Far East Journal of Dynamical Systems
Volume 18, Number 1, 2012, Pages 21-32
Published Online: March 2012
Available online at http://pphmj.com/journals/fjds.htm Published by Pushpa Publishing House, Allahabad, INDIA

SOLUTION AND STABILITY OF A QUADRATIC FUNCTIONAL EQUATION IN BANACH SPACE AND ITS APPLICATION

M. Arunkumar and S. Ramamoorthi

Department of Mathematics
Government Arts College
Tiruvannamalai - 606 603, Tamilnadu, India
e-mail: annarun2002@yahoo.co.in
Department of Mathematics
Arunai Engineering College
Tiruvannamalai - 606 604, Tamilnadu, India
e-mail: ram_aishu9@yahoo.co.in

Abstract

In this paper, we obtain the general solution and generalized UlamHyers stability of a new type of quadratic functional equation of the form $$
\begin{aligned} & f\left(\frac{x_{0}+x_{1}}{2}\right)+f\left(\frac{x_{0}-x_{1}}{2}\right)+f\left(\frac{x_{2}+x_{3}}{2}\right)+f\left(\frac{x_{2}-x_{3}}{2}\right) \\ = & \frac{1}{2}\left[f\left(x_{0}\right)+f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{3}\right)\right] \end{aligned}
$$

in Banach spaces. An application of the above quadratic functional equation is also discussed in this paper.
© 2012 Pushpa Publishing House
2010 Mathematics Subject Classification: 39B52, 39B82.
Keywords and phrases: quadratic functional equation, generalized Ulam-Hyers stability, JM
Rassias stability.
Received January 8, 2012

1. Introduction

In 1940, the stability of functional equations had been first raised by Ulam [25]. In 1941, Hyers [12] gave an affirmative answer to the question of Ulam for Banach spaces.

In 1950, Aoki [2] was the second author to treat this problem for additive mappings. In 1978, Rassias [20] succeeded in extending Hyers' Theorem by weakening the condition for the Cauchy difference controlled by $\left(\|x\|^{p}+\|y\|^{p}\right), \quad p \in[0,1)$, to be unbounded.

In 1982, Rassias [19] replaced the factor $\|x\|^{p}+\|y\|^{p}$ by $\|x\|^{p}\|y\|^{q}$ for $p, q \in R$. A generalization of all the above stability results was obtained by Gavruta [10] in 1994 by replacing the unbounded Cauchy difference by a general control function $\varphi(x, y)$.

In 2008, a special case of Gavruta's theorem for the unbounded Cauchy difference was obtained by Ravi et al. [23] by considering the summation of both the sum and the product of two p-norms. The stability problems of several functional equations have been extensively investigated by a number of authors and there are many interesting results concerning this problem (see $[1,9,13,16,18])$ and reference cited therein.

The quadratic function $f(x)=c x^{2}$ satisfies the functional equation

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x)+2 f(y) \tag{1.1}
\end{equation*}
$$

and therefore the equation (1.1) is called quadratic functional equation.
The Hyers-Ulam stability theorem for the quadratic functional equation (1.1) was proved by Skof [24] for the functions $f: E_{1} \rightarrow E_{2}$, where E_{1} is a normed space and E_{2} is a Banach space. The result of Skof is still true if the relevant domain E_{1} is replaced by an Abelian group and it was dealt by Cholewa [7]. Czerwik [8] proved the Hyers-Ulam-Rassias stability of the quadratic functional equation (1.1). This result was further generalized by Rassias [22], Borelli and Forti [6].

