JP Journal of Fixed Point Theory and Applications
Volume 7, Number 1, 2012, Pages 41-56
Published Online: March 2012
Available online at http://pphmj.com/journals/jpfpta.htm Published by Pushpa Publishing House, Allahabad, INDIA

COMMON FIXED POINT THEOREM FOR MAPPINGS SATISFYING A CONTRACTIVE CONDITION OF INTEGRAL TYPE IN G-CONE METRIC SPACE

H. P. Masiha* and A. Reza
Department of Mathematics
K. N. Toosi University of Technology
P. O. Box 16315-1618, Tehran, Iran
e-mail: masiha@kntu.ac.ir
atefeh.reza@gmail.com

Abstract

In this paper, we prove a common fixed point theorem for two maps defined on a G-cone metric space, satisfying generalized contractive condition of integral type.

1. Introduction

In 2005, Mustafa and Sims introduced a new structure of generalized metric spaces [9], which is called a G-metric space as generalization of a metric space (X, d) to develop and introduce a new fixed point theory for various mappings in this new structure.

In 2007, Huang and Zhang introduced a cone metric space by substituting an ordered Banach space for the real numbers and proved some © 2012 Pushpa Publishing House 2010 Mathematics Subject Classification: 47H10.
Keywords and phrases: G-cone metric space, common fixed point, weakly compatible maps, integral contraction.
*Corresponding author
Received October 3, 2011
fixed point theorems in this space [8]. Many authors have studied this subject and many fixed point theorems have been proved.

In 2010, Beg et al. introduced a G-cone metric space that is an extension of cone metric space, and obtained a common fixed point theorem for mappings defined on a G-cone metric space satisfying a generalized contraction condition [2].

In this paper, we introduce a contraction condition of integral type on a G-cone metric space and present a common fixed point theorem for two maps defined on a G-cone metric space with this contraction condition.

Definition 1 [8]. Let E be real Banach space. A subset P of E is called a cone if and only if the following hold:
(a) P is closed, nonempty, and $P \neq\{0\}$;
(b) $a, b \in \mathbb{R}, a, b \geq 0$, and $x, y \in P$ imply that $a x+b y \in P$;
(c) $x \in P$ and $-x \in P$ imply that $x=0$.

Given a cone $P \subset E$, we define a partial ordering \leq with respect to P by $x \leq y$ if and only if $y-x \in P$. We will write $x<y$ to indicate that $x \leq y$ but $x \neq y$, while $x \ll y$ will stand for $y-x \in P^{\circ}$, where P° denotes the interior of P. The cone P is called normal if there is a constant $K>0$ such that $0 \leq x \leq y$ implies $\|x\| \leq K\|y\|$ for all $x, y \in E$. This positive number K is called the normal constant.

We suppose that E is a real Banach space, P is a cone in E with $P^{\circ} \neq \varnothing$ and \leq is partial ordering with respect to P.

Definition 2 [8]. Let X be a nonempty set. A function $d: X \times X \rightarrow X$ is called a cone metric on X if it satisfies the following conditions:
(a) $d(x, y) \geq 0$ for all $x, y \in X$ and $d(x, y)=0$ if and only if $x=y$;
(b) $d(x, y)=d(y, x)$ for all $x, y \in X$;
(c) $d(x, y) \leq d(x, z)+d(y, z)$ for all $x, y, z \in X$.

In 2010, Beg et al. in [2] introduced a G-cone metric space that is an extension of cone metric space.

Definition 3 [2]. Let X be a nonempty set. Suppose that the mapping $G: X \times X \times X \rightarrow E$ satisfies:
(a) $0 \leq G(x, y, z)$ for all $x, y, z \in X$ and $G(x, y, z)=0$ if and only if $x=y=z$;
(b) $0<G(x, x, y)$ for all $x, y \in X$ with $x \neq y$;
(c) $G(x, x, y) \leq G(x, y, z)$ for all $x, y, z \in X$ with $y \neq z$;
(d) $G(x, y, z)=G(x, z, y)=G(y, z, x)=\cdots$ for all $x, y, z \in X$,
(symmetric in all three variables);
(e) $G(x, y, z) \leq G(x, a, a)+G(a, y, z)$ for all $x, y, z, a \in X$,
(rectangle inequality).
Then G is called a generalized cone metric on X and (X, G) is called a G-cone metric space. The concept of a G-cone metric space is more general than that of G-metric spaces and cone metric spaces.

