COMMON FIXED POINT THEOREM FOR MAPPINGS SATISFYING A CONTRACTIVE CONDITION OF INTEGRAL TYPE IN G-CONE METRIC SPACE

H. P. Masiha* and A. Reza

Department of Mathematics
K. N. Toosi University of Technology
P. O. Box 16315-1618, Tehran, Iran
e-mail: masiha@kntu.ac.ir
atefeh.reza@gmail.com

Abstract

In this paper, we prove a common fixed point theorem for two maps defined on a *G*-cone metric space, satisfying generalized contractive condition of integral type.

1. Introduction

In 2005, Mustafa and Sims introduced a new structure of generalized metric spaces [9], which is called a G-metric space as generalization of a metric space (X, d) to develop and introduce a new fixed point theory for various mappings in this new structure.

In 2007, Huang and Zhang introduced a cone metric space by substituting an ordered Banach space for the real numbers and proved some © 2012 Pushpa Publishing House

2010 Mathematics Subject Classification: 47H10.

Keywords and phrases: *G*-cone metric space, common fixed point, weakly compatible maps, integral contraction.

*Corresponding author

Received October 3, 2011

fixed point theorems in this space [8]. Many authors have studied this subject and many fixed point theorems have been proved.

In 2010, Beg et al. introduced a *G*-cone metric space that is an extension of cone metric space, and obtained a common fixed point theorem for mappings defined on a *G*-cone metric space satisfying a generalized contraction condition [2].

In this paper, we introduce a contraction condition of integral type on a *G*-cone metric space and present a common fixed point theorem for two maps defined on a *G*-cone metric space with this contraction condition.

Definition 1 [8]. Let *E* be real Banach space. *A* subset *P* of *E* is called a *cone* if and only if the following hold:

- (a) P is closed, nonempty, and $P \neq \{0\}$;
- (b) $a, b \in \mathbb{R}$, $a, b \ge 0$, and $x, y \in P$ imply that $ax + by \in P$;
- (c) $x \in P$ and $-x \in P$ imply that x = 0.

Given a cone $P \subset E$, we define a partial ordering \leq with respect to P by $x \leq y$ if and only if $y - x \in P$. We will write x < y to indicate that $x \leq y$ but $x \neq y$, while $x \ll y$ will stand for $y - x \in P^{\circ}$, where P° denotes the interior of P. The cone P is called *normal* if there is a constant K > 0 such that $0 \leq x \leq y$ implies $||x|| \leq K ||y||$ for all $x, y \in E$. This positive number K is called the *normal constant*.

We suppose that *E* is a real Banach space, *P* is a cone in *E* with $P^{\circ} \neq \emptyset$ and \leq is partial ordering with respect to *P*.

Definition 2 [8]. Let X be a nonempty set. A function $d: X \times X \to X$ is called a *cone metric* on X if it satisfies the following conditions:

- (a) $d(x, y) \ge 0$ for all $x, y \in X$ and d(x, y) = 0 if and only if x = y;
- (b) d(x, y) = d(y, x) for all $x, y \in X$;
- (c) $d(x, y) \le d(x, z) + d(y, z)$ for all $x, y, z \in X$.

In 2010, Beg et al. in [2] introduced a *G*-cone metric space that is an extension of cone metric space.

Definition 3 [2]. Let X be a nonempty set. Suppose that the mapping $G: X \times X \times X \to E$ satisfies:

- (a) $0 \le G(x, y, z)$ for all $x, y, z \in X$ and G(x, y, z) = 0 if and only if x = y = z;
- (b) 0 < G(x, x, y) for all $x, y \in X$ with $x \neq y$;
- (c) $G(x, x, y) \le G(x, y, z)$ for all $x, y, z \in X$ with $y \ne z$;
- (d) $G(x, y, z) = G(x, z, y) = G(y, z, x) = \cdots$ for all $x, y, z \in X$,

(symmetric in all three variables);

(e)
$$G(x, y, z) \le G(x, a, a) + G(a, y, z)$$
 for all $x, y, z, a \in X$,

(rectangle inequality).

Then G is called a *generalized cone metric* on X and (X, G) is called a G-cone metric space. The concept of a G-cone metric space is more general than that of G-metric spaces and cone metric spaces.

