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Abstract 

The aim of this paper is to introduce and discuss a multivariate (and 
elliptically contoured) generalization of the γ-ordered normal 
distribution. This new family of generalized Normals includes a 
number of well known distributions such as the multivariate uniform, 
Normal, Laplace and the degenerated Dirac distributions. The 
moments and characteristic function of this are also discussed. 

1. Introduction 

This paper analyzes the properties of the family of γ-ordered Normal 
distributions ( )Σμγ ,pN  which in the univariate form is discussed in [7]. 
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This distribution emerged from the study of the Logarithmic Sobolev 
Inequalities (LSI) as an extremal for the generalized entropy type measure of 
information, see [5, 6], and generalized Normal distribution as discussed in 
[4, 9, 8]. 

This generalization is obtained as an extremal of the LSI corresponding 
to a power generalization of the entropy type Fisher’s information measure. 

We comment that the introduced univariate γ-ordered Normal ( )21 , σμγN  

coincides with the existent generalized normal distribution introduced in [12] 
with density function 
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=β  while the multivariate case of 

the γ-ordered Normal ( )Σμγ ,pN  coincides with the existent multivariate 

power exponential distribution ( ),,, βΣ′μpPE  as introduced in [3], where 

( ) Σ=Σ′ γ−γ 122  and ( ) .12 −γ
γ

=β  These existent generalizations are 

technically obtained (involving an extra power parameter β) and not as a 
theoretical result of a strong mathematical background as the Logarithmic 
Sobolev Inequalities offer. 

The ( )Σμγ ,pN  family of distributions includes, as special cases, the 

multivariate and elliptically contoured Uniform, Normal, Laplace and the 
degenerate distributions as the Dirac or the vanishing one, namely, between 
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respectively. In Section 2, a detailed study of the above classification is 
provided. The heavy{tailed behavior of this family is also analyzed in 
Section 2, while in Section 3, a compact form of the characteristic function of 
this family of distributions is presented and extensively discussed. 

2. The γ-ordered Normal Distribution 

The multivariate and elliptically contoured γ-ordered Normal distribution 
is defined as follows [5]. 

Definition 2.1. The p-dimensional random variable X follows the 

γ-ordered Normal ( )Σμγ ,pN  with mean μ and scale parameter matrix Σ 

when the density function Xf  is of the form 
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with Q the quadratic form ( ) ( ) ( ) .1 TxxxQ μ−Σμ−= −  We shall write 

( ).,~ Σμγ
pX N  The normality factor pCγ  is defined as 
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The following theorem for γ-ordered Normals ( )Σμγ ,pN  defined for 

[ ]1,0−∈γ R  provides a smooth-bridging between the multivariate (and 

elliptically countered) Uniform, Normal, Laplace as well as the degenerate 

distributions as the Dirac. That is, the p
γN  family of distributions with order 

γ defined outside the open interval (0, 1), not only generalizes the Normal 
distribution but also includes two other, very significant, distributions as the 
Uniform and Laplace distributions. In addition, the degenerate distributions 
also belong to this family. Indeed: 

Theorem 2.1. The multivariate γ-ordered Normal distribution 

( ),, Σμγ
pN  for order values of ∞±=γ ,2,1,0  coincides with 
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Proof. From Definition 2.1 of ,p
γN  the order γ is defined over 

[ ],1,0−R  i.e., parameter γ is a real number outside the closed interval 

[ ].1,0  Let ( )Σμγγ ,~ pX N  and denote .1
γ
−γ

=α  We consider now the 

following cases: 

(i) The limiting case .1=γ  For px R∈  such that ( ) ,1≤xQ  from (6), 
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while, for px R∈  with ( ) ,1>xQ  we have 
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due to ( ) +∞→α α1xQ  as .0+→α  Therefore, it holds that ( ) =Σμ,1
pN  
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 i.e., the 

multivariate first-ordered Normals are, in fact, the multivariate (elliptically 
contoured) uniform distributions: 

(ii) The case .2=γ  It is clear that ( ) ( ),,,2 Σμ=Σμ pp NN  as 2Xf  

coincides with the multivariate (and elliptically contoured) Normal density 

Nf  as in (2), i.e., the multivariate second-ordered Normals are in fact the 

multivariate Normal distributions. 