Definition 4 [2]. A G-cone metric space X is said to be symmetric if $G(x, y, y)=G(y, x, x)$ for all $x, y \in X$.

Definition 5 [3]. Let (X, G) be a G-cone metric space. A sequence $\left\{x_{n}\right\}$ in X is said to be
(a) Cauchy sequence if for every $c \in E$ with $0 \ll c$, there is $N \in \mathbb{N}$ such that for all $n, m, l>N, G\left(x_{n}, x_{m}, x_{l}\right) \ll c$.
(b) Convergent sequence if for every $c \in E$ with $0 \ll c$, there is $N \in \mathbb{N}$ such that for all $n, m>N, G\left(x_{n}, x_{m}, x\right) \ll c$ for some fixed $x \in X$. Here, x is called the limit of a sequence $\left\{x_{n}\right\}$ and is denoted by $\lim _{n \rightarrow \infty} x_{n}=x$.

A G-cone metric space X is said to be complete if every Cauchy sequence in X is convergent in X.

Remark 1. Let (X, G) be G-cone metric space. For $x, y, z \in X$,
(a) if $x \ll y \ll z$, then $x \ll z$.
(b) if $x \ll y \leq z$, then $x \ll z$.
(c) if $x \leq y \ll z$, then $x \ll z$.
(d) if E is a real Banach space with cone P and if $a \leq \lambda a$, where $a \in P$ and $\lambda \in[0,1)$, then $a=0$.

Lemma 1 [2]. Let X be a G-cone metric space. Then the following statements are equivalent.
(a) $\left\{x_{n}\right\}$ is convergent to x.
(b) $G\left(x_{n}, x_{n}, x\right) \ll c$, as $n \rightarrow \infty$.
(c) $G\left(x_{n}, x, x\right) \ll c$, as $n \rightarrow \infty$.
(d) $G\left(x_{n}, x_{m}, x\right) \ll c$, as $m, n \rightarrow \infty$.

Lemma 2 [2]. Let X be a G-cone metric space.
(a) If $\left\{x_{n}\right\},\left\{y_{m}\right\}$ and $\left\{z_{l}\right\}$ are sequences in X such that $x_{n} \rightarrow x$, $y_{m} \rightarrow y$ and $z_{l} \rightarrow z$, then $G\left(x_{n}, y_{m}, z_{l}\right) \rightarrow G(x, y, z)$ as n, m, $l \rightarrow \infty$.
(b) If $\left\{x_{n}\right\}$ is a sequence in X and $x, y \in X$, such that $\left\{x_{n}\right\}$ converges to x, y, then $x=y$.
(c) If $\left\{x_{n}\right\}$ is a sequence in $X, x \in X$ and $\left\{x_{n}\right\}$ converges to x, then $G\left(x_{m}, x_{n}, x\right) \rightarrow 0$, as $m, n \rightarrow \infty$.
(d) If $\left\{x_{n}\right\}$ is a sequence in $X, x \in X$ and $\left\{x_{n}\right\}$ converges to $x \in X$, then $\left\{x_{n}\right\}$ is Cauchy sequence.
(e) If $\left\{x_{n}\right\}$ is a Cauchy sequence in X, then $G\left(x_{n}, x_{m}, x_{l}\right) \rightarrow 0$, as $n, m, l \rightarrow \infty$.

Definition 6. Let X be a G-cone metric space and f, g be self mappings on X. If $y=f x=g x$ for some $x, y \in X$, then x is called a coincidence point of f and g, and y is called a point of coincidence of f and g.

Definition 7. Let (X, G) be a G-cone metric space. The self mappings f and g defined on X are said to be compatible if

$$
\lim _{n \rightarrow \infty} G\left(f g x_{n}-g f x_{n}, f g x_{n}-g f x_{n}, 0\right)=0
$$

or equivalently for all $c \in E$ and $0 \ll c$, there exists an $N \in \mathbb{N}$ such that for all $n>N$,

$$
G\left(f g x_{n}-g f x_{n}, f g x_{n}-g f x_{n}, 0\right) \ll c,
$$

where $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ is a sequence in X such that $\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} g x_{n}=t$, $t \in X$.

