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Abstract

The aim of this paper is to introduce and discuss a multivariate (and
elliptically contoured) generalization of the y-ordered normal
distribution. This new family of generalized Normals includes a
number of well known distributions such as the multivariate uniform,
Normal, Laplace and the degenerated Dirac distributions. The
moments and characteristic function of this are also discussed.

1. Introduction

This paper analyzes the properties of the family of y-ordered Normal
distributions Nyp(p, %) which in the univariate form is discussed in [7].
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This distribution emerged from the study of the Logarithmic Sobolev
Inequalities (LSI) as an extremal for the generalized entropy type measure of
information, see [5, 6], and generalized Normal distribution as discussed in
[4, 9, 8].

This generalization is obtained as an extremal of the LSI corresponding
to a power generalization of the entropy type Fisher’s information measure.
We comment that the introduced univariate y-ordered Normal A ﬁ(u, 02)

coincides with the existent generalized normal distribution introduced in [12]
with density function

—u B
f(x|u, a, B) = m%wexp{—‘% }

v )(Y—l)/v

m while the multivariate case of

_ _ 7
where oc—( candB_—y_l,

the y-ordered Normal /\/yp(p, ¥) coincides with the existent multivariate
power exponential distribution PEP(u, ', B), as introduced in [3], where

v =220 D/vy  and B = These existent generalizations are

_r
2(y-1)
technically obtained (involving an extra power parameter ) and not as a

theoretical result of a strong mathematical background as the Logarithmic
Sobolev Inequalities offer.

The Nf(p, ¥) family of distributions includes, as special cases, the

multivariate and elliptically contoured Uniform, Normal, Laplace and the
degenerate distributions as the Dirac or the vanishing one, namely, between

UP(u, 2), NP, 2), £P(u, =) and DP(n) or OP distribution, with
density functions given by

F(B +1)
f (Xu, X) = W, x € RP with Q(x) < 1, 1)

0, x € RP with Q(x) > 1,



On the Multivariate y-ordered Normal Distribution 51

_ 1 1 p
i B) = o e detZIexp{ o) xeRP @
r(%-ﬁ-lj )
el D) = S (), xR, 3)
fp(xm):{f h xerr, @
fo(x)=0, xeRP, (5)

respectively. In Section 2, a detailed study of the above classification is
provided. The heavy{tailed behavior of this family is also analyzed in
Section 2, while in Section 3, a compact form of the characteristic function of
this family of distributions is presented and extensively discussed.

2. The y-ordered Normal Distribution
The multivariate and elliptically contoured y-ordered Normal distribution

is defined as follows [5].

Definition 2.1. The p-dimensional random variable X follows the

y-ordered Normal Nyp(u, ¥) with mean p and scale parameter matrix X

when the density function fy is of the form
p 12 i p
fx (X[, 2, y) = C;'[ det =7 exp —TQ(X)Z(y—l) , xeRF, (6)

with Q the quadratic form Q(x) = (x — p)= 1 (x —u)". We shall write

X ~ N'P(u, £). The normality factor C.P is defined as

/ F(—g+1j
p_ —p/2

Cy =1 =
MNp? +1

-1

A
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The following theorem for y-ordered Normals NP (u, £) defined for
y € R -0, 1] provides a smooth-bridging between the multivariate (and
elliptically countered) Uniform, Normal, Laplace as well as the degenerate

distributions as the Dirac. That is, the N$ family of distributions with order

v defined outside the open interval (0, 1), not only generalizes the Normal
distribution but also includes two other, very significant, distributions as the
Uniform and Laplace distributions. In addition, the degenerate distributions
also belong to this family. Indeed:

Theorem 2.1. The multivariate y-ordered Normal distribution

N P(u, £), for order values of y = 0,1, 2, + o coincides with

DP(w), vy=0, p=12
OP(n), y=0, p=>3
N}?(H, ) =1UP(W,x), y=1 8)
NP 2), y=2
LP(w, ), y=42o

Proof. From Definition 2.1 of /\/f, the order vy is defined over
R —[0, 1], i.e., parameter y is a real number outside the closed interval