(iii) The limiting case .±∞=γ  It is ( ) ( )Σμ=Σμ γ∞±γ∞± ,lim, pp NN  

( )Σμ= ,pL  as 
γ∞± ±∞→γ= XX ff lim  coincides with the multivariate (and 

elliptically contoured) Laplace density Lf  as in (3), i.e., the multivariate 

infinite-ordered Normals are, in fact, the multivariate (elliptically contoured) 
Laplace distributions. 

(iv) The limiting case .0=γ  First, we assume that ,μ=x  i.e., ( ) ,0=xQ  
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The following limiting result hold, 
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Utilizing now the Stirling’s asymptotic formula 
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Therefore, for ,2,1=p  it is ( ) ( ) ( )μ=Σμ=Σμ γ→γ −
ppp DNN ,lim,

00  as 

γ−→γ
= XX ff

0
lim0  coincides with the multivariate Dirac density Df  as in 

(4), i.e., the univariate and bivariate zero-ordered Normals are, in fact, the 
(univariate and bivariate) degenerate Dirac distributions, while the n-variate, 

,3≥n  zero-ordered Normals are, in fact, the degenerate vanishing 

distributions. 

From the above limiting cases (i), (iii) and (iv), we can then safely 

extend the defining order values γ in Definition 2.1 to the values of 

,,1,0 ∞±=γ  i.e., γ can now be defined outside the open interval (0, 1). 

Eventually, the family of the γ-ordered Normals conclude the Uniform, 

Normal, Laplace and also the degenerate distributions as the Dirac or the 
vanishing ones.  

Corollary 2.1. The univariate γ-ordered Normals ( ) =σμγ ,N  

( )σμγ ,1N  for order values ∞±=γ ,2,1,0  coincides with the usual 

(univariate) Dirac ( ),μD  Uniform ( ),, σ+μσ−μU  Normal ( )σμ,N  and 

Laplace ( )σμ,L  distributions, respectively. 

Proof. From the univariate form of Theorem 2.1, it is ( )σμ,1
1N  

( )σμ= ,1U  which coincides with the known (continuous) Uniform 

distribution ( ),, baU  i.e., with ( )., σ+μσ−μU  In fact, for every Uniform 

distribution expressed with the usual notation ( ),, baU  it holds that  
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The following Figure 1 illustrates Corollary 2.1 by presenting together 
all the density functions ( ),xf X γ

 ( )1,0~ γγ NX  for [ ]3,3−∈x  and ∈γ  

[ ) [ ],10,10,10 ∪−  which forms the appeared semi-transparent surface. The 

known densities of Uniform ( )1=γ  and Normal ( )2=γ  distributions are 

denoted. Also, denoted the densities of ( )1,010,10−=γN  which approximate 

the density of Laplace distribution ( )1,0∞±L  as well as the density of 

( )1,0005.0−N  which approximates the degenerate Dirac distribution ( ).0D  

Finally, notice the smooth-bringing between all these significant distributions 

that included, eventually, in the p
γN  family, as shown in Theorem 2.1. 

 

Figure 1. Graph of all the densities ( ) ( )1,0~, γγγ
NXxf X  along x and γ. 

From Definition 2.1, the height ( ) ( )γγ = XhXh p  of the density function 

γXf  of the density function 
γXf  of a random variable γX  following the 

γ-ordered Normal distribution ( )Σμγ ,pN  is achieved for ,μ=x  i.e., 

( ) ( ) ( ) .detmax 21−
γ∈γ Σ=μ==

γγ
p

XXx
CfxfXh pR  
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For the multivariate normally distributed ( ) ( )Σμ=Σμ ,,~ 2
ppX NN  

it is clear, from (2), that the height ( )Xh  decreases as dimension N∈p  

rises, providing “flattened” probability densities. This is also true for the 

multivariate Laplace distributed ( ) ( ).,,~ Σμ=Σμ ∞±
ppX NL  In fact, from 

(3), we have that ( ) 212 det12!
1 −−

∞± Σ⎟
⎠
⎞

⎜
⎝
⎛ +Γπ=

p
pXh p  and therefore, 

the high-dimensional Laplace distributions densities are “flattened”, since the 
height values decrease as N∈p  increases. This is true because, for 

dimensions 2p as 

( ) ( ) ( ) .det221
1 212 −−

∞± Σ
++

π= pppXh p  

Hence, as in the Normal distribution case, they provide, in general, heavy 
tails as the dimension increases. 