Definition 8 [5]. Let X be a G-cone metric space and f, g be two self mappings of X. Then f and g are said to be weakly compatible if $f t=g t$ imply fgt $=g f t$ for all $t \in X$.

Remark 2. Compatible self mappings are weakly compatible.
Lemma 3 [1]. Let f and g be weakly compatible self maps of a set X. If f and g have a unique coincidence point $y=f x=g x$, then y is the unique common fixed point of f and g.

In 2002, Branciari [4] introduced a general contractive condition of integral type as follows.

Theorem 1. Let (X, d) be a complete metric space, $\alpha \in(0,1)$ and $f: X \rightarrow X$ be a mapping such that, for all $x, y \in X$,

$$
\int_{0}^{d(f x, f y)} \varphi(t) d t \leq \alpha \int_{0}^{d(x, y)} \varphi(t) d t
$$

where $\varphi:[0, \infty) \rightarrow[0, \infty)$ is a Lebesgue integrable mapping which is summable (i.e., with finite integral) on each compact subset of $[0, \infty)$, such that for each $\varepsilon>0, \int_{0}^{\varepsilon} \varphi(t) d t>0$. Then f has a unique fixed point $a \in X$ such that for each $x \in X, \lim _{n \rightarrow \infty} f^{n} x=a$.

Khojasteh et al. in [6] introduced the concept of integrability of the function $\varphi:[a, b] \rightarrow P$ with respect to a cone. We generalize this concept and result in G-cone metric spaces and obtain coincidence and common fixed point theorems for mappings defined on a G-cone metric space satisfying a generalized contractive condition of integral type.

Definition 9 [6]. Suppose that P is a normal cone in E. Let $a, b \in E$ and $a<b$. We define

$$
\begin{aligned}
& {[a, b]:=\{x \in E: x=t b+(1-t) a \text { for some } t \in[0,1]\},} \\
& {[a, b):=\{x \in E: x=t b+(1-t) a \text { for some } t \in[0,1)\} .}
\end{aligned}
$$

Definition 10 [6]. The set $\mathcal{P}=\left\{a=x_{0}, x_{1}, \ldots, x_{n}=b\right\}$ is called a partition for $[a, b]$ if and only if the sets $\left\{\left[x_{i-1}, x_{i}\right)\right\}_{i=1}^{n}$ are pairwise disjoint and $[a, b]=\bigcup_{i=1}^{n}\left[x_{i-1}, x_{i}\right) \bigcup\{b\}$.

Definition 11 [6]. For each partition \mathcal{Q} of $[a, b]$ and each increasing function $\varphi:[a, b] \rightarrow P$, we define cone lower summation and cone upper summation as

$$
\begin{aligned}
& L_{n}^{C o n}(\varphi, \mathcal{Q})=\sum_{i=0}^{n-1} \varphi\left(x_{i}\right)\left\|x_{i}-x_{i-1}\right\|, \\
& U_{n}^{C o n}(\varphi, \mathcal{Q})=\sum_{i=0}^{n-1} \varphi\left(x_{i+1}\right)\left\|x_{i}-x_{i-1}\right\|,
\end{aligned}
$$

respectively.

Definition 12 [6]. Let P be a normal cone in E. The function $\varphi:[a, b]$ $\rightarrow P$ is called an integrable function on $[a, b]$ with respect to cone P or to simplicity, cone integrable function if and only if for all partition \mathcal{Q} of $[a, b]$,

$$
\lim _{n \rightarrow \infty} L_{n}^{C o n}(\varphi, \mathcal{Q})=S^{C o n}=\lim _{n \rightarrow \infty} U_{n}^{C o n}(\varphi, \mathcal{Q})
$$

where $S^{C o n}$ must be unique. We show that the common value $S^{C o n}$ is given by

$$
\int_{a}^{b} \varphi(x) d P(x) \text { or to simplicity, } \int_{a}^{b} \varphi d P .
$$

We denote the set of all cone integrable functions by $£^{1}([a, b], P)$.
Lemma 4 [6]. For each $f, g \in £^{1}(X, P)$ and $\alpha, \beta \in \mathbb{R}$, we have:
(a) If $[a, b] \subset[a, c]$, then $\int_{a}^{b} f d P \leq \int_{a}^{c} f d P$;
(b) $\int_{a}^{b}(\alpha f+\beta g) d P=\alpha \int_{a}^{b} f d P+\beta \int_{a}^{b} g d P$.

