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Abstract 

The on-line preemptive scheduling on parallel machines which have 
nonsimultaneous machine available times is firstly delivered in this 
paper. For the problem of minimizing the makespan, we show                  
an algorithm which of the worst-case performance ratio is 
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1. Introduction 

We consider the problem of scheduling a list ( ),, 21 JJ  of on-line jobs 

preemptively on m identical parallel machines. In such a setting, the jobs 
arrive one by one. Job jJ  becomes known (with its existence and its 

processing time )jp  only when job 1−jJ  has already been scheduled, which 

gives rise to the name on-line scheduling. Job processing can be preemptive, 
i.e., the processing of any job can be interrupted and resumed later. The 
machines are parallel, which allows any machine to process any job, and 
differ only in their processing speeds. A job jJ  of processing time jp  

requires ij sp  time units for a machine of speed is  to complete. As usual, it 

is required that each machine can process at most one job at a time and each 
job can be processed by at most one machine at a time. 

In a classical parallel machine scheduling problem, we have m identical 
machines ,...,,, 21 mMMM  which are all available at time zero, i.e., 

....,,2,1,0 mja j ==  For this case, Chen et al. [3] derive an approximation 

algorithm with worst-case guarantee ( ( ) )mmm mmm 1−−  for every ,2≥m  

which increasingly tends to ( ) 58.11 ≈−ee  as .∞→m  

If the m machines are not simultaneously available, i.e., ,0≠ja  =j  

,...,,2,1 m  how to find a schedule that minimizes the maximum completion 

time, or makespan. In this paper, we will develop an approximation 

algorithm with worst-case ratio ( ) ,1 1
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2. The Approximation Algorithm 

Let m denote the number of machines, let 0>is  be the speed of 

machine ,iM  ....,,2,1 mi =  We assume that .21 msss ≤≤≤  Without 

loss of generality, we assume that .1=ms  In this paper, we solve the case of 

non-decreasing speed ratios, i.e., 11 +− ≤ iiii ssss  for .12 −≤≤ mi  
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We use the following notations: 

time t : the time immediately after the tth job has been scheduled, 

:t
iL  the load of machine i after the arrival of t jobs, 

,i
t
i

t
i aLQ +=  

:tOPT  the optimal off-line makespan at time t, 
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Each job ( )nii ,,2,1 …=  is associated with a processing time ,ip  if 

they become available for processing at time zero and can be interrupted, 
each machine has its own speed is  and preparation time ,0≥ia  then the 

completion time of the machine has three obviously lower bound: 
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where kP  means the sum of the k longest processing times, and kS  means 

the sum of the k fastest machines’ speeds, then we have 

.,maxmin,maxmax
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The algorithm maintains the following three invariants. These invariants 
are a generalization of the invariants defined for identical machines in [7], 

(a) At any time ., 21
t
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(b) At any time t, .tt
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(c) At any time t, for every ,1 mk ≤≤  ∑
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∑
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A new job 1+tJ  (which arrives at time )1+t  is assigned as follows. 

First calculate 1+tLB  by equality (2.1), then the following intervals are 

reserved. On machine ,mM  the interval: [ ];, 1+= tt
mm rLBQI  and on machine 

( ),11 −≤≤ miMi  the interval: [ ]., 1
t
i

t
ii QQI +=  

To assign ,1+tJ  go from mI  to ,1I  putting a part of the job, as large as 

possible in each interval, until all the job is assigned. After the assignment 
there will be some fully occupied intervals ml II ...,,1+  some empty intervals 

11 ...,, −lII  and a partially or fully occupied interval .lI  

Next, we show that it is always possible to partition 1+tJ  among those 

intervals. 

Lemma 2.1. If the invariants are fulfilled at step t, then the reserved 
intervals are sufficient to assign .1+tJ  

Proof. The total weight that can be assigned to all intervals is 
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Since ,11 +− ≤ iiii ssss  we can use the third invariant for each value of j 

and get that the above is at least 
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We consider two cases: 
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We show that the assignment is successful in both cases. 
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Case 2. In this case,  
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To complete the proof of the algorithm, we need to show that all 
invariants are kept after an assignment of a job. This is clear for the first two 
invariants, from the definition of the algorithm. 

Lemma 2.2 If the invariants are fulfilled after step t, then they are also 
satisfied after step .1+t  

Proof. According to the definition of the algorithm, there exists a 

machine l such that for ,li <  ,1 t
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If ,mkl ≤≤  then we need to show 
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( ) .1 1+μ− tS  Simple calculations show that inequality (2.2) holds. 

3. Conclusion 

We have given an approximation algorithm for the on-line preemptive 
scheduling on parallel machines which have nonsimultaneous machine 
available times, its worst-case performance ratio is 
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