIpv cos®1(Bz)

+ A™1Bnp{-a + B2nZp?[b(n + 1) + cn]} cos"VP-L(BE)

(3.1)

(3.2)

—A™1B83np(np — 1) {b[(n + 1) p — 2]+ c(np — 2)} cos"VP-3(BE) = 0. (3.3)

Equation (3.3) is satisfied only if the following system of algebraic

equations holds:

Ip-1=(+1)p-3 np-1=0,

A" 1Bnp{-a + B?n?p?[b(n + 1) + cn]} = 0,

AlBIpv — A™1B3np(np — 1) {b[(n + 1) p — 2]+ c(np — 2)} = 0,

or

Ip-1=(n+1)p-1
—A™1B3np(np — 1) {b[(n + 1) p — 2] + c(np — 2)} = 0,

Al'BIpv + A"Bnp{-a + B?n?p?[b(n + 1) + cn]} = 0.

Solving the system (3.4) and (3.5) gives

(3.4)

(3.5)
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Case I.

2 o a(n+1-1y? aA"(n—1+ 1) (0l + ¢l —c)
P=n31-1"° “ann+bren) '~ 21(bn +b +cn) ’
n+1=1, (bl+cl-c)(bn+cn+b)=0, A=A=0. (3.6)
Case I1.

l=n+1 p= 2(b +¢) 'Bzz[an—v(n+1)](bn+cn+b),
bn+b+cn 4n2(b + 0)2
np-1=0, [v(n+1)—an](bn+cn+b)=0, b+c=0. (3.7)
Case I11.
l=n+1 pz%, Bzz%(::é),
vin+1l)—an=0, bn+cn+b=0, A=A=0. (3.8)

The results (3.6)-(3.8) can be easily obtained if we also use the sine
method (2.5). Combining (3.6)-(3.8) with (2.4) and (2.5), we obtain the
following compactons solutions:

neoeTT| N1l [ a @A™ 14 Dl el o)
2 n(bn + cn + b) 2l(bn + cn + b) ’
/ a
o = 0<\x—vt\<‘n+§_” n(anrCHb),a(bn+cn+b)>0,v=v,A:A,

0, otherwise,

(3.9)

2(b+c)
(n+1)+cn

Acos® an—v(n +1)](bn+cn+b)(x—vt)}, A=Av=yv,

1
[2n(b+c)\/[
|b+c|n

g2 =4[an—v(n+1)](bn +cn+b)>0,0<|x-vt|< Jan-v(n+1)](bn+cn+b)’

0, otherwise,

(3.10)
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- [an—v(n +1) [bn+cn+b

ﬁ - _ _ T
Acos { bn+cn+b(x vt)},0<|x Vt|<2 an—-v(n+1)’
A=A v=v, (bn+cn+b)(an-v(n+1))>0, (3.12)

0, otherwise

AT N1 a A (14 bl +ol—c),
2 n(bn +cn + b) 2I(bn +cn +b) ’
2n a
O<|x—vt|<|n+1_||,/n(bn+cn+b),a(bn+cn+b)>0,v:v,A:A,

0, otherwise,
(3.12)
2(b+c)
- b(n+L)+cn _ _ _ _
Asin [2n(b+c)\/[an v(n +1)](bn +cn + b)(x vt)},v_v, A=A,
2lb+c|n
O0<|x—wvt ,lan—=v(n +1)](bn +cn+b) >0,
<l |<\/[an—v(n+1)](bn+cn+b) [ (n-+2)}(on +cn +b)>
0, otherwise,
(3.13)
1 n+1) lbn+cn? +b
Asin”[ M(x—vt)}, O<|x-vt|<m m,
bn+cn? +b an—v(n+1)
A=A V=V, (bn+cn? +b)(an-v(n+1)) >0, (3.14)
0, otherwise.

