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Abstract 

In this paper, we obtain the general solution and generalized Ulam-
Hyers stability of a new type of quadratic functional equation of the 
form 
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in Banach spaces. An application of the above quadratic functional 
equation is also discussed in this paper. 
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1. Introduction 

In 1940, the stability of functional equations had been first raised by 
Ulam [25]. In 1941, Hyers [12] gave an affirmative answer to the question of 
Ulam for Banach spaces. 

In 1950, Aoki [2] was the second author to treat this problem for additive 
mappings. In 1978, Rassias [20] succeeded in extending Hyers’ Theorem by 
weakening the condition for the Cauchy difference controlled by 

( ),pp yx +  [ ),1,0∈p  to be unbounded. 

In 1982, Rassias [19] replaced the factor pp yx +  by qp yx  

for ., Rqp ∈  A generalization of all the above stability results was obtained 

by Gavruta [10] in 1994 by replacing the unbounded Cauchy difference by a 
general control function ( )., yxϕ  

In 2008, a special case of Gavruta’s theorem for the unbounded Cauchy 
difference was obtained by Ravi et al. [23] by considering the summation of 
both the sum and the product of two p-norms. The stability problems of 
several functional equations have been extensively investigated by a number 
of authors and there are many interesting results concerning this problem (see 
[1, 9, 13, 16, 18]) and reference cited therein. 

The quadratic function ( ) 2cxxf =  satisfies the functional equation 

 ( ) ( ) ( ) ( )yfxfyxfyxf 22 +=−++  (1.1) 

and therefore the equation (1.1) is called quadratic functional equation. 

The Hyers-Ulam stability theorem for the quadratic functional equation 
(1.1) was proved by Skof [24] for the functions ,: 21 EEf →  where 1E  is a 

normed space and 2E  is a Banach space. The result of Skof is still true if the 

relevant domain 1E  is replaced by an Abelian group and it was dealt by 

Cholewa [7]. Czerwik [8] proved the Hyers-Ulam-Rassias stability of the 
quadratic functional equation (1.1). This result was further generalized by 
Rassias [22], Borelli and Forti [6]. 
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The solution and stability of following quadratic functional equations 

( ) ( ) ( ) ( ) ( ) ( ) ( ),zxfzyfyxfzfyfxfzyxf +++++=+++++  (1.2) 

( ) ( ) ( ) ( ) ( ) ( ) ( ),xzfzyfyxfzfyfxfzyxf −+++−=+++−−  (1.3) 

( ) ( ) ( ) ( ) ( ) ( ) ( ),333 zfyfxfxzfzyfyxfzyxf ++=−+−+−+++  (1.4) 
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( ) ( ) ( ) ( ) ( ) ( )zyfzxfyxfzfyfzyxf ++±+±=++±± 22222  (1.6) 

were investigated by Jung [14, 15], Kannappan [17], Bae and Jun [5], Bae [4] 
and Arunkumar et al. [3]. 

In this paper, the authors have proved the general solution and 
generalized Ulam-Hyers stability of a new type of quadratic functional 
equation of the form 
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( ) ( ) ( ) ( )[ ]32102
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in Banach spaces. 

In Section 2, the general solution of the functional equation (1.7) is 
given. In Section 3, the generalized Ulam-Hyers stability of the functional 
equation (1.7) is proved. An application of the quadratic functional equation 
(1.7) is discussed in Section 4. 

2. General Solution of the Functional Equation (1.7) 

In this section, the authors investigate the general solution of the 
functional equation (1.7). Throughout this section, let us consider X and Y be 
real vector spaces. 
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Theorem 2.1. Let YXf →:  be a function satisfying the functional 

equation 

 ( ) ( ) ( ) ( )yfxfyxfyxf 22 +=−++  (2.1) 

for all Xyx ∈,  if and only if YXf →:  satisfies the functional equation 
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for all .,,, 3210 Xxxxx ∈  

Proof. Let YXf →:  satisfy (2.1). Setting 0== yx  in (2.1), we get 

( ) .00 =f  Let 0=x  in (2.1), we obtain ( ) ( )yfyf =−  for all .Xy ∈  

Therefore, f is an even function. Replacing y by x and 2x respectively in 

(2.1), we get ( ) ( )xfxf 222 =  and ( ) ( )xfxf 233 =  for all .Xx ∈  In 

general, for any positive integer a, we have ( ) ( )xfaaxf 2=  for all .Xx ∈  
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for all ., 32 Xxx ∈  Adding (2.3) and (2.4), we arrive (1.7) as desired. 