Proof. See [6].
In 2010, Beg et al. in [3] obtained a common fixed point theorem for mappings defined on a G-cone metric space, satisfying a generalized contractive condition:

Theorem 2 [3]. Let X be a G-cone metric space and mappings $f, g: X \rightarrow X$ satisfying

$$
G(f x, f y, f z) \leq h u_{(f, g)}(x, y, z),
$$

where

$$
\begin{gathered}
u_{(f, g)}(x, y, z) \in\{G(g x, g y, g z), G(g x, f x, f x), G(g y, f y, f y), G(g z, f z, f z), \\
\\
\left.G(g y, f z, f z), \frac{G(g x, f y, f y)+G(g z, f x, f x)}{2}\right\},
\end{gathered}
$$

for all $x, y, z \in X$ and $0 \leq h<1$. If the range of g contains the range of f and $g(X)$ is a complete subspace of X, then f and g have a coincidence point in X. Furthermore, if f and g are weakly compatible, then f and g have a unique common fixed point.

2. Main Results

In this section, several coincidence and common fixed point theorems for mappings defined on a G-cone metric space, satisfying generalized contractive conditions of integral type are obtained.

Theorem 3. Let f and g be weakly compatible self mappings of G-cone metric space (X, G) satisfying the following conditions:
(a) $f(X) \subset g(X)$ and $g(X)$ is complete,
(b) $\int_{0}^{G(f x, f y, f z)} \varphi d P \leq h \int_{0}^{u_{(f, g)}^{(x, y, z)} \varphi d P, ~}$
for all $x, y, z \in X$ and $h \in[0,1)$, where

$$
u_{(f, g)}(x, y, z) \in\{G(g x, g y, g z), G(g x, f x, f x), G(g y, f y, f y), G(g z, f z, f z),
$$

$$
\frac{G(g x, f y, f y)+G(g y, f x, f x)}{2},
$$

$$
\frac{G(g x, f z, f z)+G(g z, f x, f x)}{2}
$$

$$
\left.\frac{G(g y, f z, f z)+G(g z, f y, f y)}{2}\right\}
$$

and $\varphi: P \rightarrow P$ is a nonvanishing map, cone integrable on each $[a, b] \subset P$ such that for all $0 \ll \varepsilon, 0 \ll \int_{0}^{\varepsilon} \varphi d P$. Then f and g have a unique common fixed point.

Proof. Let x_{0} be an arbitrary point in X. Since the range of g contains range of f, choose $x_{1} \in X$ such that $f x_{0}=g x_{1}$. Continuing this process, having choose $x_{n} \in X$, we obtain $g x_{n+1}=f x_{n}$. Then, from (b), we have

$$
\begin{aligned}
\int_{0}^{G\left(g x_{n}, g x_{n+1}, g x_{n+1}\right)} \varphi d P & =\int_{0}^{G\left(f x_{n-1}, f x_{n}, f x_{n}\right)} \varphi d P \\
& \leq h \int_{0}^{u}(f, g)\left(x_{n-1}, x_{n}, x_{n}\right)
\end{aligned} d P, ~ \$
$$