However, for B <0, we obtain the following solitary patterns solutions:
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2
g7 = Acoshn+l-l

1-1 [ = aA™ 1 (=14 1) (bl + ¢l )
_{n+2 n(bn+?n+b)(x_ 2In(bn++cn+bj)LC |

a(bn +cn+b) <0, (3.15)
2(b+c)

gg = AcoshP(n+D)+en m\/[an —v(n +2)](bn +cn + b)(x - vt)},

[an — v(n +1)](bn + cn + b) > 0, (3.16)
Qg = Acosh%{,/%(x - vt)},

(v(n+1)—an)(bn+cn+b) >0, (3.17)
and

2

Oip = —Asinhn+1-l

n+i-1 | —a aA" 1 (n =1+ 1)(bl + ¢l - ¢)
{ +2 n(bn+cn+b)[x_ 21(bn + cn + b) i

a(bn+cn+b) <0, (3.18)

2(b+c)
tyq = —Asinh b(n+1)+cn [

m\/[an —v(n+1)](bn +cn +b)(x — vt)},

[an —v(n +1)](bn + cn + b) > 0. (3.19)

Remark 1. To the best of our knowledge, solutions (3.9)-(3.14) and
(3.16)-(3.19) obtained for equation (1.1) have not been reported in literature.

3.2. For negative exponents

We consider the variant GKdV (-1, —n) equation

@) +aq(@™), +bla@ ™)y +ca@ M)y =0, 1,0, €Z". (3.20)
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Using the wave variable & = x — vt carries (3.20) into the ODE

e

~v(a™') +aq(@™") +bla@@™) ] +cq@™) =0,  (3.21)
Substituting (2.4) into (3.21) gives
—A'Blpvcos™P(Bg)
+ A""Bnp{a + BZn?p?[b(L - n) - cn]} cos P (BE)
+ A"Bnp(np +1){b[2 - (1-n) p] + c(np + 2)} cos M P~3(BE) = 0. (3.22)

Equation (3.22) is satisfied only if the following system of algebraic
equations holds:

-Ip-1=(Q1-n)p-3, -np-1=0,
—A'Blpv + AT"B3np(np + 1) {b[(2 =1 - n) p] + c(np + 2)} = 0,
AY""Bnp{a + B?n?p?[b — bn — cnl} = 0, (3.23)
or
lp-1=(Q1-n)p -1
~A7'Blpv + AY"Bnp{a + B?n?p?[b(L - n) - cn]} = 0,
A"B3np(np + 1) {b[2 — (1 n) p] + c(np + 2)} = 0. (3.24)

Solving the system (3.23) and (3.24) gives

Case I.
_ 2 g2 a(l +1-n)? V_aA'+1_”(n+1+I)(bI+cI+c)
P=1iion ~4n(bn-b+cn)’ 2l(bn —b +cn) ’

l+1#n, (bl+cl+c)(bn—b+cn)=0, A=A=0. (3.25)
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Case Il.

2(b +c¢) 2 [an+v(@-n)](bn —b +cn)
S .2 R - T
bn—-b+cn 4n2(b+c)2

l+1=n, p=-

A=A=0, (np-1)fan+v(@-n)](bn-b+cn)(b+c)=0. (3.26)

Case IlI.
3 _ 1 2 _an+v(l-n)
l+1=n p= n’ B® = bn—b+cn’
A=A=0, (an+v(@-n))(bn—-b+cn)=0. (3.27)

The results (3.25)-(3.27) can be easily obtained if we also use the sine
method (2.5). Combining (3.25)-(3.27) with (2.4) and (2.5), we obtain the
following compactons solutions:

ool 1 +1on [ a A (01 (bl ol +o)
2 n(bn — b + cn) 2l(bn — b + cn) '
g = 0<\x—vt\<“Jrf_n“fn(bn_ab"%n),a(bn—b+cn)>0,

0, otherwise,

(3.28)

__2(b+c)
ACoS bn—b+cn[

b+ C) Jlan + v(L—n)](bn —b + cn)(x — vt)}, A=A v=y,

nb+c|n
Jlan +v@@—n)](bn —b +cn)’

dp =4[an+v(@@—n)](bn—b+cn)>0,0<|x-vt|<

0, otherwise,

(3.29)
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1
o fan+v@d-n) 3 n | bn-b+cn