Conversely assume that YXf →:  satisfies (2.2). Setting ( ,, 10 xx  

)32, xx  by ( )0,0,0,0  in (2.2), we get ( ) .00 =f  Letting ( )3210 ,,, xxxx  

by ( )0,0,0,2x  in (2.2), we obtain ( ) ( )xfxf 222 =  for all .Xx ∈  Replacing 
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( )3210 ,,, xxxx  by ( )0,0,,0 x  in (2.2), we arrive ( ) ( )xfxf −=  for all 

.Xx ∈  Therefore, f is an even function. Again replacing ( )3210 ,,, xxxx  by 

( )0,0,,2 xx  in (2.2), we get ( ) ( )xfxf 233 =  for all .Xx ∈  In general, for 

any positive integer b, we have ( ) ( )xfbbxf 2=  for all .Xx ∈  Replacing 

( )3210 ,,, xxxx  by ( )0,0,, yxyx −+  in (2.2), we obtain (2.1) as desired. ~ 

3. Generalized Ulam-Hyers Stability of the Quadratic  
Functional Equation (1.7) 

In this section, the authors presented the generalized Ulam-Hyers 
stability of the functional equation (1.7). 

Throughout this section, let X be a normed space and Y be a Banach 

space, respectively. Define a mapping YXDf →4:  by 
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Theorem 3.1. Let { }.1,1−∈j  Assume [ )∞→α ,0: 4X  is a function 
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for all .,,, 3210 Xxxxx ∈  Let YXf →:  be a function satisfying the 
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inequality 

 ( ) ( )32103210 ,,,,,, xxxxxxxxDf α≤  (3.2) 

for all .,,, 3210 Xxxxx ∈  Then there exists a unique quadratic mapping 

YXQ →:  such that 
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for all .Xx ∈  The mapping ( )xQ  is defined by 
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for all .Xx ∈  

Proof. Assume .1=j  Replacing ( )3210 ,,, xxxx  by ( )0,0,0,2x  in 

(3.2) and dividing by 4, we get 
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for all .Xx ∈  Now replacing x by 2x and dividing by 4 in (3.5), we get 
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for all .Xx ∈  From (3.5) and (3.6), we obtain 

( ) ( ) ( ) ( ) ( ) ( )
2

2

2

2

4
2

4
2

4
2

4
2 xfxfxfxfxfxf −+−≤−  

( ) ( )
⎥
⎦

⎤
⎢
⎣

⎡ α+α≤ 4
0,0,0,20,0,0,24

1 2 xx  (3.7) 

for all .Xx ∈  In general, for any positive integer n, we get 
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for all .Xx ∈  In order to prove the convergence of the sequence ( ) ,
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for all .,,, 3210 Xxxxx ∈  Letting ∞→n  in the above inequality and using 

the definition of ( ),xQ  we see that 
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Hence, Q satisfies (1.7) for all .,,, 3210 Xxxxx ∈  To prove that Q is 

unique, we let ( )xR  be another mapping satisfying (1.7) and (3.3). Then 
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For ,1−=j  we can prove a similar stability result. This completes the 

proof of the theorem. ~ 

The following corollary is an immediate consequence of Theorem 3.1 
concerning the stability of (1.7). 

Corollary 3.2. Let λ and s be nonnegative real numbers. Let a function 
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YXf →:  satisfy the inequality 
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for all .,,, 3210 Xxxxx ∈  Then there exists a unique quadratic function 

YXQ →:  such that 
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for all .Xx ∈  

4. Application of the Functional Equation (1.7) 

Consider the quadratic functional equation (1.7), that is 
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This functional equation can be used to express Every Positive Integer can be 
Expressed as the Sum of Squares of Four Integers. 
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A well-known classical theorem of Lagrange in Algebra [11]: According 
to old Trick of Euler’s formula, if 
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