[0,1]. Let X, ~ Nyp(u, ¥) and denote o = YT_l We consider now the

following cases:
(i) The limiting case y =1. For x € R such that Q(x) <1, from (6),
we have that

F[—g +lj 2
— 2 2 _(lim a®)( i - Y2
P2 [ Getz (g lim, o )(gl lim, exp{~aQ(x)"7“*})

p
F(—+1j
—2— ]_.eo

7P det x|

lim fy (x) =
Y_)l+ Y
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while, for x € RP with Q(x) > 1, we have

F(%-ﬁ-l) "
———==( i a li _ o
P faara] m, o) lim exp{-a Q0 )

r(%-‘rlj
1.0,

lim fy (x)=
Y—>1+ Y

 7P/2 [detx |

due to ocQ(x)]/O‘ — +o0 as a — 07. Therefore, it holds that AP (p, =) =

lim . NP, 2)=uUP(u, £) as lim = fx, = Ty, ie, the

y—o1* fxy
multivariate first-ordered Normals are, in fact, the multivariate (elliptically
contoured) uniform distributions:

(i) The case y = 2. It is clear that N'5(u, £) = N'P(n, £), as fy,

coincides with the multivariate (and elliptically contoured) Normal density
for asin (2), i.e., the multivariate second-ordered Normals are in fact the

multivariate Normal distributions.
(iii) The limiting case y = 2o0. It is AP, (1, =) = lim, 1, NP, =)
=LP(n, ) as fx,, =M, iy fxy coincides with the multivariate (and

elliptically contoured) Laplace density f, as in (3), i.e., the multivariate
infinite-ordered Normals are, in fact, the multivariate (elliptically contoured)
Laplace distributions.

(iv) The limiting case y = 0. First, we assume that x = y, i.e., Q(x) =0,

or from Definition 2.1,

pa
fo (H) =n p/zf(g + 1)%' detX> |_1/2 (9)
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The following limiting result hold,

lim fy (u)= lim
y—0" ! (xzyT_l—>

fx, (1) = .

+00

dim i, ),

where [x] is the integer value of x € R, and thus

P

F(E-i-lj kk
lim fy ()= lim . (10)
y—0" XY( ) np/21/| det X | (k—m pkk!J

k
Utilizing now the Stirling’s asymptotic formula k!~ 2nk(%) as

k — oo, (10) implies

p
{21
lim fy (u)=(2—+) lim — | (11)
N Ttp/2 ’|det2| k—mo\/ﬂ(ﬂjk
e

and so, for p > 3, (11) implies Iimy_}o_ fxy(p) =0 while, for p=1 or

p = 2, implies Iimy_)o_ fxy(u) = 400,
Assuming now x = p and using (10), we have

lim fy (x)= lim fy (W[ lim exp{-aQ(x)¥2%}], 12)
vy—>0" v y—>0" i o>+

and so, for p > 3, (12) implies Iimy_)o, fo(x) = 0 forevery x = pu while,

for p=1or p = 2, applying (11) into (12), we obtain

lim fy (u) = r(gﬂj ’ eXp{l—%Q(X)p/Zk}

——————— | IIm =0.
y—0~ Ttp/21/| detZ| | k- pkv2rk
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Therefore, for p=1 2, itis N'§(p, Z) = lim o NP 2)=DP(n) as
fx, = Iimy_)o_ fxy coincides with the multivariate Dirac density fp asin

(4), i.e., the univariate and bivariate zero-ordered Normals are, in fact, the
(univariate and bivariate) degenerate Dirac distributions, while the n-variate,
n >3, zero-ordered Normals are, in fact, the degenerate vanishing

distributions.

From the above limiting cases (i), (iii) and (iv), we can then safely
extend the defining order values y in Definition 2.1 to the values of

y=0,1 t o, ie, y can now be defined outside the open interval (0, 1).

Eventually, the family of the y-ordered Normals conclude the Uniform,
Normal, Laplace and also the degenerate distributions as the Dirac or the
vanishing ones. 0l

Corollary 2.1. The univariate y-ordered Normals M, (u, o) =

/\/%(u, o) for order values y=0,1, 2, + o coincides with the usual

(univariate) Dirac D(n), Uniform U(p — o, p + o), Normal N (y, o) and

Laplace £(u, o) distributions, respectively.

