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Abstract

We use Legendre function expansion methods to find numerical
solutions of linear ordinary differential equations on the interval

[a, b], and functional differential equations y'(x)+ p(x)y(h(x)) =
g(x), and y"(x)+ p(x)y'(x)+q(x) y(h(x)) = g(x), where h(x)= a
and g(x) are given,and b —a > 1.

1. Introduction

The study of ordinary differential equations plays an important role in
physics, engineering and many other areas. It is not always possible to find
exact solutions of differential equations, as such one needs to find their
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approximate numerical solutions. There are several ways in finding the
numerical solutions for ordinary differential equations. One way is to convert
any interval [a, b] to the interval [0, 1], but it is very unstable in many

cases. One also encounters the accuracy problem which is usually not so
good as expected. In this paper, we extend our method introduced in [1-3]

from [0, 1] to the interval [a, b], use an orthogonal basis on [a, b] and apply

this orthogonal basis to find the approximate numerical solutions of
functional differential equations. We obtain a very good accuracy and it is

also easier to implement when we compare with other methods.
2. Legendre Function Expansion Methods

In [1-3], we introduce Legendre polynomial function expansion methods
in solving the numerical solutions of functional integral and differential

equations on the interval [0, 1]. We define an orthogonal basis on the interval
[0,1] as {pj(2x —1)};—, (see details in [1-3]), i is the order of Legendre

polynomial pj(x), which is defined on the interval [-1, 1], and can be

obtained by the following iteration formula:
Po(x) =1,

Pi(x¥) = X,

2n +1 n
X) = —Xpp(X)———pr_1(X), n=1,23,...
Pn+1(X) P Pn(x) n+1pn 1(x)

In what follows, we will extend this method to any bounded interval
[a,b] by changing the basis {pj(2x—1)}j~, on [0,1] to the basis
{p(Z%—l)}io on [a, b]. We have developed the following two
theorems for our methods.

Theorem 1 (Uniform Convergence Theorem). If an integrable function
f(x), defined on [a, b], has a bounded second derivative, then the function
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f(x) can be expanded as > a; p; (2 X

LA 1), where
i=0 b -

2 1o

and the series converges to the function f(x) uniformly.

aj = iH_lJ- f()p(

Proof. Let tzzz_a t+1

b-a

1P X—a
af(x)pi(zb_a—ljdx

(-0t a2

_1 f((b - a)% + a) p;(t)dt

-1 o=t v a)dtpa® - pioa)

t+1

((b a>—+aj(p.+1(t>— pii®) '

1 (-0t ) PR () - o)

ST (-2 +a)(pra - Pt

= %I_l ”((b a)ﬂ + aj

(sz(t) pl(t) pi(t) - pi— 2(t)

2i +3 2i -1
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—1. Then x=(b- a)—+a and dx =
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Hence,
2_(b-a)t! ( Lt jz
la|” < < I_l f' (b a)—2 +al| dt
le (pi+2(t)— pit) _ pit) - |0i_z(t)j2dt
-1 2i+3 2i -1
M2(b - a)* L
e IN(C VS0
32(2i +3)*(2i —1)* 7 -1
+4(2i + 12 p2(t) + (2i + 3)? pA, (1)) dt
_ M2%(b-a) 2(2i — 1) L 82i+ 1)? L 2020+ 3)?
h 32(2i + 3)2(2i _ 1)2 20 + 5 2i+1 2i — 3
MZ(b-a)* 1202 +3)
32(2i +3)%(2i -1 23
_ 3M*(b-a)t
8(2i — 1)*(2i - 3)
2 4
< 3M (b—a) .
8(2i - 3)°
Therefore
C
|ai | < 3
(2i - 3)2
A 1
2 2 0
where ¢ = (MJ . It follows that » a converges, hence the
i=0

expansion series converges uniformly.

Theorem 2 (Error Estimation). If an integrable function f(x), defined

on [a, b], has a bounded second derivative, then we have the following error
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estimation for the expansion of the function f(x) on [a, b],
1
> 3M2(b-a)’ |2
S sei-3)
where

1
2

2
b - X—a
Cp = J.a[f(x)—iz(;aipi(z b_a —1)} dx
We omit the proof here.

3. Numerical Examples

In this section, we will present two examples for ODE problems on the

extended domain [a, b]. Our approach is to choose uniform partition points

n

for X on [a, b], and substitute f(x) ~ > aip; (2 X . a_ lj into the equation
i=0

to form a linear system and get its approximate solution by least squares

method. We also compute error o, for each of the following examples
and list the results in the following tables, respectively, where r =

rgai(b{b —a,|h(x)—al}. The absolute error in L*([a, b]) is defined as
asxs

follows:

where  €,(X) = Yexact(Xj) — Yn(Xi). In order to test efficiency of our

methods, we select the following functions for h(x) = x, xe ™%, log(x + 4),

1.6sin(x) and some quadratic functions.
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Example 1.
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y'(x) +xy" = x*y(h(x)) = g(x),

g(x) = —sin(x) + x cos(x) — x> sin(h(x)),

-1<x<2,
y(-1) = —sin(1),
y(2) = sin(2).

The exact solution is y(X) = sin(x). We calculate errors for four different

functions h(x) as follows.

Table 1. Computed errors o, on L>([-1, 2])

n h(x) = x h(x) = xe™* | h(x) = 1.6sin(x) | h(x) = log(x + 5)
3 5.92e - 02 6.86e — 02 5.37e — 02 6.21e — 02
4 1.48e — 02 1.63e — 02 1.45e — 02 1.52e — 02
5 2.08e — 03 2.38e — 03 1.95e — 03 2.07e — 03
6 4.22e — 04 4.92e — 04 4.17e — 04 4.61e — 04
7 4.57e — 05 5.17e — 05 4.52e — 05 4.30e — 05
8 7.48e — 06 1.03e — 05 7.61e — 06 7.99e — 06
9 6.32e — 07 1.10e — 06 6.46e — 07 5.72e — 07
Example 2.

y" + sin(x) y'(x) + cos(x) y(h(x)) = 9(x),

g(x) = —sin(x) — sin(x)cos(x) + cos(x)sin(h(x)),

-1<x<2,
y(=1) = sin(-1),
y'(-1) = cos(-1).

The exact solution is y(X) = sin(x). We calculate errors for four different

functions h(x) as follows.
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Table 2. Computed errors o, on L>([-1, 2])

n | h(x) = x h(x)=%(x+1)2 +2 | N(x)=1.6sin(x) | h(x) = log(x+4)
3 | 3.79e—-01 3.10e — 01 4.28e — 01 2.13e —-01
4 | 1.25¢-01 1.03e — 01 1.83e — 01 1.19e — 01
5 | 2.00e — 02 1.40e — 02 2.72e — 02 1.56e — 02
6 | 6.94e—03 5.01e—03 9.30e — 03 5.63e — 03
7 | 6.31e—04 4.65e — 04 7.27e - 04 527e—-04
8 | 1.66e —04 1.25e - 04 1.84e — 04 1.41e — 04
9 | 1.16e —05 8.84e — 06 1.31e—05 1.00e — 05
10 | 2.43e - 06 1.91e — 06 2.71e — 06 2.18e — 06

Remark. This generalized method can be applied to more general
domain and has good accuracy results. It would be interesting to apply the
method in this paper to solve two dimensional problems on the extended
domain.
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