This is not the case for the multivariate Uniform distributed ~X  

( ) ( ),,, 1 Σμ=Σμ pp NU  because the volume of the corresponding 

p-elliptical-cylinder shape of their density functions, as in (1), may always 
equal to 1, however, they have no tails to “absorb” probability mass when 
dimension increases, as the Normal or the Laplace distributions does. 

Considering the above remark, the following proposition proves that, in 

fact, among all elliptical multivariate Uniform distributions ( )Σμ,pU  with 

fixed scale matrix ( )ΣμΣ ,, 5U  has the minimum height h. 

Proposition 2.1. For the elliptically contoured Uniformly distributed 

( ),,~ ΣμpX U  we have 
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i.e., the five-dimensional Uniform distribution ( )Σμ,pU  provides the 

minimum height value among all ( )Σμ,pU  with fixed scale matrix .Σ  

Proof. Let ( ) .1,12
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There is a unique real value, ( ) ,2log2 1 −πψ= −p  for which ( ) .0=′ pw  

Computing numerically this value, we obtained .5269.5≈p  This is the 

unique extreme point for h. As a result, there is a unique extreme integer 

value N∈p  for the peak of all p-variate Uniform distributions ( ) =Σμ,pU  

( ),,1 ΣμpN  as ( ) ( ) .detdet 11
1

−− Σ=Σ= pwCXh pp  The corresponding 

dimension p, evaluated above, is 5=p  as .N∈p  In fact, 5=p  is the 

minimum value for ( ),Xh p  because 
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Moreover, ( ) .05 >′′w  Figure 3 illustrates clearly the above proposition.  

Tables 1 and 2 provide evaluations for the probability mass of a 
univariate and a bivariate random variable γX  following the γ-ordered 

Normals ( )1,0γN  and ( ),,0 2
2 IγN  respectively, for various positive order 

values. Notice that, for the positive-ordered case ( )1>γ  heavy-tailed 
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distributions obtained as order γ increases approaching Laplace, while 
heavier-tailed ones obtained for the negative orders and especially for orders 
γ close to 0. Figure 2 confirms the above as the depicted heights of the 

probability densities of the univariate and the bivariate ( )p
p I,μγN  increases 

rapidly as γ tends to 0, while for higher dimensions 3≥p  falls even more 

rapidly to 0. This is so because, in both dimensional cases, the multivariate 
γ-ordered Normals reach the degenerate Dirac or the vanishing distributions 
as proved in Theorem 2.1, and therefore their probability tails grows heavily. 

 

Figure 2. Graphs of ( )γXh  for various negative-ordered ( )p
pX I,~ μγγ N  

along dimensions N∈p  (and for any .)R∈μ  

The γ-ordered Normal distribution ( )Σμγ ,pN  is an elliptically contoured 

distribution, and therefore every ( )Σμγγ ,~ pX N  admits a stochastic 

representation ,21 UVX −
γ Σ+μ=  where U is uniformly distributed on a 

unit sphere of pR  and V is independent of U. 
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Table 1. Probability mass values for various ( )1,0~ γγ NX  