where

$$
\begin{aligned}
& u_{(f, g)}\left(x_{n-1}, x_{n}, x_{n}\right) \\
\in & \left\{G\left(g x_{n-1}, g x_{n}, g x_{n}\right), G\left(g x_{n-1}, f x_{n-1}, f x_{n-1}\right),\right. \\
& \left.G\left(g x_{n}, f x_{n}, f x_{n}\right), \frac{G\left(g x_{n-1}, f x_{n}, f x_{n}\right)+G\left(g x_{n}, f x_{n-1}, f x_{n-1}\right)}{2}\right\} \\
= & \left\{G\left(g x_{n-1}, g x_{n}, g x_{n}\right), G\left(g x_{n}, g x_{n+1}, g x_{n+1}\right)\right. \\
& \left.\frac{G\left(g x_{n-1}, g x_{n+1}, g x_{n+1}\right)+G\left(g x_{n}, g x_{n}, g x_{n}\right)}{2}\right\} \\
= & \left\{G\left(g x_{n-1}, g x_{n}, g x_{n}\right), G\left(g x_{n}, g x_{n+1}, g x_{n+1}\right)\right. \\
& \left.\frac{G\left(g x_{n-1}, g x_{n+1}, g x_{n+1}\right)}{2}\right\} .
\end{aligned}
$$

Case 1. If, for some $n, u_{(f, g)}\left(x_{n-1}, x_{n}, x_{n}\right)=G\left(g x_{n-1}, g x_{n}, g x_{n}\right)$, then

$$
\begin{equation*}
\int_{0}^{G\left(g x_{n}, g x_{n+1}, g x_{n+1}\right)} \varphi d P \leq h \int_{0}^{G\left(g x_{n-1}, g x_{n}, g x_{n}\right)} \varphi d P \tag{2.1}
\end{equation*}
$$

Case 2. If, for some $n, u_{(f, g)}\left(x_{n-1}, x_{n}, x_{n}\right)=G\left(g x_{n}, g x_{n+1}, g x_{n+1}\right)$, then

$$
\int_{0}^{G\left(g x_{n}, g x_{n+1}, g x_{n+1}\right)} \varphi d P \leq h \int_{0}^{G\left(g x_{n}, g x_{n+1}, g x_{n+1}\right)} \varphi d P .
$$

Since $h \in[0,1)$, we have $G\left(g x_{n}, g x_{n+1}, g x_{n+1}\right)=0$, which implies that $g x_{n}=g x_{n+1}=f x_{n}$ for each n, and f, g have x_{n} as a coincidence point.

Case 3. If, for some $n, u_{(f, g)}\left(x_{n-1}, x_{n}, x_{n}\right)=\frac{G\left(g x_{n-1}, g x_{n+1}, g x_{n+1}\right)}{2}$, then using Definition 3(e),

$$
\begin{aligned}
& \frac{G\left(g x_{n-1}, g x_{n+1}, g x_{n+1}\right)}{2} \\
\leq & \frac{G\left(g x_{n-1}, g x_{n}, g x_{n}\right)+G\left(g x_{n}, g x_{n+1}, g x_{n+1}\right)}{2} \\
\leq & \max \left\{G\left(g x_{n-1}, g x_{n}, g x_{n}\right), G\left(g x_{n}, g x_{n+1}, g x_{n+1}\right)\right\} .
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
& \int_{0}^{G\left(g x_{n}, g x_{n+1}, g x_{n+1}\right)} \varphi d P \\
\leq & h \int_{0}^{\frac{G\left(g x_{n-1}, g x_{n+1}, g x_{n+1}\right)}{2}} \varphi d P \\
\leq & h \int_{0}^{\max \left\{G\left(g x_{n-1}, g x_{n}, g x_{n}\right), G\left(g x_{n}, g x_{n+1}, g x_{n+1}\right)\right\}} \varphi d P \\
= & h \max \left\{\int_{0}^{G\left(g x_{n-1}, g x_{n}, g x_{n}\right)} \varphi d P, \int_{0}^{G\left(g x_{n}, g x_{n+1}, g x_{n+1}\right)} \varphi d P\right\}
\end{aligned}
$$

and Case 3 reduces to either Case 1 or Case 2.
Suppose that there exist two distinct common coincidence points u and v; i.e., $f u=g u$ and $f v=g v$, but $g u \neq g v$.
$u_{(f, g)}(u, v, v) \in\{G(g u, g v, g v), G(g u, f u, f u), G(g v, f v, f v)$,

$$
G(g v, f v, f v), \frac{G(g u, f v, f v)+G(g v, f u, f u)}{2}
$$

$$
\begin{aligned}
& \left.\frac{G(g v, f v, f v)+G(g v, f u, f u)}{2}\right\} \\
= & \left\{G(g u, g v, g v), \frac{G(g u, g v, g v)+G(g v, g u, g u)}{2}\right\} \\
= & \left\{q_{1}, q_{2}\right\} \text { say. }
\end{aligned}
$$

