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Abstract

In this paper, we prove a common fixed point theorem for two maps
defined on a G-cone metric space, satisfying generalized contractive
condition of integral type.

1. Introduction

In 2005, Mustafa and Sims introduced a new structure of generalized
metric spaces [9], which is called a G-metric space as generalization of a
metric space (X, d) to develop and introduce a new fixed point theory for

various mappings in this new structure.

In 2007, Huang and Zhang introduced a cone metric space by
substituting an ordered Banach space for the real numbers and proved some
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fixed point theorems in this space [8]. Many authors have studied this subject
and many fixed point theorems have been proved.

In 2010, Beg et al. introduced a G-cone metric space that is an extension
of cone metric space, and obtained a common fixed point theorem for
mappings defined on a G-cone metric space satisfying a generalized
contraction condition [2].

In this paper, we introduce a contraction condition of integral type on a
G-cone metric space and present a common fixed point theorem for two
maps defined on a G-cone metric space with this contraction condition.

Definition 1 [8]. Let E be real Banach space. A subset P of E is called a
cone if and only if the following hold:

(a) P is closed, nonempty, and P = {0};

(b) a,beR,a,b>0,and x, y € P imply that ax + by € P;

(c) xe P and —x € P imply that x = 0.

Given a cone P — E, we define a partial ordering < with respect to P
by x <y if and only if y —x e P. We will write X <y to indicate that

x<vy but x=vy, while x<y will stand for y—-x e P°, where P°

denotes the interior of P. The cone P is called normal if there is a constant
K >0 such that 0 < x <y implies | x| < K] y| for all x, yeE. This

positive number K is called the normal constant.

We suppose that E is a real Banach space, P is a cone in E with P° = &
and < is partial ordering with respect to P.

Definition 2 [8]. Let X be a nonempty set. A function d : X x X —» X
is called a cone metric on X if it satisfies the following conditions:

(@) d(x, y)>0 forall x, y e X and d(x, y) =0 ifand only if x = y;
(b) d(x, y) =d(y, x) forall x, y € X;

(c) d(x, y) <d(x, z)+d(y, z) forall x, y, z e X.
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In 2010, Beg et al. in [2] introduced a G-cone metric space that is an
extension of cone metric space.

Definition 3 [2]. Let X be a nonempty set. Suppose that the mapping
G: X x X x X — E satisfies:

(@ 0<G(x,y,2z) forall x,y,ze X and G(x, y, z) =0 if and only
ifx=y=1z

(b) 0 < G(x, x, y) forall x, y e X with x = y;

(€) G(x, X, y) < G(x, y, z) forall x,y,ze X with y # z;

(d) G(x, y,2)=G(x, 2z, y) =G(y, z, x) =--- forall x,y,ze X,
(symmetric in all three variables);

(e) G(x, y,z)<G(x,a,a)+G(a, vy, z) forall x,y,z,aeX,
(rectangle inequality).

Then G is called a generalized cone metric on X and (X, G) is called a
G-cone metric space. The concept of a G-cone metric space is more general
than that of G-metric spaces and cone metric spaces.

Definition 4 [2]. A G-cone metric space X is said to be symmetric if
G(x, ¥, ¥)=G(y, x, x) forall x, y € X.

Definition 5 [3]. Let (X, G) be a G-cone metric space. A sequence {Xp }
in X is said to be
(@) Cauchy sequence if for every ¢ e E with 0 < ¢, thereis N e N

such that forall n, m, I > N, G(X,, X, X) < C.

(b) Convergent sequence if for every c € E with 0 <« ¢, there is
N e N such that for all n,m > N, G(x,, Xy, X) < ¢ for some
fixed x e X. Here, x is called the limit of a sequence {x,} and is

denoted by lim,_,,, X5 = X.
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A G-cone metric space X is said to be complete if every Cauchy sequence in
X'is convergent in X.

Remark 1. Let (X, G) be G-cone metric space. For x, y, z € X,
(@ If x< y<z then x < z.
(b) if x < y<z then x < z.
() iIf x<y<<z then x < z

(d) if E is a real Banach space with cone P and if a < Aa, where a € P
and A € [0, 1), then a = 0.