Definition 4 [2]. A *G*-cone metric space *X* is said to be *symmetric* if G(x, y, y) = G(y, x, x) for all $x, y \in X$.

Definition 5 [3]. Let (X, G) be a G-cone metric space. A sequence $\{x_n\}$ in X is said to be

- (a) Cauchy sequence if for every $c \in E$ with $0 \ll c$, there is $N \in \mathbb{N}$ such that for all n, m, l > N, $G(x_n, x_m, x_l) \ll c$.
- (b) Convergent sequence if for every $c \in E$ with $0 \ll c$, there is $N \in \mathbb{N}$ such that for all n, m > N, $G(x_n, x_m, x) \ll c$ for some fixed $x \in X$. Here, x is called the *limit* of a sequence $\{x_n\}$ and is denoted by $\lim_{n \to \infty} x_n = x$.

A *G*-cone metric space *X* is said to be *complete* if every Cauchy sequence in *X* is convergent in *X*.

Remark 1. Let (X, G) be G-cone metric space. For $x, y, z \in X$,

- (a) if $x \ll y \ll z$, then $x \ll z$.
- (b) if $x \ll y \le z$, then $x \ll z$.
- (c) if $x \le y \ll z$, then $x \ll z$.
- (d) if *E* is a real Banach space with cone *P* and if $a \le \lambda a$, where $a \in P$ and $\lambda \in [0, 1)$, then a = 0.

Lemma 1 [2]. Let X be a G-cone metric space. Then the following statements are equivalent.

- (a) $\{x_n\}$ is convergent to x.
- (b) $G(x_n, x_n, x) \ll c$, as $n \to \infty$.
- (c) $G(x_n, x, x) \ll c$, as $n \to \infty$.
- (d) $G(x_n, x_m, x) \ll c$, as $m, n \to \infty$.

Lemma 2 [2]. Let X be a G-cone metric space.

- (a) If $\{x_n\}$, $\{y_m\}$ and $\{z_l\}$ are sequences in X such that $x_n \to x$, $y_m \to y$ and $z_l \to z$, then $G(x_n, y_m, z_l) \to G(x, y, z)$ as $n, m, l \to \infty$.
- (b) If $\{x_n\}$ is a sequence in X and $x, y \in X$, such that $\{x_n\}$ converges to x, y, then x = y.
- (c) If $\{x_n\}$ is a sequence in X, $x \in X$ and $\{x_n\}$ converges to x, then $G(x_m, x_n, x) \to 0$, as $m, n \to \infty$.
- (d) If $\{x_n\}$ is a sequence in X, $x \in X$ and $\{x_n\}$ converges to $x \in X$, then $\{x_n\}$ is Cauchy sequence.

(e) If $\{x_n\}$ is a Cauchy sequence in X, then $G(x_n, x_m, x_l) \to 0$, as $n, m, l \to \infty$.

Definition 6. Let X be a G-cone metric space and f, g be self mappings on X. If y = fx = gx for some x, $y \in X$, then x is called a *coincidence point* of f and g, and y is called a *point of coincidence* of f and g.

Definition 7. Let (X, G) be a G-cone metric space. The self mappings f and g defined on X are said to be *compatible* if

$$\lim_{n\to\infty} G(fgx_n - gfx_n, fgx_n - gfx_n, 0) = 0$$

or equivalently for all $c \in E$ and $0 \ll c$, there exists an $N \in \mathbb{N}$ such that for all n > N,

$$G(fgx_n - gfx_n, fgx_n - gfx_n, 0) \ll c,$$

where $\{x_n\}_{n\in\mathbb{N}}$ is a sequence in X such that $\lim_{n\to\infty}fx_n=\lim_{n\to\infty}gx_n=t,$ $t\in X.$

Definition 8 [5]. Let X be a G-cone metric space and f, g be two self mappings of X. Then f and g are said to be *weakly compatible* if ft = gt imply fgt = gft for all $t \in X$.

Remark 2. Compatible self mappings are weakly compatible.

Lemma 3 [1]. Let f and g be weakly compatible self maps of a set X. If f and g have a unique coincidence point y = fx = gx, then y is the unique common fixed point of f and g.

In 2002, Branciari [4] introduced a general contractive condition of integral type as follows.