Case I. Suppose that $u_{(f, g)}(u, v, v)=q_{1}$. Then we have

$$
\int_{0}^{G(f u, f v, f v)} \varphi d P=\int_{0}^{G(g u, g v, g v)} \varphi d P \leq h \int_{0}^{G(g u, g v, g v)} \varphi d P,
$$

which implies that $g u=g v$, a contradiction.
Case II. Suppose that $u_{(f, g)}(u, v, v)=q_{2}$. Then we have, using Definition 3(c),

$$
\begin{aligned}
\int_{0}^{G(g u, g v, g v)} \varphi d P & \leq h \int_{0}^{\frac{G(g u, g v, g v)+G(g v, g u, g u)}{2}} \varphi d P \\
& \leq \int_{0}^{G(g u, g v, g v)} \varphi d P,
\end{aligned}
$$

which yields $g u=g v$, a contradiction, and the common coincidence point is unique.

Since Case 2 immediately yields the uniqueness of the coincidence point, we shall assume that Case 1 is true for all n.

Using (1), with $d_{n}:=G\left(g x_{n}, g x_{n+1}, g x_{n+1}\right)$,

$$
\begin{aligned}
\int_{0}^{G\left(g x_{n}, g x_{n+1}, g x_{n+1}\right)} \varphi d P & \leq h \int_{0}^{G\left(g x_{n-1}, g x_{n}, g x_{n}\right)} \varphi d P \\
& \leq \cdots \\
& \leq h^{n} \int_{0}^{G\left(g x_{0}, g x_{1}, g x_{1}\right)} \varphi d P,
\end{aligned}
$$

and therefore $\lim _{n} G\left(g x_{n}, g x_{n+1}, g x_{n+1}\right)=0$.

We shall now show that $\left\{g x_{n}\right\}$ is G-Cauchy. From [9, Proposition 9], a sequence $\left\{x_{n}\right\}$ is G-Cauchy if and only if for each $\varepsilon>0$, there exists an $N \in \mathbb{N}$ such that $G\left(x_{n}, x_{m}, x_{m}\right)<\varepsilon$ for each $n, m \geq N$.

Suppose that $\left\{g x_{n}\right\}$ is not G-Cauchy. Then there exists $\varepsilon>0$ and subsequences $m(k)$ and $n(k)$, with $m(k)<n(k)<m(k+1)$ such that $G\left(g x_{m(k)}, g x_{n(k)}, g x_{n(k)}\right) \geq \varepsilon$, and $G\left(g x_{m(k)}, g x_{n(k)-1}, g x_{n(k)-1}\right)<\varepsilon$. (2.2)

From (2.2), and using Definition 3(c),

$$
\begin{align*}
\varepsilon & \leq G\left(g x_{m(k)}, g x_{n(k)}, g x_{n(k)}\right) \\
& \leq G\left(g x_{m(k)}, g x_{n(k)-1}, g x_{n(k)-1}\right)+d_{m(k)-1} . \tag{2.3}
\end{align*}
$$

Taking the limit of (2.3) as $n \rightarrow \infty$ yields

$$
\lim _{k} G\left(g x_{m(k)}, g x_{n(k)}, g x_{n(k)}\right)=\varepsilon .
$$

From (b),

$$
\begin{equation*}
\int_{0}^{G\left(g x_{m(k)}, g x_{n(k)}, g x_{n(k)}\right)} \varphi d P \leq h \int_{0}^{G\left(g x_{m(k)-1}, g x_{n(k)-1}, g x_{n(k)-1}\right)} \varphi d P . \tag{2.4}
\end{equation*}
$$