Lemma 1 [2]. Let X be a G-cone metric space. Then the following
statements are equivalent.

(@) {xn} isconvergent to x.

(b) G(X,, Xy, X) < €, @s N —> oo,

(c) G(x,, X, X) < €, @ n — o,

(d) G(Xn, Xm, X) < €, asm, n — oo,
Lemma 2 [2]. Let X be a G-cone metric space.

(@ If {x,}, {ym} and {z} are sequences in X such that x, — X,
ym — Y and z; - z, then G(X,, Ym, 1) = G(X, ¥, ) as n, m,

| — oo

(b) If {x,} is a sequence in X and x, y € X, such that {x,} converges
tox,y, then x =y.

(c) If {x,} is a sequence in X, x € X and {x,} converges to x, then

G(Xm»s Xp, X) > 0, @s m, n — o.

(d) If {x,} is a sequence in X, x e X and {x,} converges to x e X,

then {x,} is Cauchy sequence.
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(e) If {x,} is a Cauchy sequence in X, then G(X,, Xy, ;) = 0, as
n,ml — oo,
Definition 6. Let X be a G-cone metric space and f, g be self mappings

on X. If y= fx =gx for some x, y € X, then x is called a coincidence

point of fand g, and y is called a point of coincidence of f and g.

Definition 7. Let (X, G) be a G-cone metric space. The self mappings f
and g defined on X are said to be compatible if

lim G(fgx, — ofx,, fox, — gfx,, 0)=0

n—oo

or equivalently for all c € E and 0 < c, there exists an N € N such that

forall n > N,
G(fox, — gfx,, fgx, — ofx,, 0) < c,
where {xn},_ IS @ sequence in X such that lim fx, = lim gx, =t,
Nn—o0 nN—o0
te X.

Definition 8 [5]. Let X be a G-cone metric space and f, g be two self
mappings of X. Then f and g are said to be weakly compatible if ft = gt

imply fgt = gft forall t € X.
Remark 2. Compatible self mappings are weakly compatible.

Lemma 3 [1]. Let f and g be weakly compatible self maps of a set X. If f
and g have a unique coincidence point y = fx = gx, then y is the unique
common fixed point of f and g.

In 2002, Branciari [4] introduced a general contractive condition of
integral type as follows.

Theorem 1. Let (X, d) be a complete metric space, o € (0,1) and

f : X —> X be amapping such that, for all x, y € X,

d(fx, fy) d(x,y)
IO o(t)dt < ajo o(t)dt,
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where ¢ :[0, ) — [0, ©) is a Lebesgue integrable mapping which is

summable (i.e., with finite integral) on each compact subset of [0, o), such

that for each ¢ > 0, Ig@(t)dt > 0. Then f has a unique fixed point a € X

such that for each x € X, lim f"x = a.
n—oo

Khojasteh et al. in [6] introduced the concept of integrability of the
function ¢ : [a, b] — P with respect to a cone. We generalize this concept

and result in G-cone metric spaces and obtain coincidence and common fixed
point theorems for mappings defined on a G-cone metric space satisfying a
generalized contractive condition of integral type.

Definition 9 [6]. Suppose that P is a normal cone in E. Let a, b € E and
a < b. We define

[a, b]={xe E:x=th+(-t)a for somet e [0, 1]},
[a,b):={xe E:x=th+(1L-t)a for somet € [0, 1)}.
Definition 10 [6]. The set P ={a = Xg, X, ..., Xy = b} is called a

partition for [a, b] if and only if the sets {[x;_3, X; )}, are pairwise disjoint
and [a, b] = Uin:l[xi_l, x;) U {b}.

Definition 11 [6]. For each partition Q of [a, b] and each increasing
function ¢ : [a, b] - P, we define cone lower summation and cone upper

summation as

n-1
LS (@, @) = D~ 00x) | % — % |,
i~0

n-1

Ur® (0, Q) = D" o0 % = Xig [,
i—0

respectively.
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Definition 12 [6]. Let P be a normal cone in E. The function ¢ : [a, b]
— P is called an integrable function on [a, b] with respect to cone P or to
simplicity, cone integrable function if and only if for all partition Q of
[a, b],
lim L$%"(, Q) = S = lim US™ (g, Q),
n—oo

n—oo

SCon SCon

where
by

must be unique. We show that the common value is given

b b
.[ o(x)dP(x) or to simplicity, J odP.
a a
We denote the set of all cone integrable functions by £1([a, b], P).

