

Far East Journal of Applied Mathematics
Volume 62, Number 1, 2012, Pages 49-57
Published Online: February 2012
Available online at http://pphmj.com/journals/fjam.htm
Published by Pushpa Publishing House, Allahabad, INDIA

 HousePublishingPushpa2012©
2010 Mathematics Subject Classification: 90B35, 68M20.

 Keywords and phrases: machine available time, on-line, preemption, worst-case performance
ratio.
Received December 12, 2011

THE ON-LINE PREEMPTIVE SCHEDULING ON
PARALLEL MACHINES WHICH HAVE

NONSIMULTANEOUS MACHINE
AVAILABLE TIMES

Lin Wang and Zhenfu Yan

School of Management
Qufu Normal University
Rizhao, Shandong, 276826
P. R. China
e-mail: rzwanglin@163.com

School of Information Science and Engineering
Rizhao Polytechnic
Rizhao, Shandong, 276826
P. R. China
e-mail: zfyan@sina.com

Abstract

The on-line preemptive scheduling on parallel machines which have
nonsimultaneous machine available times is firstly delivered in this
paper. For the problem of minimizing the makespan, we show
an algorithm which of the worst-case performance ratio is

() ,1 1
1
⎥⎦
⎤

⎢⎣
⎡ − ∑ =

−m
i

i
i

m xsxx where .1−= m
mx

Lin Wang and Zhenfu Yan 50

1. Introduction

We consider the problem of scheduling a list (),, 21 JJ of on-line jobs

preemptively on m identical parallel machines. In such a setting, the jobs
arrive one by one. Job jJ becomes known (with its existence and its

processing time)jp only when job 1−jJ has already been scheduled, which

gives rise to the name on-line scheduling. Job processing can be preemptive,
i.e., the processing of any job can be interrupted and resumed later. The
machines are parallel, which allows any machine to process any job, and
differ only in their processing speeds. A job jJ of processing time jp

requires ij sp time units for a machine of speed is to complete. As usual, it

is required that each machine can process at most one job at a time and each
job can be processed by at most one machine at a time.

In a classical parallel machine scheduling problem, we have m identical
machines ,...,,, 21 mMMM which are all available at time zero, i.e.,

....,,2,1,0 mja j == For this case, Chen et al. [3] derive an approximation

algorithm with worst-case guarantee (())mmm mmm 1−− for every ,2≥m

which increasingly tends to () 58.11 ≈−ee as .∞→m

If the m machines are not simultaneously available, i.e., ,0≠ja =j

,...,,2,1 m how to find a schedule that minimizes the maximum completion

time, or makespan. In this paper, we will develop an approximation

algorithm with worst-case ratio () ,1 1
1
⎥⎦
⎤

⎢⎣
⎡ − ∑ =

−m
i

i
i

m xsxx where .1−= m
mx

2. The Approximation Algorithm

Let m denote the number of machines, let 0>is be the speed of

machine ,iM ,,2,1 mi = We assume that .21 msss ≤≤≤ Without

loss of generality, we assume that .1=ms In this paper, we solve the case of

non-decreasing speed ratios, i.e., 11 +− ≤ iiii ssss for .12 −≤≤ mi

The On-line Preemptive Scheduling on Parallel Machines … 51

We use the following notations:

time t : the time immediately after the tth job has been scheduled,

:t
iL the load of machine i after the arrival of t jobs,

,i
t
i

t
i aLQ +=

:tOPT the optimal off-line makespan at time t,

∑ ∑= =
+=

t
j

m
i ij

t apS
1 1

,

()
.

1
1

1∑ =
−−

= m
i

i
i

m

xsx

xr

Each job ()nii ,,2,1 …= is associated with a processing time ,ip if

they become available for processing at time zero and can be interrupted,
each machine has its own speed is and preparation time ,0≥ia then the

completion time of the machine has three obviously lower bound:

∑∑ ∑ == =−≤≤≤≤≤≤ ⎟
⎠
⎞⎜

⎝
⎛ ++ m

i i
n
j

m
i ij

k
k

mkimiimi sapS
Paa 11 11111 ,,maxmin,max

where kP means the sum of the k longest processing times, and kS means

the sum of the k fastest machines’ speeds, then we have

.,maxmin,maxmax

1

1 1

1111 ⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧ +
+=

∑
∑ ∑

=

= =

−≤≤≤≤≤≤ m
i i

n
j

m
i ij

k

k
mk

i
mi

i
mi s

ap

S
PaaLB (2.1)

The algorithm maintains the following three invariants. These invariants
are a generalization of the invariants defined for identical machines in [7],

(a) At any time ., 21
t
m

tt QQQt ≤≤≤

(b) At any time t, .tt
m rLBQ ≤

Lin Wang and Zhenfu Yan 52

(c) At any time t, for every ,1 mk ≤≤ ∑
∑
∑

=
=

−
=

−

≤k
i

t
m
i

i
i

k
i

i
it

ii S
xs

xs
Qs1

1
1

1
1

.