Proof. From the univariate form of Theorem 2.1, it is A(u, o)

= ul(u, o) which coincides with the known (continuous) Uniform
distribution U(a, b), i.e., with U(n — o, p + o). In fact, for every Uniform

distribution expressed with the usual notation #/(a, b), it holds that

U(a, b) = N%(b e et bj _ UMy, o).

Moreover, we have N,(u, 62) = N (1, 62), N io(w, o) = L(1, ©)
and finally NV g(u, o) = D(n). L]
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The following Figure 1 illustrates Corollary 2.1 by presenting together
all the density functions fxy(x), X, ~N,(0,1) for xe[-3,3] and y €
[-10, 0) U [1, 10], which forms the appeared semi-transparent surface. The
known densities of Uniform (y =1) and Normal (y = 2) distributions are
denoted. Also, denoted the densities of A, __10 19(0, 1) which approximate
the density of Laplace distribution £..(0,1) as well as the density of
N _0.005(0, 1) which approximates the degenerate Dirac distribution D(0).

Finally, notice the smooth-bringing between all these significant distributions

that included, eventually, in the Nf family, as shown in Theorem 2.1.

Figure 1. Graph of all the densities fxy(x), X, ~ N,(0,1) along x and y.
From Definition 2.1, the height h(X, ) = hp(Xy) of the density function
fxY of the density function fxy of a random variable X, following the

y-ordered Normal distribution Nyp(p, Y) is achieved for x =p, ie,

12
h(Xy) =max .o fx, () = fx (W)= CP|detX | yz,



On the Multivariate y-ordered Normal Distribution 57

For the multivariate normally distributed X ~ N P(p, =) = AP (u, T)
it is clear, from (2), that the height h(X) decreases as dimension p € N
rises, providing “flattened” probability densities. This is also true for the

multivariate Laplace distributed X ~ £P(u, ) = AP (u, Z). In fact, from
(3), we have that h(X,,)=mn" p/Z%F(ngljl det> |_]/2 and therefore,

the high-dimensional Laplace distributions densities are “flattened”, since the
height values decrease as p € N increases. This is true because, for

dimensions 2p as

1

2 ~1/2
(D r2-2p

h(Xso) = 7P/

Hence, as in the Normal distribution case, they provide, in general, heavy
tails as the dimension increases.

This is not the case for the multivariate Uniform distributed X ~

UP(u, Z)zj\/'lp(u, ¥), because the volume of the corresponding

p-elliptical-cylinder shape of their density functions, as in (1), may always
equal to 1, however, they have no tails to “absorb” probability mass when
dimension increases, as the Normal or the Laplace distributions does.

Considering the above remark, the following proposition proves that, in

fact, among all elliptical multivariate Uniform distributions Up(p, ¥) with

fixed scale matrix =, 2°(p, =) has the minimum height h.

Proposition 2.1. For the elliptically contoured Uniformly distributed

X ~UP(u, 2), we have

- 15 -1 _ 5
p _- —_— =
mpellr\}{h (X)} -, |det X | h>(X),
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i.e., the five-dimensional Uniform distribution #/P(u, X) provides the

minimum height value among all ¢/ P (u, =) with fixed scale matrix X.

_P
Proof. Let w(p) = = 21“(% + 1), p > 1. Differentiating h, we get

i) = 3 2r{ 21 lag -y 2 1]

There is a unique real value, p = 2\|f_1(log n) — 2, for which w'(p) =0.
Computing numerically this value, we obtained p ~ 5.5269. This is the
unique extreme point for h. As a result, there is a unique extreme integer

value p e N for the peak of all p-variate Uniform distributions U P (u, ) =

NP, =), as hP(X) =CP|detx |_1 = w(p)|detX |_1. The corresponding
dimension p, evaluated above, is p=5 as p e N. In fact, p=5 is the

minimum value for hP(X), because
hP(X) = 2 n 2| detz L < 2]detz [ = h(X)
and

|
lim hP(X) = lim h(p)|det= [T = lim 2 |detz[? = +oo.
p— p—00 2p—>CO TCp

Moreover, w'(5) > 0. Figure 3 illustrates clearly the above proposition. [l

Tables 1 and 2 provide evaluations for the probability mass of a
univariate and a bivariate random variable X, following the y-ordered