Acos {—bn—b+cn (x=vt)[, 0<]|x vt|<2 /—an+v(1—n)’

A=A v=y (bn-b+cn)(an+v(l-n)) >0, (3.30)

0, otherwise

2 -
AsipTan| LH1-n a . aA" " (n+ 1+ 1) (bl +c|+c)t

2 n(bn —b + cn) 2l(bn —b +cn) '
0<|x—vt|< ll+21n_n|1/n(bn_ab+cn),a(bn—b+cn)>0,

0, otherwise,

(3.31)

2(b+c)

Asin bn-b+cn [m\/[an +v(L-n)](bn—b +cn)(x - vt)}, A=Av=v,

2nb+c|n
Jlan+v(-n)J(bn-b+cn)’

[an+v(l-n)](bn—b+cn)>0,0<|x—vt|<

0, otherwise,

(3.32)

1
ol Jan+v@-n) B bn—b+cn

Asin {—bn—b+cn (x=vt)|, 0<]|x Vt|<n‘/—an+v(1—n)’

A=A v=y, (bn-b+cn)(an+v(l-n)) >0, (3.33)

0, otherwise.

However, for B? <0, we obtain the following solitary patterns solutions:
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2
g; = Acosh!+1-n

l+1-n [ -a aA " "+ 1+ )0l + ¢l +c)
[ +2 : n(bn—b+cn)(x_ 2I(kJJrn—+b+cn;r ]|

a(bn —b +cn) < 0, (3.34)
_ 2(b+c) 1
gs = Acosh bn-b-cn [m\/—[an +v(@-n)](on —b + cn)(x — vt)},
[an +v(1—n)](bn —b +¢cn) < 0, (3.35)

1
g = Acosh '{ —%a;(;)(x - vt)},
(an+v(l—n))(bn—-b+cn)>0 (3.36)

and

2
Oip = —Asinh!+1-n

l+1-n [ -a aA ™" (n+ 14 1) (bl + ¢l +¢)
{ +2 : n(bn—b+cn)[x_ 2I(l;rn—+b+cn;r |

a(bn —b +cn) <0, (3.37)
_2(b+c) 1
g1 = —Asinh bn-b+cn [m J-[an +v(@-n)](bn —b +cn)(x - vt)},
[an +v(L-n)](bn —b +cn) < 0. (3.38)
4. Discussion

The solitary wave solutions and compactons for the GKdV (1, n)

equation and the GKdV (-1, —n) equation are obtained analytically by using
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the sine-cosine method. The obtained results in this work clearly demonstrate
the effect of the purely nonlinear dispersion and the qualitative change made
in the genuinely nonlinear phenomenon. This approach may be applied to
seek traveling wave solutions for other types of nonlinear dispersion partial
differential equations which satisfy certain restrictions.

[1]

(2]

(3]

[4]

(5]

(6]

[7]

(8]

References

M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and
Inverse Scattering, Cambridge University Press, London, 1991.

V. B. Matveev and M. A. Salle, Darboux Transformation and Solitons, Springer-
Verlag, Berlin, 1991.

R. Hirota and J. Satsuma, Soliton solutions of a coupled KdV equation, Phys. Lett.
A 85 (1981), 407-408.

E. G. Fan, Uniformly constructing a series of explicit exact solutions to nonlinear
equations in mathematical physics, Chaos Solitons Fractals 16 (2003), 819-839.

M. S. Ismail and A. Biswas, 1-soliton solution of the generalized KdV equation
with generalized evolution, Appl. Math. Comput. 216(5) (2010), 1673-1679.

B. J. M. Sturdevant and A. Biswas, Topological 1-soliton solution of the
generalized KdV equation with generalized evolution, Appl. Math. Comput. 217
(2010), 2289-2294.

A. M. Wazwaz, Variants of the generalized KdV equation with compact and non-
compact structures, Comput. Math. Appl. 47 (2004), 583-591.

S. Tang, Y. Xiao and Z. Wang, Travelling wave solutions for a class of nonlinear
fourth order variant of a generalized Camassa-Holm equation, Appl. Math.
Comput. 210 (2009), 39-47.