The solution and stability of following quadratic functional equations

$$
\begin{align*}
& f(x+y+z)+f(x)+f(y)+f(z)=f(x+y)+f(y+z)+f(x+z), \tag{1.2}\\
& f(x-y-z)+f(x)+f(y)+f(z)=f(x-y)+f(y+z)+f(z-x), \tag{1.3}\\
& f(x+y+z)+f(x-y)+f(y-z)+f(z-x)=3 f(x)+3 f(y)+3 f(z), \tag{1.4}\\
& f\left(\sum_{i=1}^{n} x_{i}\right)+\sum_{1 \leq i<j \leq n} f\left(x_{i}-x_{j}\right)=n \sum_{i=1}^{n} f\left(x_{i}\right),(n \geq 2), \tag{1.5}\\
& f(2 x \pm y \pm z)+2 f(y)+2 f(z)=2 f(x \pm y)+2 f(x \pm z)+f(y+z) \tag{1.6}
\end{align*}
$$

were investigated by Jung [14, 15], Kannappan [17], Bae and Jun [5], Bae [4] and Arunkumar et al. [3].

In this paper, the authors have proved the general solution and generalized Ulam-Hyers stability of a new type of quadratic functional equation of the form

$$
\begin{align*}
& f\left(\frac{x_{0}+x_{1}}{2}\right)+f\left(\frac{x_{0}-x_{1}}{2}\right)+f\left(\frac{x_{2}+x_{3}}{2}\right)+f\left(\frac{x_{2}-x_{3}}{2}\right) \\
= & \frac{1}{2}\left[f\left(x_{0}\right)+f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{3}\right)\right] \tag{1.7}
\end{align*}
$$

in Banach spaces.
In Section 2, the general solution of the functional equation (1.7) is given. In Section 3, the generalized Ulam-Hyers stability of the functional equation (1.7) is proved. An application of the quadratic functional equation (1.7) is discussed in Section 4.

2. General Solution of the Functional Equation (1.7)

In this section, the authors investigate the general solution of the functional equation (1.7). Throughout this section, let us consider X and Y be real vector spaces.

Theorem 2.1. Let $f: X \rightarrow Y$ be a function satisfying the functional equation

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x)+2 f(y) \tag{2.1}
\end{equation*}
$$

for all $x, y \in X$ if and only if $f: X \rightarrow Y$ satisfies the functional equation

$$
\begin{align*}
& f\left(\frac{x_{0}+x_{1}}{2}\right)+f\left(\frac{x_{0}-x_{1}}{2}\right)+f\left(\frac{x_{2}+x_{3}}{2}\right)+f\left(\frac{x_{2}-x_{3}}{2}\right) \\
= & \frac{1}{2}\left[f\left(x_{0}\right)+f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{3}\right)\right] \tag{2.2}
\end{align*}
$$

for all $x_{0}, x_{1}, x_{2}, x_{3} \in X$.
Proof. Let $f: X \rightarrow Y$ satisfy (2.1). Setting $x=y=0$ in (2.1), we get $f(0)=0$. Let $x=0$ in (2.1), we obtain $f(-y)=f(y)$ for all $y \in X$. Therefore, f is an even function. Replacing y by x and $2 x$ respectively in (2.1), we get $f(2 x)=2^{2} f(x)$ and $f(3 x)=3^{2} f(x)$ for all $x \in X$. In general, for any positive integer a, we have $f(a x)=a^{2} f(x)$ for all $x \in X$. Replacing (x, y) by $\left(\frac{x_{0}}{2}, \frac{x_{1}}{2}\right)$ in (2.1), we obtain

$$
\begin{equation*}
f\left(\frac{x_{0}+x_{1}}{2}\right)+f\left(\frac{x_{0}-x_{1}}{2}\right)=\frac{1}{2}\left[f\left(x_{0}\right)+f\left(x_{1}\right)\right] \tag{2.3}
\end{equation*}
$$

for all $x_{0}, x_{1} \in X$. Again replacing (x, y) by $\left(\frac{x_{2}}{2}, \frac{x_{3}}{2}\right)$ in (2.1), we obtain

$$
\begin{equation*}
f\left(\frac{x_{2}+x_{3}}{2}\right)+f\left(\frac{x_{2}-x_{3}}{2}\right)=\frac{1}{2}\left[f\left(x_{2}\right)+f\left(x_{3}\right)\right] \tag{2.4}
\end{equation*}
$$