Normals /\/Y(O, 1) and /\/3(0, I,), respectively, for various positive order

values. Notice that, for the positive-ordered case (y >1) heavy-tailed
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distributions obtained as order y increases approaching Laplace, while
heavier-tailed ones obtained for the negative orders and especially for orders
v close to 0. Figure 2 confirms the above as the depicted heights of the

probability densities of the univariate and the bivariate A/ yp(p, Ip) increases

rapidly as y tends to 0, while for higher dimensions p > 3 falls even more

rapidly to 0. This is so because, in both dimensional cases, the multivariate
y-ordered Normals reach the degenerate Dirac or the vanishing distributions
as proved in Theorem 2.1, and therefore their probability tails grows heavily.

h(X«‘,:-n,sL—o 8oy —0.1 )

- h(X_1)

=
=
o
Q
—3 S .
i \.s """""""""" S —— S p
| 7 3 H

Figure 2. Graphs of h(X,) for various negative-ordered X, ~ /\/yp(p, Ip)
along dimensions p € N (and forany p € R).

The y-ordered Normal distribution Nf(u, ¥) is an elliptically contoured
distribution, and therefore every XY ~ Nf(u, ¥) admits a stochastic
representation X, = p + W 2‘1/2U, where U is uniformly distributed on a

unit sphere of RP and V is independent of U.
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Table 1. Probability mass values for various X, ~ A, (0, 1)

Y Pr( X, |<1) Pr(X,|<2) Pr(X,|<3)
~100 0.6315 0.8633 0.9491
-10 0.6262 0.8516 0.9392

-2 0.6084 0.8100 0.8995

-1 0.5940 0.7737 0.8603
-0.05 0.5290 0.5889 0.6233

1 1.0000 1.0000 1.0000

2 0.6827 0.9545 0.9973

5 0.6470 0.8953 0.9724

10 0.6390 0.8792 0.9614
100 0.6328 0.8669 0.9513
o0 0.632 0.866 0.951

Table 2. Probability mass values for various X, ~ Nﬁ(o, I,)

Y Pr(| Xy |<1) Pr( Xy |<2) Pr( Xy | <3)
-100 0.2624 0.5898 0.7965
-10 0.2467 0.5538 0.7576

-2 0.1912 0.4253 0.6032

-1 0.1429 0.3144 0.4556
-0.05 0.9999 0.9999 0.9999

1 1.0000 1.0000 1.0000

2 0.3935 0.8647 0.9889

5 0.3057 0.6873 0.8889

10 0.2837 0.6383 0.8451
100 0.2661 0.5982 0.8052

F00 0.2642 0.5940 0.8009
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2_
i e W(X), X o UP (2. 1,)
HEE N T pees h(X), X ~ NP(u1,) '3
1.5F f
! — B(X), X ~ P, L)
~ o]
>
I'Df
.»0/
,M'Ol/
vl g ’
...... L '
0 15 p

Figure 3. Graphs of hP(X, ) with X, ~ NV'P(u, Ip) for y =1, 2, + along
dimensions p € N (and forany p € R).

.. . B 12
Proposition 2.2. For the random variable X, =p+ V= Vay

~ /\/}D (n, ), the 2t-th moments of V, are given by

r(( p+2t) 1= - 1) 2L

rp? Y ) &)
Y

Proof. The random variable V, is distributed on R, with density

E (Vy2t ) _

function having fv2 the form
Y

p/2 Py
va(V):F?T/Z)VZ gx, (V). veR,,

where 9x, is the generating function of X, i.e.,

Y

fxy(v) =C/exp —VT_lvz(Y‘) , VeR,.
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Consequently, setting s = ﬁ the multivariate 2t-th raw moments

of VY are

Mot (Vy ) = E(Vy2t )