γ ( )1Pr ≤γX ( )2Pr ≤γX ( )3Pr ≤γX  

–100 0.6315 0.8633 0.9491 

–10 0.6262 0.8516 0.9392 

–2 0.6084 0.8100 0.8995 

–1 0.5940 0.7737 0.8603 

–0.05 0.5290 0.5889 0.6233 

1 1.0000 1.0000 1.0000 

2 0.6827 0.9545 0.9973 

5 0.6470 0.8953 0.9724 

10 0.6390 0.8792 0.9614 

100 0.6328 0.8669 0.9513 

±∞ 0.632 0.866 0.951 

Table 2. Probability mass values for various ( )2
2 ,0~ Iγγ NX  

γ ( )1Pr ≤γX ( )2Pr ≤γX ( )3Pr ≤γX  

–100 0.2624 0.5898 0.7965 

–10 0.2467 0.5538 0.7576 

–2 0.1912 0.4253 0.6032 

–1 0.1429 0.3144 0.4556 

–0.05 0.9999 0.9999 0.9999 

1 1.0000 1.0000 1.0000 

2 0.3935 0.8647 0.9889 

5 0.3057 0.6873 0.8889 

10 0.2837 0.6383 0.8451 

100 0.2661 0.5982 0.8052 

±∞ 0.2642 0.5940 0.8009 
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Figure 3. Graphs of ( )γXh p  with ( )p
pX I,~ μγγ N  for ∞+=γ ,2,1  along 

dimensions N∈p  (and for any ).R∈μ  

Proposition 2.2. For the random variable UVX 21−
γγ Σ+μ=  
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pN  the 2t-th moments of γV  are given by 
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Proof. The random variable γV  is distributed on +R  with density 
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Consequently, setting ( ) ,12 −γ
γ

=s  the multivariate 2t-th raw moments 

of γV  are 
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and substituting pCγ  as in (7) we finally obtain (13).  

Corollary 2.2. The odd moments of γV  are vanished, while for the 

second moment, we have 
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Notice that, for the “normal” order value ,2=γ  it is ( ) .2 pVE =γ  

Using Theorem 2.8 in [2], we obtain the product moments of X, i.e., 
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( )
( )

∏
=

γ
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⎠
⎞

⎜
⎝
⎛ +Γ

⎟
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⎜
⎝
⎛ +Γ

⎟
⎠
⎞

⎜
⎝
⎛Γ

π
=

p

k
kp

t
t

p
t t

tp

p
VE

XXE p

1
2

2
22

1 2
1

2

21  

( )
∏
=

γ
−γ

− ⎟
⎠
⎞⎜

⎝
⎛ +Γ

⎟
⎠
⎞⎜

⎝
⎛ +Γ⎟

⎠
⎞⎜

⎝
⎛

γ
−γΓ

⎟
⎠
⎞⎜

⎝
⎛

γ
−γ+Γ

⎟
⎠
⎞⎜

⎝
⎛

γ
−γπ=

p

k
k

t
p t

tpp

tp

1

12
2 ,2

1

2
1

121  

where pit ...,,1,1 =≥  are integers and .21 tttt p =+++  

Consequently, the expected value and the covariance of =γX  

UV 21−
γ Σ  are, respectively, ( ) μ=γXE  for every order values ∈γ  

[ ],1,0\R  and 

( )
( )

( ) .rank 11

12
Cov 1

12
ΣΣ⎟

⎠
⎞

⎜
⎝
⎛

−γ
γ

⎟
⎠
⎞

⎜
⎝
⎛

γ
−γ

Γ

⎟
⎠
⎞

⎜
⎝
⎛

γ
−γ

+Γ
= −γ

−γ

γ
p

p
X  (14) 

Corollary 2.3. For the “normal-ordered” ( ),,~ 2 ΣμpX N  the scale 

parameter matrix Σ  is in fact the covariance of X, as it is expected. 

Corollary 2.4. If ( ),,~ Σμγγ
pX N  then 

( ),,~ Tp CCCdCXd Σμ++ γN  

where d is a vector of constants and C is a constant matrix. In particular, 

any subset of the iX ,γ  having a marginal distribution, is also ( )., Σμγ
pN  

Corollary 2.5. If ( ),,~ Σμγγ
pX N  then ( ),,~ ccccV Tp Σμ⋅γN  where 

c is a constant vector of the same length as X and · indicates a vector 
product. 
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Proof. This follows when 

( )
⎩
⎨
⎧ =

=
=

== ,...,,2,1
,...,,3,2,0

,1,
pj

pi
ic

cC j
ij  

considering only the first component of the product (the first row of C is the 
vector c).   