Lemma 4 [6]. Foreach f, g e £1(X, P) and a, B € R, we have:

@) 1f [a, b] = [a, c], then [ 1dP < [ faP;

(b) j:(af +Bg)dP =aj: fdP+Bj:gdP.

Proof. See [6]. L]

In 2010, Beg et al. in [3] obtained a common fixed point theorem for
mappings defined on a G-cone metric space, satisfying a generalized
contractive condition:

Theorem 2 [3]. Let X be a G-cone metric space and mappings
f, g: X - X satisfying

G(fx, fy, fz) < hu(f,g)(x, Y, 2),

where

Ut g1 3. 2) € {Glox, v, 52) G(ax, ), Glay. 1, ), G(gz, T2, 1)

G(ay, fz, f2), G(gx, fy, fy)JZrG(gz, fX, fx)}’
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forall x,y,ze X and 0 < h <1. If the range of g contains the range of f
and g(X) is a complete subspace of X, then f and g have a coincidence

point in X. Furthermore, if f and g are weakly compatible, then f and g have
a unique common fixed point.

2. Main Results

In this section, several coincidence and common fixed point theorems
for mappings defined on a G-cone metric space, satisfying generalized
contractive conditions of integral type are obtained.

Theorem 3. Let f and g be weakly compatible self mappings of G-cone
metric space (X, G) satisfying the following conditions:

(@ f(X)c< g(X) and g(X) is complete,

0 [ P odp < nf U9 ggp,

forall x, y,ze X and h € [0, 1), where

U, g) (% s Z)G{G(gx, gy, 92), G(gx, fx, fx), G(gy, fy, fy), G(gz, fz, fz),

G(gx, fy, fy)+G(gy, fx, X)
5 ,

G(gx, fz, fz) + G(gz, fx, fx)
2 1l

G(gy, fz, fz) + G(gz, fy, fy)}
2

and ¢ : P — P is a nonvanishing map, cone integrable on each [a, b] = P
such that for all 0 < ¢, 0 < fg’(de. Then f and g have a unique common

fixed point.
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Proof. Let xg be an arbitrary point in X. Since the range of g contains
range of f, choose X € X such that fxg = gx. Continuing this process,

having choose x, € X, we obtain gx,,q = fx,. Then, from (b), we have

j;(gxnl OXn+1, 9Xn+l)(PdP J‘f(fxn—lx fXn, fxn)(pdp

< hJ‘;(f,g)(Xn—lr Xns Xn)(de,

where

U(f,g)(xn—1’ Xn, Xn)

€ {G(gxn—lv 9Xn, %), G(9%n-1, Mnog, fXp_1),

G(9%n, fxn, fxp),

G(9%n-1, X, ™) + G(g%n, Xy, an—l)}
2

= {G(gxn_l, 9%, 9%n), G(9%,, OXni1s 9%ny1)

G(g%n-1, 9¥n41, G¥ns1) + G(9Xn, OXn, gxn)}
2

= {G(gxn—l’ OXn, 9%n ) G(9Xn, OXn41, OXn41)

G(9%n-1, PXn+1s an+1)}
5 .

Case 1. If, for some n, u(¢, ¢)(Xn—1, Xn, Xn) = G(9Xn_1, 9%n, 9%p), then

G(9Xp, 9Xn41, 9% G(9Xn—1, 9%, OX
‘[ ( n n+1 n+l)(PdPShIO( n-1. 9%n n)(de. (2.1)

0
Case 2. If, for some n, Uit g)(Xn—1, Xn, Xn) = G(9Xn, OXns1, OXns1),
then

G(9%n, PXn+1, OXn+1) G(9%n, PXn+1, OXn+1)
I I odP.

dP <h
0 ¢ 0
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Since h €[0,1), we have G(gXp, 9Xn41, 9Xna1) = 0, which implies that
X, = 9X,41 = fX, foreach n, and f, g have x,, as a coincidence point.