_ nP/? p t+p/2-1 1 s
= I p/Z)CV IR+V exp{—zv }dv

_ nP/2 p t+p/2-1 I
= W Cy R, v exp{—gv }dv

_ TCp/z p S M_l 1 S S
= WCY J'R+ (V) 2s exp{—z—sv }dv

-1
1 s 1 5
exp{—z—sv }d(z—sv )

p+2t p+2t
2nP/2(2sy 35 T p

Moyl (2] ®

p+2t
2nP2(2s) 25 1 c pr( P+ 2tj
‘Y 1

C(p/2) 2s
and substituting CYID as in (7) we finally obtain (13). O

Corollary 2.2. The odd moments of VY are vanished, while for the

second moment, we have

-1
r((z +ptt j 21k
¥ y-1 y-1
()
Y
Notice that, for the “normal” order value y = 2, itis E(VYZ) =p.

Using Theorem 2.8 in [2], we obtain the product moments of X, i.e.,
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p
EVZt F(—j p
E(X21. “xstp): ) F(%ij

nP/2 F(g + tj E

att 1{(p+ 20’2

_n—p/Z(Yylj F(pyyl)( jﬁr( +tkj

where t >1,i =1, .., p areintegersand t; + t, + -~-+tp =t.

Consequently, the expected value and the covariance of X, =

M Y20 are, respectively, E(X,)=p for every order values vy e
R\[0, 1], and

F[(p ' Z)YT_l) ( Y JZYT_l(rank ) o) (14)

v—lj y-1
1—‘ L
=

Corollary 2.3. For the “normal-ordered” X ~ N’g(u, Y), the scale

Cov(X,) =

parameter matrix X is in fact the covariance of X, as it is expected.

Corollary 2.4. If X, ~ NP (u, £), then

d+CX ~ NP(d +Cp, CxCT),
where d is a vector of constants and C is a constant matrix. In particular,

any subset of the X, ; having a marginal distribution, is also Nyp(u, Y).

Corollary 2.5. If X, ~ Nf(u, ¥), then ¢V ~ Nyp(c -, ¢'=c), where

c is a constant vector of the same length as X and - indicates a vector
product.
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Proof. This follows when

Ci i=1
C=(c)=1 YV ’ i=12..,0p
(©) {o, i=23..p, : P
considering only the first component of the product (the first row of C is the
vector c). L]

Example 2.1. The skewness of N (u, %) is zero because the odd
moments are zero, see Corollary 2.2, while the kurtosis of X, ~ N (u, 02)
is

Kurt(X,,) = Lr(y—_l + 1jr(5y—_1jr‘2(3y—_1J -3,
y-1 0 v Y Y

see also [7]. Therefore, for the “normal” case y = 2, itis

Kurt(X ) = 2r(% + 1}r(g)r‘2(gj ~-3=0,

i.e., the kurtosis is vanished, as it was expected for N (y, 02).

3. Characteristic Function

We need the following lemma.

Lemma 3.1. For the spherically contoured random variable X, ~

/\/'yp(O, ]Ip), the characteristic function Px, is given by

_ _r
(pxy(t)z KLt p\{fyp(nt" y—l], teRP, (15)

where
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and
» p i
P(x) = 2 _gv1
¥, (x) Jo Jg_l(s)s exps—s’ " xpds, x>0, (16)

with J,  being the Bessel function of the first kind of the order P

L 2
21

Proof. Let ny(E) = fE fxy(x)dxl---dxp, for E c RP. Then

or, ()= |

[xgen Xy OO0 B

-1,
=ij expd— L= || X [[y=1 bdlxg -+ dxy,

and switching to hyperspherical coordinates,

2TEp/2 u — -1 z
Y I _Y—2 v
cFXy(u) F(p/Z)CV Jop exp ; p dp

2nP/? Y pyT_l pY p-1 Ll
=7y | T C “Texpy—-p' T Hdp. 17
omlia) ol e e 0

The Fourier transform ¢ of a spherically contoured distribution with
cumulative density F is given by

P %
o0)=22 1{ 3 (1107729, eluicor @), ter?

where o (u) = F({x e RP|| x| < u}), see [13] for details. Utilizing this for

the spherically contoured /\/$(o, ]Ip), i.e., for (17), we obtain
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v-1
pP— p
2 7 1-—
(ny(t)=(2ﬁ)p/ (m} TPtz