Theorem 1. Let (X, d) be a complete metric space, $\alpha \in (0, 1)$ and $f: X \to X$ be a mapping such that, for all $x, y \in X$,

$$\int_0^{d(fx, fy)} \varphi(t)dt \le \alpha \int_0^{d(x, y)} \varphi(t)dt,$$

where $\varphi:[0,\infty)\to[0,\infty)$ is a Lebesgue integrable mapping which is summable (i.e., with finite integral) on each compact subset of $[0,\infty)$, such that for each $\varepsilon>0$, $\int_0^\varepsilon \varphi(t)dt>0$. Then f has a unique fixed point $a\in X$ such that for each $x\in X$, $\lim_{n\to\infty} f^n x=a$.

Khojasteh et al. in [6] introduced the concept of integrability of the function $\varphi : [a, b] \to P$ with respect to a cone. We generalize this concept and result in *G*-cone metric spaces and obtain coincidence and common fixed point theorems for mappings defined on a *G*-cone metric space satisfying a generalized contractive condition of integral type.

Definition 9 [6]. Suppose that P is a normal cone in E. Let $a, b \in E$ and a < b. We define

$$[a, b] := \{x \in E : x = tb + (1 - t)a \text{ for some } t \in [0, 1]\},$$

 $[a, b) := \{x \in E : x = tb + (1 - t)a \text{ for some } t \in [0, 1]\}.$

Definition 10 [6]. The set $\mathcal{P} = \{a = x_0, x_1, ..., x_n = b\}$ is called a partition for [a, b] if and only if the sets $\{[x_{i-1}, x_i)\}_{i=1}^n$ are pairwise disjoint and $[a, b] = \bigcup_{i=1}^n [x_{i-1}, x_i) \cup \{b\}$.

Definition 11 [6]. For each partition Q of [a, b] and each increasing function $\varphi : [a, b] \to P$, we define *cone lower summation* and *cone upper summation* as

$$L_n^{Con}(\varphi, Q) = \sum_{i=0}^{n-1} \varphi(x_i) ||x_i - x_{i-1}||,$$

$$U_n^{Con}(\varphi, Q) = \sum_{i=0}^{n-1} \varphi(x_{i+1}) \| x_i - x_{i-1} \|,$$

respectively.

Definition 12 [6]. Let P be a normal cone in E. The function $\varphi : [a, b] \to P$ is called an *integrable function on* [a, b] *with respect to cone* P or to simplicity, *cone integrable function* if and only if for all partition \mathcal{Q} of [a, b],

$$\lim_{n\to\infty} L_n^{Con}(\varphi, \mathcal{Q}) = S^{Con} = \lim_{n\to\infty} U_n^{Con}(\varphi, \mathcal{Q}),$$

where S^{Con} must be unique. We show that the common value S^{Con} is given by

$$\int_{a}^{b} \varphi(x) dP(x) \text{ or to simplicity, } \int_{a}^{b} \varphi dP.$$

We denote the set of all cone integrable functions by $\mathfrak{t}^1([a, b], P)$.

Lemma 4 [6]. For each $f, g \in \mathfrak{t}^1(X, P)$ and $\alpha, \beta \in \mathbb{R}$, we have:

(a) If
$$[a, b] \subset [a, c]$$
, then $\int_a^b f dP \le \int_a^c f dP$;

(b)
$$\int_{a}^{b} (\alpha f + \beta g) dP = \alpha \int_{a}^{b} f dP + \beta \int_{a}^{b} g dP.$$

In 2010, Beg et al. in [3] obtained a common fixed point theorem for mappings defined on a *G*-cone metric space, satisfying a generalized contractive condition:

Theorem 2 [3]. Let X be a G-cone metric space and mappings $f, g: X \to X$ satisfying

$$G(fx, fy, fz) \le hu_{(f,g)}(x, y, z),$$

where

$$u_{(f,g)}(x, y, z) \in \Big\{ G(gx, gy, gz), G(gx, fx, fx), G(gy, fy, fy), G(gz, fz, fz), \Big\}$$

$$G(gy, fz, fz), \frac{G(gx, fy, fy) + G(gz, fx, fx)}{2}$$

for all $x, y, z \in X$ and $0 \le h < 1$. If the range of g contains the range of f and g(X) is a complete subspace of X, then f and g have a coincidence point in X. Furthermore, if f and g are weakly compatible, then f and g have a unique common fixed point.