G(9%n-1, 9%n41, 9Xn41)

Case 3. If, for some n, Ut g)(Xn-1, X, Xn) = 5 ,

then using Definition 3(e),

G(9%n-1, 9Xn+1s P¥n+1)
2

< G(9n-1, OXn, 9¥n) + G(9Xn, PXn+1, PXns1)
N 2

< max{G(g%n_1, 9%, 9%n) G(9Xn, OXni1, PXn))-

Therefore, we have

I G(9%n, PXn+1, PXn+1) (de

0

G(9%n—1, 9%n+1, 9Xn+1)

shjo 2 odP

< hJ'OmaX{G(gxn—lr 9%ns 0%n), G(9%n, OXni1s PXns1)) (de

= h max

G(9%n—_1, 9Xn, OX, G(9Xn, 9Xnt1, OX
{J‘O(gnlgngn)q)dpj‘ (9%n gn+lgn+1)q)dp}

and Case 3 reduces to either Case 1 or Case 2.

Suppose that there exist two distinct common coincidence points u and v;
i.e., fu=gu and fv=gv, but gu = gv.

Uct, gy, v, v) e {G(gu, v, gv), G(gu, fu, fu), G(gv, fv, fv),

G(gu, fv, fv)+ G(gv, fu, fu)

G(gv, fv, fv), 5
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G(gv, fv, fv)+ G(gv, fu, fu)}
2

_ {G(gu, gv, gv), SO OV, QV);G(QV, gu, QU)}

= {0, O} say.

Case I. Suppose that u(flg)(u, Vv, V) = g;. Then we have

G( fu, fv, fv G(qu, gv, gv G(gu, gv, gv
J~O( )@dP_JO(g 9 g)wdpﬁhjo(g 9 g)(de

which implies that gu = gv, a contradiction.

Case Il. Suppose that u(flg)(u, V, V) =(g,. Then we have, using
Definition 3(c),

G(gu, gv, gv)+G(gv, gu, gu
IG(gu,gv,gv) (9u, gv, gv)+G(gv, gu, gu)

dP < h 2 dP
0 M J.O ®

< JG(gu, v, gv)

dP,
0 ¢

which yields gu = gv, a contradiction, and the common coincidence point is
unique.

Since Case 2 immediately yields the uniqueness of the coincidence point,
we shall assume that Case 1 is true for all n.

Using (1), with dy, = G(9Xn, 9Xn11, PXn41),

G(9%n, 9%n+1, PXn1) G(9%n-1, 9%n» 9%n)
J‘ n n+1 n+1(de§hI n-1 n n(de

0
< ...

G(9Xp, g%, OX
Shnjo(goglgl)(pd

and therefore lim, G(gXp, 9Xn41, 9Xns1) = 0.
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We shall now show that {gx,} is G-Cauchy. From [9, Proposition 9], a
sequence {x,} is G-Cauchy if and only if for each & > 0, there exists an

N e N such that G(x,, Xm, Xy ) < € foreach n, m > N.

Suppose that {gx,} is not G-Cauchy. Then there exists ¢ >0 and
subsequences m(k) and n(k), with m(k) < n(k) < m(k + 1) such that

G(9Xm(k)» FXn(k)» Pn(k)) = & and G(Ixm(k), Pn(k)-1, Pn(k)-1) < & (2.2)
From (2.2), and using Definition 3(c),
& < G(PXm(k)» PXn(k): Pn(k))
< G(9Xm(k)» FXn(k)-1: FXn(k)-1) + Am(k)-1- (2.3)
Taking the limit of (2.3) as n — oo yields
lim G(gxm(k): Pnk): Pn)) = €
From (b),

G(gx , OXn(k), OX G(9%m(Kk)—1: Xn(k)—1: IXn(k)—
J‘(gm(k)gn(k)gn(k))(pdpghj‘o(gm(k)19n(k)1gn(k) 1)

. odP. (2.4)