for all $x_{2}, x_{3} \in X$. Adding (2.3) and (2.4), we arrive (1.7) as desired.
Conversely assume that $f: X \rightarrow Y$ satisfies (2.2). Setting (x_{0}, x_{1}, $\left.x_{2}, x_{3}\right)$ by $(0,0,0,0)$ in (2.2), we get $f(0)=0$. Letting $\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$ by $(2 x, 0,0,0)$ in (2.2), we obtain $f(2 x)=2^{2} f(x)$ for all $x \in X$. Replacing
$\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$ by ($0, x, 0,0$) in (2.2), we arrive $f(x)=f(-x)$ for all $x \in X$. Therefore, f is an even function. Again replacing $\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$ by $(2 x, x, 0,0)$ in (2.2), we get $f(3 x)=3^{2} f(x)$ for all $x \in X$. In general, for any positive integer b, we have $f(b x)=b^{2} f(x)$ for all $x \in X$. Replacing $\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$ by $(x+y, x-y, 0,0)$ in (2.2), we obtain (2.1) as desired.

3. Generalized Ulam-Hyers Stability of the Quadratic

Functional Equation (1.7)

In this section, the authors presented the generalized Ulam-Hyers stability of the functional equation (1.7).

Throughout this section, let X be a normed space and Y be a Banach space, respectively. Define a mapping $D f: X^{4} \rightarrow Y$ by

$$
\begin{aligned}
& D f\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \\
= & f\left(\frac{x_{0}+x_{1}}{2}\right)+f\left(\frac{x_{0}-x_{1}}{2}\right)+f\left(\frac{x_{2}+x_{3}}{2}\right)+f\left(\frac{x_{2}-x_{3}}{2}\right) \\
& -\frac{1}{2}\left[f\left(x_{0}\right)+f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{3}\right)\right]
\end{aligned}
$$

for all $x_{0}, x_{1}, x_{2}, x_{3} \in X$.
Theorem 3.1. Let $j \in\{-1,1\}$. Assume $\alpha: X^{4} \rightarrow[0, \infty)$ is a function such that

$$
\sum_{n=0}^{\infty} \frac{\alpha\left(2^{n j} x_{0}, 2^{n j} x_{1}, 2^{n j} x_{2}, 2^{n j} x_{3}\right)}{4^{n j}}
$$

converges in \mathbb{R} and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\alpha\left(2^{n j} x_{0}, 2^{n j} x_{1}, 2^{n j} x_{2}, 2^{n j} x_{3}\right)}{4^{n j}}=0 \tag{3.1}
\end{equation*}
$$

for all $x_{0}, x_{1}, x_{2}, x_{3} \in X$. Let $f: X \rightarrow Y$ be a function satisfying the
inequality

$$
\begin{equation*}
\left\|D f\left(x_{0}, x_{1}, x_{2}, x_{3}\right)\right\| \leq \alpha\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \tag{3.2}
\end{equation*}
$$

for all $x_{0}, x_{1}, x_{2}, x_{3} \in X$. Then there exists a unique quadratic mapping $Q: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-Q(x)\| \leq \frac{1}{4} \sum_{k=\frac{1-j}{2}}^{\infty} \frac{\alpha\left(2^{(k+1) j}{ }_{x, 0,0,0)}\right.}{4^{k j}} \tag{3.3}
\end{equation*}
$$

for all $x \in X$. The mapping $Q(x)$ is defined by

$$
\begin{equation*}
Q(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n j} x\right)}{4^{j n}} \tag{3.4}
\end{equation*}
$$

for all $x \in X$.
Proof. Assume $j=1$. Replacing $\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$ by $(2 x, 0,0,0)$ in (3.2) and dividing by 4 , we get

$$
\begin{equation*}
\left\|f(x)-\frac{f(2 x)}{4}\right\| \leq \frac{\alpha(2 x, 0,0,0)}{4} \tag{3.5}
\end{equation*}
$$

for all $x \in X$. Now replacing x by $2 x$ and dividing by 4 in (3.5), we get

$$
\begin{equation*}
\left\|\frac{f(2 x)}{4}-\frac{f\left(2^{2} x\right)}{4^{2}}\right\| \leq \frac{\alpha\left(2^{2} x, 0,0,0\right)}{4^{2}} \tag{3.6}
\end{equation*}
$$