2. Main Results

In this section, several coincidence and common fixed point theorems for mappings defined on a *G*-cone metric space, satisfying generalized contractive conditions of integral type are obtained.

Theorem 3. Let f and g be weakly compatible self mappings of G-cone metric space (X, G) satisfying the following conditions:

(a)
$$f(X) \subset g(X)$$
 and $g(X)$ is complete,

(b)
$$\int_0^{G(fx, fy, fz)} \varphi dP \le h \int_0^{u(f, g)(x, y, z)} \varphi dP,$$

for all $x, y, z \in X$ and $h \in [0, 1)$, where

$$u_{(f,g)}(x, y, z) \in \left\{ G(gx, gy, gz), G(gx, fx, fx), G(gy, fy, fy), G(gz, fz, fz), \frac{G(gx, fy, fy) + G(gy, fx, fx)}{2}, \frac{G(gx, fz, fz) + G(gz, fx, fx)}{2}, \frac{G(gy, fz, fz) + G(gz, fy, fy)}{2} \right\}$$

and $\varphi: P \to P$ is a nonvanishing map, cone integrable on each $[a, b] \subset P$ such that for all $0 \ll \varepsilon$, $0 \ll \int_0^{\varepsilon} \varphi dP$. Then f and g have a unique common fixed point.

Proof. Let x_0 be an arbitrary point in X. Since the range of g contains range of f, choose $x_1 \in X$ such that $fx_0 = gx_1$. Continuing this process, having choose $x_n \in X$, we obtain $gx_{n+1} = fx_n$. Then, from (b), we have

$$\int_{0}^{G(gx_{n}, gx_{n+1}, gx_{n+1})} \varphi dP = \int_{0}^{G(fx_{n-1}, fx_{n}, fx_{n})} \varphi dP$$

$$\leq h \int_{0}^{u(f, g)(x_{n-1}, x_{n}, x_{n})} \varphi dP,$$

where

$$u_{(f,g)}(x_{n-1}, x_n, x_n)$$

$$\in \left\{ G(gx_{n-1}, gx_n, gx_n), G(gx_{n-1}, fx_{n-1}, fx_{n-1}), G(gx_n, fx_n, fx_n), \frac{G(gx_{n-1}, fx_n, fx_n) + G(gx_n, fx_{n-1}, fx_{n-1})}{2} \right\}$$

$$= \left\{ G(gx_{n-1}, gx_n, gx_n), G(gx_n, gx_{n+1}, gx_{n+1}) \right\}$$

$$= \left\{ G(gx_{n-1}, gx_{n+1}, gx_{n+1}) + G(gx_n, gx_n, gx_n) \right\}$$

$$= \left\{ G(gx_{n-1}, gx_n, gx_n), G(gx_n, gx_{n+1}, gx_{n+1}) \right\}$$

$$= \left\{ G(gx_{n-1}, gx_n, gx_n), G(gx_n, gx_{n+1}, gx_{n+1}) \right\}$$

Case 1. If, for some n, $u_{(f,g)}(x_{n-1}, x_n, x_n) = G(gx_{n-1}, gx_n, gx_n)$, then

$$\int_{0}^{G(gx_{n}, gx_{n+1}, gx_{n+1})} \varphi dP \le h \int_{0}^{G(gx_{n-1}, gx_{n}, gx_{n})} \varphi dP. \tag{2.1}$$

Case 2. If, for some n, $u_{(f,g)}(x_{n-1}, x_n, x_n) = G(gx_n, gx_{n+1}, gx_{n+1})$, then

$$\int_0^{G(gx_n, gx_{n+1}, gx_{n+1})} \varphi dP \le h \int_0^{G(gx_n, gx_{n+1}, gx_{n+1})} \varphi dP.$$

Since $h \in [0, 1)$, we have $G(gx_n, gx_{n+1}, gx_{n+1}) = 0$, which implies that $gx_n = gx_{n+1} = fx_n$ for each n, and f, g have x_n as a coincidence point.