But, using Definition 3(e),
G(IXm(k)-1» IXn(k)-1» Pn(k)-1) < G(IXm(k)-1, PXm(k)s Pm(k))
+ G(9Xm(k): PXn(k)-1+ PXn(k)-1)
< dm(k)-1 + G(PXm(k)r FXn(k)r Pn(k))
+ G(9Xn(k): IXn(k)-1: F¥n(k)-1)
= dm(k)-1 + G(IXm(k): PXn(k): PXn(k))

+ dn(k)—l-
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Substituting into (2.4) and taking the limitas n — oo yields

J;@dp < hI;(de,

a contradiction. Therefore, {gx,} is G-Cauchy, hence convergent to some
point u e X. Since gx, = fx,_1, the G-limit of fx, is also u. Using
hypothesis (a), there exists a point v € X such that gv = u.

We claim that fu = gv. Using (b),

G(g¥n, fv, fv) G(fxn_1, fv, fv) U(f,g)(xn—llvvv)
jo (de—IO (deShJO odP,

where

Uct, g)(Xn-1, V. V) € {G(gxn—l’ gv, gv), G(9Xn_1, 9%, OXn), G(gv, fv, fv),

G(gxp-1. fv, Tv)+G(gv, 9x,, an)}
5 .

Case 1. If, for some n, u(f,g)(xn_l, v, V) = G(g%n_1, 9V, Qv), then

G , fv, fv
I (9%n )(de<

G(9%n-1, 9V, V)
) <h I od

P. (2.5)
Case 2. If, for some n, (¢, ¢)(Xh_1, V, V) = G(9Xn_1, 9%y, 9%, ), then
G(gxp, fv, fv G(9%n—1, 9Xn, OX
J- (9%n )<deshj (gnlgngn)q)dp. (2.6)

Case 3. If, for some n, u(¢, ¢)(Xh_1,V,v) = G(gv, fv, fv), then

IG(gxn, fv, fv) J-G(gv, fv, fv)

. edP < h odP. (2.7)

Case 4. If, for some n,

G(g%n-1, fv, fv) + G(gv, gxn, 9
U(f’g)(Xn_l,v,V)z (gnl )2 (g OXn gn),
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then

G(g%n—1, v, V)+G(gv, 9%, 9%n)
odP < h j . 2 odP

J‘OG(anr fv, fv)

hJ‘ G(gXn—1, fv, Tv)+G(gv, gxn, 9% ) 4P
= 0 (0]

G _q, fv, fv
shj (9%n—1 )(P

I G(gv, 9%, 9Xn)
0

dP + h odP. (2.8)

At least one of (2.5)-(2.8) must occur for an infinite number of times.
Taking the limit as n — oo of each of these inequalities yields

G(gv, fv, fv G(gv, fv, fv
j (gv )(deShI (gv )

dp,
0 ¢
which implies that gv = fv.

It has already been shown that the coincidence point is unique. The result
now follows from Remark 2 and Lemma 3. L]

Corollary 1. Let f and g be compatible self mappings of G-cone metric
space (X, G), such that for m e N satisfying the following conditions:

(@ f(X)c g(X), g(X) is complete,

G(fMx, fMy, Mz u X, Y, 2
0 [ Jodp < [ 190V ggp,

forall x, y, ze X, h €[0, 1), where
U, g)(X, ¥, 2) € {G(gmx, g™y, gMz), G(g™x, fMx, fMx),

G(gMy, ™y, fMy), G(g"z, Mz, fM2),

G(g™x, My, My)+G(gMy, fMx, fMx)
2 1
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G(g™x, fMz, M2)+G(gMz, fMx, Mx)
2 H

G(gMy, Mz, tM2)+G(gMz, fMy, fmy)}

2

and ¢:P — P is a nonvanishing subadditive cone integrable on each
[a, b] = P such that for all 0 <&, 0K .[g'(p(t)dt. Then f and g have a
unique common fixed point.

Proof. It follows from Theorem 3, that ™, gm have a uniqgue common
fixed point pe X. Therefore, fp = f(fMp)=fM1p=f™(fp), and
ap = g(g™p) = g™p = g™(fp) implies that fp and gp are also fixed
point for f™ and g™. Hence fp = gp = p. O
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