But, using Definition 3(e),

$$
\begin{aligned}
G\left(g x_{m(k)-1}, g x_{n(k)-1}, g x_{n(k)-1}\right) \leq & G\left(g x_{m(k)-1}, g x_{m(k)}, g x_{m(k)}\right) \\
& +G\left(g x_{m(k)}, g x_{n(k)-1}, g x_{n(k)-1}\right) \\
\leq & d_{m(k)-1}+G\left(g x_{m(k)}, g x_{n(k)}, g x_{n(k)}\right) \\
& +G\left(g x_{n(k)}, g x_{n(k)-1}, g x_{n(k)-1}\right) \\
= & d_{m(k)-1}+G\left(g x_{m(k)}, g x_{n(k)}, g x_{n(k)}\right) \\
& +d_{n(k)-1} .
\end{aligned}
$$

Substituting into (2.4) and taking the limit as $n \rightarrow \infty$ yields

$$
\int_{0}^{\varepsilon} \varphi d P \leq h \int_{0}^{\varepsilon} \varphi d P
$$

a contradiction. Therefore, $\left\{g x_{n}\right\}$ is G-Cauchy, hence convergent to some point $u \in X$. Since $g x_{n}=f x_{n-1}$, the G-limit of $f x_{n}$ is also u. Using hypothesis (a), there exists a point $v \in X$ such that $g v=u$.

We claim that $f u=g v$. Using (b),

$$
\int_{0}^{G\left(g x_{n}, f v, f v\right)} \varphi d P=\int_{0}^{G\left(f x_{n-1}, f v, f v\right)} \varphi d P \leq h \int_{0}^{u_{(f, g)}\left(x_{n-1}, v, v\right)} \varphi d P \text {, }
$$

where

$$
\begin{gathered}
u_{(f, g)}\left(x_{n-1}, v, v\right) \in\left\{G\left(g x_{n-1}, g v, g v\right), G\left(g x_{n-1}, g x_{n}, g x_{n}\right), G(g v, f v, f v),\right. \\
\left.\frac{G\left(g x_{n-1}, f v, f v\right)+G\left(g v, g x_{n}, g x_{n}\right)}{2}\right\} .
\end{gathered}
$$

Case 1. If, for some $n, u_{(f, g)}\left(x_{n-1}, v, v\right)=G\left(g x_{n-1}, g v, g v\right)$, then

$$
\begin{equation*}
\int_{0}^{G\left(g x_{n}, f v, f v\right)} \varphi d P \leq h \int_{0}^{G\left(g x_{n-1}, g v, g v\right)} \varphi d P . \tag{2.5}
\end{equation*}
$$

Case 2. If, for some $n, u_{(f, g)}\left(x_{n-1}, v, v\right)=G\left(g x_{n-1}, g x_{n}, g x_{n}\right)$, then

$$
\begin{equation*}
\int_{0}^{G\left(g x_{n}, f v, f v\right)} \varphi d P \leq h \int_{0}^{G\left(g x_{n-1}, g x_{n}, g x_{n}\right)} \varphi d P . \tag{2.6}
\end{equation*}
$$

Case 3. If, for some $n, u_{(f, g)}\left(x_{n-1}, v, v\right)=G(g v, f v, f v)$, then

$$
\begin{equation*}
\int_{0}^{G\left(g x_{n}, f v, f v\right)} \varphi d P \leq h \int_{0}^{G(g v, f v, f v)} \varphi d P . \tag{2.7}
\end{equation*}
$$

Case 4. If, for some n,

$$
u_{(f, g)}\left(x_{n-1}, v, v\right)=\frac{G\left(g x_{n-1}, f v, f v\right)+G\left(g v, g x_{n}, g x_{n}\right)}{2},
$$

then

$$
\begin{align*}
\int_{0}^{G\left(g x_{n}, f v, f v\right)} \varphi d P & \leq h \int_{0}^{\frac{G\left(g x_{n-1}, f v, f v\right)+G\left(g v, g x_{n}, g x_{n}\right)}{2}} \varphi d P \\
& \leq h \int_{0}^{G\left(g x_{n-1}, f v, f v\right)+G\left(g v, g x_{n}, g x_{n}\right)} \varphi d P \\
& \leq h \int_{0}^{G\left(g x_{n-1}, f v, f v\right)} \varphi d P+h \int_{0}^{G\left(g v, g x_{n}, g x_{n}\right)} \varphi d P . \tag{2.8}
\end{align*}
$$

At least one of (2.5)-(2.8) must occur for an infinite number of times. Taking the limit as $n \rightarrow \infty$ of each of these inequalities yields

$$
\int_{0}^{G(g v, f v, f v)} \varphi d P \leq h \int_{0}^{G(g v, f v, f v)} \varphi d P,
$$

which implies that $g v=f v$.
It has already been shown that the coincidence point is unique. The result now follows from Remark 2 and Lemma 3.