Example 2.1. The skewness of ( )2, σμγN  is zero because the odd 

moments are zero, see Corollary 2.2, while the kurtosis of ( )2,~ σμγγ NX  

is 

( ) ,3131511
1Kurt 2 −⎟

⎠
⎞

⎜
⎝
⎛

γ
−γ

Γ⎟
⎠
⎞

⎜
⎝
⎛

γ
−γ

Γ⎟
⎠
⎞

⎜
⎝
⎛ +

γ
−γ

Γ
−γ
γ

= −
γX  

see also [7]. Therefore, for the “normal” case ,2=γ  it is 

( ) ,032
3

2
512

12Kurt 2 =−⎟
⎠
⎞

⎜
⎝
⎛Γ⎟

⎠
⎞

⎜
⎝
⎛Γ⎟

⎠
⎞

⎜
⎝
⎛ +Γ= −X  

i.e., the kurtosis is vanished, as it was expected for ( )., 2σμN  

3. Characteristic Function 

We need the following lemma. 

Lemma 3.1. For the spherically contoured random variable ~γX  

( ),,0 p
p IγN  the characteristic function 

γ
ϕX  is given by 

( ) ,,1 pppp
X tttKt R∈⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Ψ=ϕ −γ

γ−
γ

−
γγ

 (15) 

where 

,1
2

12
12

⎟
⎠
⎞

⎜
⎝
⎛

γ
−γ

Γ

⎟
⎠
⎞

⎜
⎝
⎛Γ

−γ
γ

=
−

γ
p

p

K
p

p  
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and 

( ) ( )∫
∞ −γ

γ

−γ >
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧
−=Ψ

0
12

12
,0,exp xdsxsssJx

p

p
p  (16) 

with 
12 −

pJ  being the Bessel function of the first kind of the order .12 −
p  

Proof. Let ( ) ( )∫ γγ
=

E pXX dxdxxfEF ,1  for .pE R⊂  Then 

( ) ( )∫ ≤ γγ
=σ

ux pXF dxdxxfuX 1  

∫ ≤
−γ
γ

γ
⎭
⎬
⎫

⎩
⎨
⎧

γ
−γ

−=
ux p

p dxdxxC ,1exp 11  

and switching to hyperspherical coordinates, 

( ) ( ) ∫ ρ
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

ρ
γ
−γ

−ρ
Γ
π

=σ −γ
γ

−
γγ

u pp
p

F dCpuX 0
11

2 1exp2
2  

( ) ∫ ρ
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

ρ−ρ⎟
⎠
⎞

⎜
⎝
⎛

−γ
γ

Γ
π

= −γ
γ

−
γ

γ
−γ

u pp
pp

dCp 0
11

12
.exp12

2  (17) 

The Fourier transform ϕ of a spherically contoured distribution with 
cumulative density F is given by 

( ) ( ) ( ) ( )∫
∞

−
−−

∈σ⎟
⎠
⎞⎜

⎝
⎛Γ=ϕ

0 12
2112 ,,22 p

Fp
pp

tudutJutpt R  

where ( ) ({ }),uxxFu p
F ≤|∈=σ R  see [13] for details. Utilizing this for 

the spherically contoured ( ),,0 p
p IγN  i.e., for (17), we obtain 
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( ) ( ) 21
1

2
12

pp
p

p
X tCt −

γ
γ
−γ

⎟
⎠
⎞

⎜
⎝
⎛

−γ
γ

π=ϕ
γ

 

( )∫
∞ −γ

γ
−

− ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧
−×

0
11

12
exp duuuutJ p

p  

( ) pp
p

p tC −
γ

γ
−γ

⎟
⎠
⎞

⎜
⎝
⎛

−γ
γ

π=

1
2

12  

( ) ( )∫
∞

−γ
γ−

− ⎭
⎬
⎫

⎩
⎨
⎧
−×

0
112

12
,exp dsstssJ p

p  

and applying (7), we finally derive (15) and lemma has been proved.  