Y
* -1 1
X Io Jg_l(” t|u)uP exp{—uy }du

y-1

p_
:(Zn)p/Z(ﬁJ Y Cyp”t”—p

i L
ERCRAER RIS

and applying (7), we finally derive (15) and lemma has been proved. 0]

Theorem 3.1. The characteristic function (pxy(t) = yxy(tm, %), t e RP

of the elliptically contoured positive-ordered Normal distribution, i.e., for

X, ~ /\/'f(u, %) with y > 1, has the form

-1
o, 0= (L) T epow P T e a T | e R

(18)

where ¢(z) is an entire function of z and Q the quadratic form Q(t) =t'= k.

Moreover, | X, | is bounded from

(I 1P
2 2 /TB(t)2|(pr(t)|22 2B(t), teRP, (19)

for order values y > 2, while for order values 1 < y < 2 is bounded from

1 v-1

Lptd g 1 it
2 T B0 <lox, <2 Y BWH, teRP, ()
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where
1.1

e-"T%[YT‘l Q(trﬁj ‘

Proof. We assume, without loss of generality, that X, ~ Nyp(o, Ip)
with order value y e R\[0, 1] arbitrary and fixed. Considering Lemma 3.1, it
is sufficient to prove that for positive x, the function ‘Pyp(x) as in (16) is the

restriction to a ray {x|x > 0} of an entire function. Then (16) is equivalent to

B Y
Ply) — p/2 _ye¥-1
P (x) .[o J g_1(5)5 exp{ XS }ds

Y
* P/2 gyl _xs 71
+-[B J%_l(s)s exp{ XS }ds

= 11(x) + 12(x),

__ v
where 3 = 20 = 1) > 0.

The integral 1; converges absolutely and uniformly on any compact set

in the complex z-plane, thus is an entire function on z. So, this integral is the
restriction of an entire function to x > 0. We will rewrite the integral I,,

using the modified Bessel function of the third kind K, as follows:

o _r
I5(x) = %SR e_"‘p/4jB Kp 1(—is)sp/2 exp{xsyl}ds}, x>0, (21)
L
where $R(z) being the real part of z € C. It is known that the modified

Bessel function K, 1(z) is analytic in the right half-plane {z|%z > 0}\0.
b

Thus, applying the Cauchy theorem to the boundary Lg , of the circular

region {z|0 < B <|z| <R, —n/2 < argz < 0}, we obtain



68 Christos P. Kitsos, Thomas L. Toulias and Paula Camelia Trandafir

; Y
§; Kp (2)2P/? exp{—x(ze”‘/z)ﬁ}dz =0,
Lr,p 5-1
o
where the functions z'[’/2 and z"~1 are chosen to be
2 2_iop/2 Ll ¥ i"’il T
2P/ =|z|p/ el®P/2  and 77~ =|z[y-1e ', —Es(nso,

which are positive along the ray {z|z > 0}. Thus, (22) can be written as

R . -
0= —ij Kp (~is)sP/2e71™P/2 exp) —xs7 1 Lds
p 51
R p/2 /2L | 4
_JB g_l(s)s exps —x(se"™“)y-1 ¢ ds

_ijop/2 K ; 1(Beim)B p/zeiw(%ﬂ'j eXp{XBﬁei(ngﬁ}Bdm
_ -

iof P Y Pl Y
0 . o] 5+1 — | ot+5 |—
+iJ. Kp (Re'(”)Rp/Ze (2 )exp —XRY_le( Z)Y_l Rdw,
-p/2 5—1

(22)

(23)

where the last integral of (23) is bounded for R sufficiently large, as
K(p/2)-1(z) in (22) is bounded for large enough | z| due to the known

asymptotic expression,

o {Et 10

and, consequently, this integral tendsto 0 as R — «o.