Corollary 1. Let f and g be compatible self mappings of G-cone metric space (X, G), such that for $m \in \mathbb{N}$ satisfying the following conditions:
(a) $f(X) \subset g(X), g(X)$ is complete,
(b) $\int_{0}^{G\left(f^{m} x, f^{m} y, f^{m} z\right)} \varphi d P \leq h \int_{0}^{u_{(f, g)}(x, y, z)} \varphi d P$,
for all $x, y, z \in X, h \in[0,1)$, where

$$
\begin{aligned}
u_{(f, g)}(x, y, z) \in\{ & G\left(g^{m} x, g^{m} y, g^{m} z\right), G\left(g^{m} x, f^{m} x, f^{m} x\right), \\
& G\left(g^{m} y, f^{m} y, f^{m} y\right), G\left(g^{m} z, f^{m} z, f^{m} z\right), \\
& \frac{G\left(g^{m} x, f^{m} y, f^{m} y\right)+G\left(g^{m} y, f^{m} x, f^{m} x\right)}{2},
\end{aligned}
$$

$$
\begin{aligned}
& \frac{G\left(g^{m} x, f^{m} z, f^{m} z\right)+G\left(g^{m} z, f^{m} x, f^{m} x\right)}{2} \\
& \left.\frac{G\left(g^{m} y, f^{m} z, f^{m} z\right)+G\left(g^{m} z, f^{m} y, f^{m} y\right)}{2}\right\}
\end{aligned}
$$

and $\varphi: P \rightarrow P$ is a nonvanishing subadditive cone integrable on each $[a, b] \subset P$ such that for all $0 \ll \varepsilon, 0 \ll \int_{0}^{\varepsilon} \varphi(t) d t$. Then f and g have a unique common fixed point.

Proof. It follows from Theorem 3, that f^{m}, g^{m} have a unique common fixed point $p \in X$. Therefore, $f p=f\left(f^{m} p\right)=f^{m+1} p=f^{m}(f p)$, and $g p=g\left(g^{m} p\right)=g^{m+1} p=g^{m}(f p)$ implies that $f p$ and $g p$ are also fixed point for f^{m} and g^{m}. Hence $f p=g p=p$.

Acknowledgement

The authors would like to thank the referees for their valuable and useful comments.

References

[1] M. Abbas and G. Jungck, Common fixed point result of noncommuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl. 341 (2008), 418-420.
[2] I. Beg, M. Abbas and T. Nazir, Generalized cone metric spaces, J. Nonlinear Sci. Appl. 3(1) (2010), 21-31.
[3] I. Beg, M. Abbas and T. Nazir, Common fixed point result in G-cone metric spaces, J. Adv. Res. Pure Math. 2(4) (2010), 94-109.
[4] A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci. 29(9) (2002), 531-536.
[5] G. Jungck, Common fixed points for noncontinuous non-self maps on non-metric spaces, Far East J. Math. Sci. 4(2) (1996), 199-215.
[6] F. Khojasteh, Z. Goodarzi and A. Razani, Some fixed point theorems of integral type contraction in cone metric spaces, Fixed Point Theory and Application, Article ID189684, (2010), pp. 13.
[7] S. Kumar, R. Chugh and R. Kumar, Fixed point theorem for compatible mappings satisfying a contractive condition of integral type, Soochow J. Math. 33(2) (2007), 181-185.
[8] L.-G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 332(2) (2007), 1468-1476.
[9] Z. Mustafa and B. Sims, A new approach to generalized metric space, J. Nonlinear Convex Anal. 7(2) (2006), 289-297.