Theorem 3.1. The characteristic function ( ) ( ),, Σμ|γ=ϕ
γγ

tt XX  
pt R∈  

of the elliptically contoured positive-ordered Normal distribution, i.e., for 

( )Σμγγ ,~ pX N  with ,1>γ  has the form 

( ) ( ) ( ) ( ) ,,1
1 122

1
ppp

p
it

X ttQtQCet
T

R∈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
γ
−γφ⎟

⎠
⎞⎜

⎝
⎛

−γ
γ=ϕ −γ

γ−−
γ

γ
−γ

μ−
γ

 

 (18) 

where ( )zφ  is an entire function of z and Q the quadratic form ( ) .1tttQ T −Σ=  

Moreover, 
γ

ϕX  is bounded from 

( ) ( ) ( ) ,,212 2121 p
p

X

p
ttBttB R∈≥ϕ≥

γ
−γ −−

γ
 (19) 

for order values ,2≥γ  while for order values 21 <γ<  is bounded from 

( ) ( ) ( ) ,,212
1

2
111 pp

X
p

ttBttB R∈<ϕ<
γ
−γ γ

−γ−
γ
−γ−

γ
 (20) 
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where 

( ) ( ) ( ) ( ) .1
12

1
1222

2
2
11

2 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
γ
−γφ⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛

−γ
γ

π
= −γ

γ−μ−−γ
γ−+

γ
−γ

tQetQe
ptB

Titp
pp

p  

Proof. We assume, without loss of generality, that ( )p
pX I,0~ γγ N  

with order value [ ]1,0\R∈γ  arbitrary and fixed. Considering Lemma 3.1, it 

is sufficient to prove that for positive x, the function ( )xp
γΨ  as in (16) is the 

restriction to a ray { }0>| xx  of an entire function. Then (16) is equivalent to 

( ) ( )∫
β −γ

γ

−γ
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧
−=Ψ

0
12

12
exp dsxsssJx p

p
p  

( )∫
∞

β
−γ
γ

− ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧
−+ dsxsssJ p

p
12

12
exp  

( ) ( ),21 xIxI +=  

where ( ) .012 >
−γ
γ

=β  

The integral 1I  converges absolutely and uniformly on any compact set 

in the complex z-plane, thus is an entire function on z. So, this integral is the 
restriction of an entire function to .0>x  We will rewrite the integral ,2I  

using the modified Bessel function of the third kind K, as follows: 

( ) ( ) ,0,exp2 12
12

4
2 >

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧
−−

π
= ∫

∞

β
−γ
γ

−
π− xdsxssisKexI p

p
piR  (21) 

where ( )zR  being the real part of .C∈z  It is known that the modified 

Bessel function ( )zK p 12 −
 is analytic in the right half-plane { } .0\0≥| zz R  

Thus, applying the Cauchy theorem to the boundary aRL ,  of the circular 

region { },0arg2,0 ≤≤π−≤≤β<| zRzz  we obtain 
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( ) ( )∫
β

=
⎭
⎬
⎫

⎩
⎨
⎧
− −γ

γ
π

−,
,0exp 122

12RL
ip

p dzzexzzK  (22) 

where the functions 2pz  and 1−γ
γ

z  are chosen to be 

222 pipp ezz ω=     and    ,02,111 ≤ω≤π−= −γ
γω

−γ
γ

−γ
γ i

ezz  

which are positive along the ray { }.0>| zz  Thus, (22) can be written as 

( )∫β
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γ
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⎪
⎬
⎫
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⎪
⎨
⎧
−−−=
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⎨
⎧
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2
121122

12
,expRe

p

pipipi
p RdexReRKi  (23) 

where the last integral of (23) is bounded for R sufficiently large, as 

( ) ( )zK p 12 −  in (22) is bounded for large enough z  due to the known 

asymptotic expression, 

( ) ( ) ,,212 ∞→π≈ −
− zezzK z

p  (24) 

and, consequently, this integral tends to 0 as .∞→R  

Therefore, we can write (21) in the form 

( ) { ( ) ( )} ,0,2
2

1222 >β−
π

= ∗∗+∗ xxIxIxI
p

R  
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where 
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β
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−= ,exp 122
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( ) ( )∫ π−
−γ
γ