Case 3. If, for some n, $u_{(f,g)}(x_{n-1}, x_n, x_n) = \frac{G(gx_{n-1}, gx_{n+1}, gx_{n+1})}{2}$, then using Definition 3(e),

$$\frac{G(gx_{n-1}, gx_{n+1}, gx_{n+1})}{2}$$

$$\leq \frac{G(gx_{n-1}, gx_n, gx_n) + G(gx_n, gx_{n+1}, gx_{n+1})}{2}$$

$$\leq \max\{G(gx_{n-1}, gx_n, gx_n), G(gx_n, gx_{n+1}, gx_{n+1})\}.$$

Therefore, we have

$$\begin{split} & \int_{0}^{G(gx_{n}, gx_{n+1}, gx_{n+1})} \varphi dP \\ & \leq h \int_{0}^{\frac{G(gx_{n-1}, gx_{n+1}, gx_{n+1})}{2}} \varphi dP \\ & \leq h \int_{0}^{\max\{G(gx_{n-1}, gx_{n}, gx_{n}), G(gx_{n}, gx_{n+1}, gx_{n+1})\}} \varphi dP \\ & = h \max \left\{ \int_{0}^{G(gx_{n-1}, gx_{n}, gx_{n})} \varphi dP, \int_{0}^{G(gx_{n}, gx_{n+1}, gx_{n+1})} \varphi dP \right\} \end{split}$$

and Case 3 reduces to either Case 1 or Case 2.

Suppose that there exist two distinct common coincidence points u and v; i.e., fu = gu and fv = gv, but $gu \neq gv$.

$$\begin{split} u_{(f,\,g)}(u,\,v,\,v) \in &\left\{ G(gu,\,gv,\,gv),\,G(gu,\,fu,\,fu),\,G(gv,\,fv,\,fv), \right. \\ &\left. G(gv,\,fv,\,fv),\,\frac{G(gu,\,fv,\,fv) + G(gv,\,fu,\,fu)}{2}, \right. \end{split}$$

$$\frac{G(gv, fv, fv) + G(gv, fu, fu)}{2}$$

$$= \left\{ G(gu, gv, gv), \frac{G(gu, gv, gv) + G(gv, gu, gu)}{2} \right\}$$

$$= \left\{ q_1, q_2 \right\} \text{ say.}$$

Case I. Suppose that $u_{(f,g)}(u, v, v) = q_1$. Then we have

$$\int_0^{G(fu,\,fv,\,fv)} \varphi dP = \int_0^{G(gu,\,gv,\,gv)} \varphi dP \le h \int_0^{G(gu,\,gv,\,gv)} \varphi dP,$$

which implies that gu = gv, a contradiction.

Case II. Suppose that $u_{(f,g)}(u, v, v) = q_2$. Then we have, using Definition 3(c),

$$\int_{0}^{G(gu, gv, gv)} \varphi dP \le h \int_{0}^{G(gu, gv, gv) + G(gv, gu, gu)} \varphi dP$$

$$\le \int_{0}^{G(gu, gv, gv)} \varphi dP,$$

which yields gu = gv, a contradiction, and the common coincidence point is unique.

Since Case 2 immediately yields the uniqueness of the coincidence point, we shall assume that Case 1 is true for all n.

Using (1), with
$$d_n := G(gx_n, gx_{n+1}, gx_{n+1}),$$

$$\int_0^{G(gx_n, gx_{n+1}, gx_{n+1})} \varphi dP \le h \int_0^{G(gx_{n-1}, gx_n, gx_n)} \varphi dP$$

$$\le \cdots$$

$$\le h^n \int_0^{G(gx_0, gx_1, gx_1)} \varphi dP,$$

and therefore $\lim_{n} G(gx_n, gx_{n+1}, gx_{n+1}) = 0$.

We shall now show that $\{gx_n\}$ is *G*-Cauchy. From [9, Proposition 9], a sequence $\{x_n\}$ is *G*-Cauchy if and only if for each $\varepsilon > 0$, there exists an $N \in \mathbb{N}$ such that $G(x_n, x_m, x_m) < \varepsilon$ for each $n, m \ge N$.