for all $x \in X$. From (3.5) and (3.6), we obtain

$$
\begin{align*}
\left\|f(x)-\frac{f\left(2^{2} x\right)}{4^{2}}\right\| & \leq\left\|f(x)-\frac{f(2 x)}{4}\right\|+\left\|\frac{f(2 x)}{4}-\frac{f\left(2^{2} x\right)}{4^{2}}\right\| \\
& \leq \frac{1}{4}\left[\alpha(2 x, 0,0,0)+\frac{\alpha\left(2^{2} x, 0,0,0\right)}{4}\right] \tag{3.7}
\end{align*}
$$

for all $x \in X$. In general, for any positive integer n, we get

$$
\begin{align*}
\left\|f(x)-\frac{f\left(2^{n} x\right)}{4^{n}}\right\| & \leq \frac{1}{4} \sum_{k=0}^{n-1} \frac{\alpha\left(2^{(k+1)} x, 0,0,0\right)}{4^{k}} \\
& \leq \frac{1}{4} \sum_{k=0}^{\infty} \frac{\alpha\left(2^{(k+1)} x, 0,0,0\right)}{4^{k}} \tag{3.8}
\end{align*}
$$

for all $x \in X$. In order to prove the convergence of the sequence $\left\{\frac{f\left(2^{n} x\right)}{4^{n}}\right\}$, replacing x by $2^{m} x$ and dividing by 4^{m} in (3.8), for any m, $n>0$, we deduce

$$
\begin{aligned}
\left\|\frac{f\left(2^{m} x\right)}{4^{m}}-\frac{f\left(2^{n+m} x\right)}{4^{(n+m)}}\right\| & =\frac{1}{4^{m}}\left\|f\left(2^{m} x\right)-\frac{f\left(2^{n} \cdot 2^{m} x\right)}{4^{n}}\right\| \\
& \leq \frac{1}{4} \sum_{k=0}^{\infty} \frac{\alpha\left(2^{k+m+1} x, 0,0,0\right)}{4^{k+m}} \\
& \rightarrow 0 \text { as } m \rightarrow \infty
\end{aligned}
$$

for all $x \in X$. Hence, the sequence $\left\{\frac{f\left(2^{n} x\right)}{4^{n}}\right\}$ is Cauchy sequence. Since Y is complete, there exists a mapping $Q: X \rightarrow Y$ such that

$$
Q(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{4^{n}}, \quad \forall x \in X
$$

Letting $n \rightarrow \infty$ in (3.8), we see that (3.3) holds for all $x \in X$. In order to prove, Q satisfies (1.7), replacing ($\left.x_{0}, x_{1}, x_{2}, x_{3}\right)$ by $\left(2^{n} x_{0}, 2^{n} x_{1}, 2^{n} x_{2}\right.$, $2^{n} x_{3}$) and dividing by 4^{n} in (3.2), we obtain

$$
\frac{1}{4^{n}} \| f\left(\frac{2^{n}\left(x_{0}+x_{1}\right)}{2}\right)+f\left(\frac{2^{n}\left(x_{0}-x_{1}\right)}{2}\right)+f\left(\frac{2^{n}\left(x_{2}+x_{3}\right)}{2}\right)
$$

$$
\begin{aligned}
& +f\left(\frac{2^{n}\left(x_{2}-x_{3}\right)}{2}\right)-\frac{1}{2}\left[f\left(2^{n} x_{0}\right)+f\left(2^{n} x_{1}\right)+f\left(2^{n} x_{2}\right)+f\left(2^{n} x_{3}\right)\right] \| \\
\leq & \frac{1}{4^{n}} \alpha\left(2^{n} x_{0}, 2^{n} x_{1}, 2^{n} x_{2}, 2^{n} x_{3}\right)
\end{aligned}
$$

for all $x_{0}, x_{1}, x_{2}, x_{3} \in X$. Letting $n \rightarrow \infty$ in the above inequality and using the definition of $Q(x)$, we see that

$$
\begin{aligned}
& Q\left(\frac{x_{0}+x_{1}}{2}\right)+Q\left(\frac{x_{0}-x_{1}}{2}\right)+Q\left(\frac{x_{2}+x_{3}}{2}\right)+Q\left(\frac{x_{2}-x_{3}}{2}\right) \\
= & \frac{1}{2}\left[Q\left(x_{0}\right)+Q\left(x_{1}\right)+Q\left(x_{2}\right)+Q\left(x_{3}\right)\right] .
\end{aligned}
$$