Therefore, we can write (21) in the form

2 s P
() = —R{lZ(0) -2 12700} x>0,

(24)
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where
15(x) = J: Kﬁ_l(s)s'o/2 exp{—x(sei“/z)ﬁ}ds,
2
and
. o 241 L o I
|;*(x) = I_On/z KB_l(ﬁelw)e' (2 jexp _XBY—le'( 2)“/—1 Bdo.
2

With the help of (24), the integrand in |5 majorized for all values of x by
the function

v
-s.p/2 y-1 ™y
ce S exp<s Ccos X|r,

with ¢ > 0 constant. Assuming now 23 = < 1, i.e., y > 0, we conclude

y-1
that 15(x) is absolutely and uniformly convergent on any compact set of
complex values of x € C. Thus, Ié" is an entire function. Similarly, this

argument applies also to |5 * which is a proper integral. Thus, 1,(x) is the
real part of an entire function for x > 0. Consequently, I,(x) is the

restriction to the ray {x|x > 0} of an entire function &(x) = Zf:o akxk,

say, because 1,(x) = Zfzo (i)%ak)xk, as shown above.
Considering Lemma 3.1 which holds for the reduced case of X, ~
/\/$(o, I,), we obtain, through ‘Pyp = Iy + Iy, that
v-1

, p—= 1 Y
—It — PR
o, 0= (2 T PP TR, e,

where ¢ is an entire function. Therefore, (18) indeed holds, for the general
elliptically contoured case. U]
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Corollary 3.1. For X, ~ N'P(u, 2), | 0x, | is bounded from

p P
1-E£ 1-- —
lox,()]22 2B(t) and [ oy, (t)[<2 2 /“/Tls(t), teRP, (25)
for order values y > 2, while for order values 1 < y < 2 is bounded from

1 v-1

1_py__:|' y_l E_p_
2 VB <lex, (] <2° T B, teRP,  (26)

where
o)L T2 H e e 1= |
P2y -1 e Y !
y-1

Proof. Assuming g>p Y, or equivalently, 1<y <2, from the

gamma function ratio boundaries [1],

1
a__
a®l 4 T@) _a 2 pa
—e < —==<< e % O0O<bx<a, 27
bb_1 F(b) b_l @7
b 2
we have
11 2y R
(1 Y jp Y Z(Ejp 2 _ (Zj
2y-1 e F(py—lj
Y
y-1 2—y
1y ey
) BT e

11
while for g < p ', orequivalently, y > 2, itis
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v-1 y—2
> zl_g(ﬁj " 1(%jp 20 (29)
where the equalities in (29) hold for y = 2, as the boundaries in (27) end up
as equalities when a = b. Therefore, substituting CyIO as in (7) into (18) and
then utilizing (29) and (28), we obtain (25) and (26), respectively. O

Theorem 3.2. An explicit analytic form of the characteristic function
ox, of X, ~ NP0, T,) is given by

r(p/2) & plt
ox, (1) = “2”(:)_) 2 W ) "ot @)

where

Y

S AR S T (LT P AR

The series in (30) is absolutely convergent for any t € RP\0.

Proof. Recall (16). It can be proved that

FP0 = > (D wk(r px x>0, (32)
k=0
where
( )—izkﬁJrgF LY R | (N ST S N L
Vilr )= o (2(v—1)+ 2) (2@—1)+ j (2@—1))'
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see [10] for details (Where B = ﬁ and r = %) As lI’Y'D(x) is defined by

(16), then the left hand side of (32) is analytic in R_.. Moreover, v, (y, p) is
an analytic function for every defined order values y € R\[0, 1] as the

gamma functions are having poles at the negative integers. Using Stirling’s
formula, we obtain the inequality

| ¥y (1, p)| > ck®,
where ¢ and 6 are positive constants, see also [10]. U]

4. Conclusion

This paper introduced a generalization of the multivariate Normal
distribution, i.e., the multivariate y-ordered Normal distribution, extending
[7]. Moreover:

1. It proves that the well known distributions, as the multivariate
Uniform, Normal, Laplace and the degenerated Dirac distributions are
special cases of this generalization.

2. It discusses the influence of the shape parameter y within this family of
distributions, while a theoretical insight for the multivariate Uniform
distribution is presented (Proposition 2.1).

3. The heavy-tailed members of this family, i.e., for order values y > 2
and for y < 0, are also discussed, see also Tables 1 and 2.

4. The moments and the characteristic function of this family are
extensively studied.
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