Suppose that $\{gx_n\}$ is not *G*-Cauchy. Then there exists $\varepsilon > 0$ and subsequences m(k) and n(k), with m(k) < n(k) < m(k+1) such that

$$G(gx_{m(k)}, gx_{n(k)}, gx_{n(k)}) \ge \varepsilon$$
, and $G(gx_{m(k)}, gx_{n(k)-1}, gx_{n(k)-1}) < \varepsilon$. (2.2)

From (2.2), and using Definition 3(c),

$$\varepsilon \le G(gx_{m(k)}, gx_{n(k)}, gx_{n(k)})$$

$$\le G(gx_{m(k)}, gx_{n(k)-1}, gx_{n(k)-1}) + d_{m(k)-1}. \tag{2.3}$$

Taking the limit of (2.3) as $n \to \infty$ yields

$$\lim_{k} G(gx_{m(k)}, gx_{n(k)}, gx_{n(k)}) = \varepsilon.$$

From (b),

$$\int_{0}^{G(gx_{m(k)}, gx_{n(k)}, gx_{n(k)})} \varphi dP \le h \int_{0}^{G(gx_{m(k)-1}, gx_{n(k)-1}, gx_{n(k)-1})} \varphi dP. \quad (2.4)$$

But, using Definition 3(e),

$$\begin{split} G(gx_{m(k)-1},\,gx_{n(k)-1},\,gx_{n(k)-1}) &\leq G(gx_{m(k)-1},\,gx_{m(k)},\,gx_{m(k)}) \\ &\quad + G(gx_{m(k)},\,gx_{n(k)-1},\,gx_{n(k)-1}) \\ &\leq d_{m(k)-1} + G(gx_{m(k)},\,gx_{n(k)},\,gx_{n(k)},\,gx_{n(k)}) \\ &\quad + G(gx_{n(k)},\,gx_{n(k)-1},\,gx_{n(k)-1}) \\ &= d_{m(k)-1} + G(gx_{m(k)},\,gx_{n(k)},\,gx_{n(k)}) \\ &\quad + d_{n(k)-1}. \end{split}$$

Substituting into (2.4) and taking the limit as $n \to \infty$ yields

$$\int_0^\varepsilon \varphi dP \le h \int_0^\varepsilon \varphi dP,$$

a contradiction. Therefore, $\{gx_n\}$ is G-Cauchy, hence convergent to some point $u \in X$. Since $gx_n = fx_{n-1}$, the G-limit of fx_n is also u. Using hypothesis (a), there exists a point $v \in X$ such that gv = u.

We claim that fu = gv. Using (b),

$$\int_{0}^{G(gx_{n}, fv, fv)} \varphi dP = \int_{0}^{G(fx_{n-1}, fv, fv)} \varphi dP \le h \int_{0}^{u(f, g)(x_{n-1}, v, v)} \varphi dP,$$

where

$$u_{(f,g)}(x_{n-1}, v, v) \in \left\{ G(gx_{n-1}, gv, gv), G(gx_{n-1}, gx_n, gx_n), G(gv, fv, fv), \frac{G(gx_{n-1}, fv, fv) + G(gv, gx_n, gx_n)}{2} \right\}.$$

Case 1. If, for some n, $u_{(f,g)}(x_{n-1}, v, v) = G(gx_{n-1}, gv, gv)$, then

$$\int_{0}^{G(gx_{n}, fv, fv)} \varphi dP \le h \int_{0}^{G(gx_{n-1}, gv, gv)} \varphi dP.$$
 (2.5)

Case 2. If, for some n, $u_{(f,g)}(x_{n-1}, v, v) = G(gx_{n-1}, gx_n, gx_n)$, then

$$\int_{0}^{G(gx_{n}, fv, fv)} \varphi dP \le h \int_{0}^{G(gx_{n-1}, gx_{n}, gx_{n})} \varphi dP. \tag{2.6}$$

Case 3. If, for some n, $u_{(f,g)}(x_{n-1}, v, v) = G(gv, fv, fv)$, then

$$\int_0^{G(gx_n, fv, fv)} \varphi dP \le h \int_0^{G(gv, fv, fv)} \varphi dP. \tag{2.7}$$