Hence, Q satisfies (1.7) for all $x_{0}, x_{1}, x_{2}, x_{3} \in X$. To prove that Q is unique, we let $R(x)$ be another mapping satisfying (1.7) and (3.3). Then

$$
\begin{aligned}
\|Q(x)-R(x)\| & =\frac{1}{4^{n}}\left\|Q\left(2^{n} x\right)-R\left(2^{n} x\right)\right\| \\
& \leq \frac{1}{4^{n}}\left\{\left\|Q\left(2^{n} x\right)-f\left(2^{n} x\right)\right\|+\left\|f\left(2^{n} x\right)-R\left(2^{n} x\right)\right\|\right\} \\
& \leq \frac{1}{2} \sum_{k=0}^{\infty} \frac{\alpha\left(2^{k+n+1} x, 0,0,0\right)}{4^{(k+n)}} \\
& \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

for all $x \in X$. Hence, Q is unique.
For $j=-1$, we can prove a similar stability result. This completes the proof of the theorem.

The following corollary is an immediate consequence of Theorem 3.1 concerning the stability of (1.7).

Corollary 3.2. Let λ and s be nonnegative real numbers. Let a function
$f: X \rightarrow Y$ satisfy the inequality

$$
\begin{align*}
& \left\|D f\left(x_{0}, x_{1}, x_{2}, x_{3}\right)\right\| \\
\leq & \begin{cases}\lambda, \\
\lambda\left(\sum_{i=0}^{3}\left\|x_{i}\right\|^{s}\right), & s<2 \text { or } s>2 ; \\
\lambda\left\{\prod_{i=0}^{3}\left\|x_{i}\right\|^{s}+\left(\sum_{i=0}^{3}\left\|x_{i}\right\|^{4 s}\right)\right\}, & s<\frac{1}{2} \text { or } s>\frac{1}{2} ;\end{cases} \tag{3.9}
\end{align*}
$$

for all $x_{0}, x_{1}, x_{2}, x_{3} \in X$. Then there exists a unique quadratic function $Q: X \rightarrow Y$ such that

$$
\|f(x)-Q(x)\| \leq\left\{\begin{array}{l}
\frac{2 \lambda}{3} \tag{3.10}\\
\frac{2^{(s+1)} \lambda\|x\|^{s}}{\left|4-2^{s}\right|} \\
\frac{2^{(4 s+1)} \lambda\|x\|^{4 s}}{\left|4-2^{4 s}\right|}
\end{array}\right.
$$

for all $x \in X$.

4. Application of the Functional Equation (1.7)

Consider the quadratic functional equation (1.7), that is

$$
\begin{align*}
& f\left(\frac{x_{0}+x_{1}}{2}\right)+f\left(\frac{x_{0}-x_{1}}{2}\right)+f\left(\frac{x_{2}+x_{3}}{2}\right)+f\left(\frac{x_{2}-x_{3}}{2}\right) \\
= & \frac{1}{2}\left[f\left(x_{0}\right)+f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{3}\right)\right] . \tag{4.1}
\end{align*}
$$

This functional equation can be used to express Every Positive Integer can be Expressed as the Sum of Squares of Four Integers.