⎟
⎠
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12112

12
2 .exp dexeeKxI

pipii
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With the help of (24), the integrand in ∗
2I  majorized for all values of x by 

the function 

( ) ,12cosexp 12

⎪⎭

⎪
⎬
⎫
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⎪
⎨
⎧

−γ
πγ−γ

γ
− xssce ps  

with 0>c  constant. Assuming now ,112 <
−γ
γ

=β  i.e., ,0>γ  we conclude 

that ( )xI∗2  is absolutely and uniformly convergent on any compact set of 

complex values of .C∈x  Thus, ∗
2I  is an entire function. Similarly, this 

argument applies also to ∗∗
2I  which is a proper integral. Thus, ( )xI2  is the 

real part of an entire function for .0>x  Consequently, ( )xI2  is the 

restriction to the ray { }0>| xx  of an entire function ( ) ∑∞
==ε 0 ,k

k
k xax  

say, because ( ) ( )∑∞
== 02 ,k

k
k xaxI R  as shown above. 

Considering Lemma 3.1 which holds for the reduced case of ~γX  

( ),,0 p
p IγN  we obtain, through ,21 IIp +=Ψγ  that 

( ) ( ) ,,1
1 1

1
ppp

p
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X tttCet R∈⎟⎟
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⎝
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γ
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⎠
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γ
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where φ is an entire function. Therefore, (18) indeed holds, for the general 
elliptically contoured case.   
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Corollary 3.1. For ( ),,~ Σμγγ
pX N  

γ
ϕX  is bounded from 

( ) ( )tBt
p

X 21
2
−

≥ϕ
γ

  and  ( ) ( ) ,,12 21 p
p

X ttBt R∈
γ
−γ≤ϕ

−
γ

 (25) 

for order values ,2≥γ  while for order values 21 <γ<  is bounded from 
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where 

( ) ( ) ( ) ( ) .1
12

1
1222

2
2
11

2 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
γ
−γφ⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛

−γ
γ

π
= −γ

γ−μ−−γ
γ−+

γ
−γ

tQetQe
ptB

Titp
pp

p  

Proof. Assuming ,2

1
γ
−γ

> pp  or equivalently, ,21 <γ<  from the 

gamma function ratio boundaries [1], 
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while for ,2

1
γ
−γ

< pp  or equivalently, ,2>γ  it is 
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ppp

p
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where the equalities in (29) hold for ,2=γ  as the boundaries in (27) end up 

as equalities when .ba =  Therefore, substituting pCγ  as in (7) into (18) and 

then utilizing (29) and (28), we obtain (25) and (26), respectively.  

Theorem 3.2. An explicit analytic form of the characteristic function 

γ
ϕX  of ( )p

pX I,0~ γγ N  is given by 
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where 
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The series in (30) is absolutely convergent for any .0\pt R∈  

Proof. Recall (16). It can be proved that 

( ) ( ) ( )∑
∞

=

+
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1 ,0,,1
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kp xxpx  (32) 
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see [10] for details .1and1where ⎟
⎠
⎞⎜

⎝
⎛

β
=

−γ
γ=β r  As ( )xp

γΨ  is defined by 

(16), then the left hand side of (32) is analytic in .+R  Moreover, ( )pk ,γψ  is 

an analytic function for every defined order values [ ]1,0\R∈γ  as the 

gamma functions are having poles at the negative integers. Using Stirling’s 
formula, we obtain the inequality 

( ) ,, k
k ckp δ>γΨ  

where c and δ are positive constants, see also [10].   

4. Conclusion 

This paper introduced a generalization of the multivariate Normal 
distribution, i.e., the multivariate γ-ordered Normal distribution, extending 
[7]. Moreover: 

1. It proves that the well known distributions, as the multivariate 
Uniform, Normal, Laplace and the degenerated Dirac distributions are 
special cases of this generalization. 

2. It discusses the influence of the shape parameter γ within this family of 
distributions, while a theoretical insight for the multivariate Uniform 
distribution is presented (Proposition 2.1). 

3. The heavy-tailed members of this family, i.e., for order values 2>γ  

and for ,0<γ  are also discussed, see also Tables 1 and 2. 

4. The moments and the characteristic function of this family are 
extensively studied. 
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