Case 4. If, for some n,

$$u_{(f,g)}(x_{n-1},v,v) = \frac{G(gx_{n-1}, fv, fv) + G(gv, gx_n, gx_n)}{2},$$

then

$$\int_{0}^{G(gx_{n}, fv, fv)} \varphi dP \leq h \int_{0}^{G(gx_{n-1}, fv, fv) + G(gv, gx_{n}, gx_{n})} \varphi dP$$

$$\leq h \int_{0}^{G(gx_{n-1}, fv, fv) + G(gv, gx_{n}, gx_{n})} \varphi dP$$

$$\leq h \int_{0}^{G(gx_{n-1}, fv, fv)} \varphi dP + h \int_{0}^{G(gv, gx_{n}, gx_{n})} \varphi dP. \quad (2.8)$$

At least one of (2.5)-(2.8) must occur for an infinite number of times. Taking the limit as $n \to \infty$ of each of these inequalities yields

$$\int_0^{G(gv, fv, fv)} \varphi dP \le h \int_0^{G(gv, fv, fv)} \varphi dP,$$

which implies that gv = fv.

It has already been shown that the coincidence point is unique. The result now follows from Remark 2 and Lemma 3. \Box

Corollary 1. Let f and g be compatible self mappings of G-cone metric space (X, G), such that for $m \in \mathbb{N}$ satisfying the following conditions:

(a)
$$f(X) \subset g(X)$$
, $g(X)$ is complete,

(b)
$$\int_{0}^{G(f^{m}x, f^{m}y, f^{m}z)} \varphi dP \le h \int_{0}^{u(f, g)(x, y, z)} \varphi dP$$
,

for all $x, y, z \in X, h \in [0, 1)$, where

$$u_{(f,g)}(x, y, z) \in \begin{cases} G(g^m x, g^m y, g^m z), G(g^m x, f^m x, f^m x), \\ \\ G(g^m y, f^m y, f^m y), G(g^m z, f^m z, f^m z), \\ \\ \frac{G(g^m x, f^m y, f^m y) + G(g^m y, f^m x, f^m x)}{2}, \end{cases}$$

$$\frac{G(g^{m}x, f^{m}z, f^{m}z) + G(g^{m}z, f^{m}x, f^{m}x)}{2},$$

$$\frac{G(g^{m}y, f^{m}z, f^{m}z) + G(g^{m}z, f^{m}y, f^{m}y)}{2}$$

and $\varphi: P \to P$ is a nonvanishing subadditive cone integrable on each $[a,b] \subset P$ such that for all $0 \ll \varepsilon$, $0 \ll \int_0^{\varepsilon} \varphi(t) dt$. Then f and g have a unique common fixed point.

Proof. It follows from Theorem 3, that f^m , g^m have a unique common fixed point $p \in X$. Therefore, $fp = f(f^m p) = f^{m+1}p = f^m(fp)$, and $gp = g(g^m p) = g^{m+1}p = g^m(fp)$ implies that fp and gp are also fixed point for f^m and g^m . Hence fp = gp = p.

Acknowledgement

The authors would like to thank the referees for their valuable and useful comments.

References

- [1] M. Abbas and G. Jungck, Common fixed point result of noncommuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl. 341 (2008), 418-420.
- [2] I. Beg, M. Abbas and T. Nazir, Generalized cone metric spaces, J. Nonlinear Sci. Appl. 3(1) (2010), 21-31.
- [3] I. Beg, M. Abbas and T. Nazir, Common fixed point result in *G*-cone metric spaces, J. Adv. Res. Pure Math. 2(4) (2010), 94-109.
- [4] A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci. 29(9) (2002), 531-536.
- [5] G. Jungck, Common fixed points for noncontinuous non-self maps on non-metric spaces, Far East J. Math. Sci. 4(2) (1996), 199-215.

- [6] F. Khojasteh, Z. Goodarzi and A. Razani, Some fixed point theorems of integral type contraction in cone metric spaces, Fixed Point Theory and Application, Article ID189684, (2010), pp. 13.
- [7] S. Kumar, R. Chugh and R. Kumar, Fixed point theorem for compatible mappings satisfying a contractive condition of integral type, Soochow J. Math. 33(2) (2007), 181-185.
- [8] L.-G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 332(2) (2007), 1468-1476.
- [9] Z. Mustafa and B. Sims, A new approach to generalized metric space, J. Nonlinear Convex Anal. 7(2) (2006), 289-297.