A well-known classical theorem of Lagrange in Algebra [11]: According to old Trick of Euler's formula, if

$$
\begin{equation*}
2 a=x_{0}^{2}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}, \tag{4.2}
\end{equation*}
$$

where $a, x_{0}, x_{1}, x_{2}, x_{3}$ are integers, then

$$
\begin{equation*}
a=y_{0}^{2}+y_{1}^{2}+y_{2}^{2}+y_{3}^{2} \tag{4.3}
\end{equation*}
$$

for some positive integers $a, y_{0}, y_{1}, y_{2}, y_{3}$.
To see this, if $2 a$ is even, then x_{i} 's are all even (or) all odd (or) two even and two odd.

At any rate in all the above three cases, one can renumber the x_{i} 's and pair them in such a way that

$$
y_{0}=\frac{x_{0}+x_{1}}{2}, y_{1}=\frac{x_{0}-x_{1}}{2}, y_{2}=\frac{x_{2}+x_{3}}{2}, y_{3}=\frac{x_{2}-x_{3}}{2}
$$

are all integers. Also

$$
\begin{aligned}
& y_{0}^{2}+y_{1}^{2}+y_{2}^{2}+y_{3}^{2} \\
= & \left(\frac{x_{0}+x_{1}}{2}\right)^{2}+\left(\frac{x_{0}-x_{1}}{2}\right)^{2}+\left(\frac{x_{2}+x_{3}}{2}\right)^{2}+\left(\frac{x_{2}-x_{3}}{2}\right)^{2} \\
= & \frac{1}{2}\left(x_{0}^{2}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right) \\
= & \frac{1}{2}(2 a) \\
= & a .
\end{aligned}
$$

References

[1] J. Aczel and J. Dhombres, Functional Equations in Several Variables, Cambridge Univ. Press, 1989.
[2] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66.
[3] M. Arunkumar, S. Jayanthi and S. Hema Latha, Stability of quadratic derivations of Arun-quadratic functional equation, Internat. J. Math. Sci. Eng. Appl. 5(4) (2011), 433-443.
[4] J. H. Bae, On the stability of n-dimensional quadratic functional equations, Comm. Kor. Math. Soc. 16(1) (2001), 103-113.
[5] Y. H. Bae and K. W. Jun, On the Hyer-Ulam-Rassias stability of a quadratic functional equation, Bull. Kor. Math. Soc. 38(2) (2001), 325-336.
[6] C. Borelli and G. L. Forti, On a general Hyers-Ulam stability, Internat. J. Math. Math. Sci. 18 (1995), 229-236.
[7] P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), 76-86.
[8] S. Czerwik, On the stability of the quadratic mappings in normed spaces, Abh. Math. Sem. Univ. Hamburg. 62 (1992), 59-64.
[9] S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, River Edge, NJ, 2002.
[10] P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.
[11] I. N. Herstein, Topics in Algebra, 2nd ed., Wiley-India Edition, India, 2007.
[12] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224.
[13] D. H. Hyers, G. Isac and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Basel, 1998.
[14] S. M. Jung, On the Hyers-Ulam stability of the functional equations that have the quadratic property, J. Math. Anal. Appl. 222 (1998), 126-137.
[15] S. M. Jung, On the Hyers-Ulam-Rassias stability of a quadratic functional equation, J. Math. Anal. Appl. 232 (1998), 384-393.
[16] S. M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, 2001.
[17] Pl. Kannappan, Quadratic functional equation inner product spaces, Results Math. 27(3-4) (1995), 368-372.
[18] Pl. Kannappan, Functional Equations and Inequalities with Applications, Springer Monographs in Mathematics, 2009.
[19] J. M. Rassias, On approximately of approximately linear mappings by linear mappings, J. Funct. Anal. USA 46 (1982), 126-130.
[20] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
[21] Th. M. Rassias and P. Semrl, On the behavior of mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc. 114 (1992), 989-993.
[22] Th. M. Rassias, On the stability of the functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000), 264-284.
[23] K. Ravi, M. Arunkumar and J. M. Rassias, Ulam stability for the orthogonally general Euler-Lagrange type functional equation, Int. J. Math. Stat. 3 A08 (2008), 36-47.
[24] F. Skof, Proprietà locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano, 53 (1983), 113-129.
[25] S. M. Ulam, Problems in Modern Mathematics, Science Editions, Wiley, New York, 1964.