A new job 1+tJ (which arrives at time)1+t is assigned as follows.

First calculate 1+tLB by equality (2.1), then the following intervals are

reserved. On machine ,mM the interval: [];, 1+= tt
mm rLBQI and on machine

(),11 −≤≤ miMi the interval: []., 1
t
i

t
ii QQI +=

To assign ,1+tJ go from mI to ,1I putting a part of the job, as large as

possible in each interval, until all the job is assigned. After the assignment
there will be some fully occupied intervals ml II ...,,1+ some empty intervals

11 ...,, −lII and a partially or fully occupied interval .lI

Next, we show that it is always possible to partition 1+tJ among those

intervals.

Lemma 2.1. If the invariants are fulfilled at step t, then the reserved
intervals are sufficient to assign .1+tJ

Proof. The total weight that can be assigned to all intervals is

() ()∑
−

=
+

+ −+−=
1

1
1

1
m

i
i

t
iim

t
m

t sQQsQrLBA

()∑
=

−
+ −+=

m

i

t
iii

t QssrLB
1

1
1

∑ ∑
= =+

−+
⎟
⎠
⎞

⎜
⎝
⎛ −+=

m

i

i

j

t
jj

i
i

i
it Qss

s
s

srLB
1 11

11 .

Since ,11 +− ≤ iiii ssss we can use the third invariant for each value of j

and get that the above is at least

The On-line Preemptive Scheduling on Parallel Machines … 53

∑
∑ =

−

+
−

=

+
⎟
⎠
⎞

⎜
⎝
⎛ −+≥

i

j

j
j

i
i

i
i

m
i

t
t xss

s
s

sSrLBA
1

1
1

1

1

1

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −+

−
= ∑
∑ =

−

+

−+

=
−

i

j

j
j

i
i

i
itt

m

m
i

i
i

xss
s

s
sSLBx

x

xs 1

1
1

11

1
1 1

1

() .11
1

1

11

1
1 ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟

⎠

⎞
⎜
⎜

⎝

⎛
−−+

−
= ∑
∑ =

−+

=
−

t
m

i

mi
i

t
m

m
i

i
i

SxxsxLBx
x

xs

We consider two cases:

1.
∑ =

+

+
+ ≥≥ m

i i

t
t

t

s

SpLB

1

1
1

1

2. .1

1

1
1

+

=

+
+ ≥≥

∑
tm

i i

t
t p

s

SLB

We show that the assignment is successful in both cases.

Case 1. Since .1111
1 ⎟

⎠
⎞⎜

⎝
⎛ −≤−= ∑ =++

+ m
i itt

tt sppSS

So,

()
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟

⎠

⎞
⎜
⎜

⎝

⎛
−−

⎟
⎟

⎠

⎞
⎜
⎜

⎝

⎛
−+

−
≥ ∑∑
∑ =

−

=
++

=
−

m

i

mi
i

m

i
itt

m

m
i

i
i

xxsxsppx
x

xs
A

1

1

1
11

1
1

111
1

()
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟

⎠

⎞
⎜
⎜

⎝

⎛
−−

⎟
⎟

⎠

⎞
⎜
⎜

⎝

⎛
−+

−
= ∑∑
∑ =

−

==
−

+
m

i

mi
i

m

i
i

m

m
i

i
i

t xxsxsx
x

xs

p

1

1

11
1

1 111

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−+

−
= ∑
∑ =

−

=
−

+
m

i

m
i

i
m

m
i

i
i

t
x
xxsx

x

xs

p

1

1

1
1

1
11

.1+= tp

Lin Wang and Zhenfu Yan 54

Case 2. In this case,

,

1

1
1

∑ =

+
+ +≥ m

i i

t
t

t

s

SpLB

and,

,1
111

1 ⎟
⎠
⎞⎜

⎝
⎛ −≥−= ∑ =++

+ m
i itt

tt sppSS

so,

()⎪⎩

⎪
⎨

⎧

−
+

−
≥

∑∑ =

+

=
−

t
m
i i

m
t

m

m
i

i
i

S
sx

xp
x
x

xs
A

1

1

1
1 11

1

()
⎪⎭

⎪
⎬
⎫

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−+ ∑

=

− t
m

i

mi
i Sxxsx

1

11

⎪⎩

⎪
⎨

⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

−
+

−
≥ ∑

∑∑ ===
−

+
m

i
i

mm

m
i i

m
i

i
i

t sx
x

x
x

sxs

p

111
1

1 111
1

()
⎪⎭

⎪
⎬
⎫

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+ ∑∑

=

−

=

m

i

mi
i

m

i
i xxsxs

1

1

1
11 .

()
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟

⎠

⎞
⎜
⎜

⎝

⎛
−−

−
+

−
≥ ∑
∑ =

−

=
−

+
m

i

mi
i

m

m
i

i
i

t xxsxxx
x

xs

p

1

1

1
1

1 11
1

1

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−
−+

−
≥ ∑
∑ =

−

=
−

+
m

i

m
i

i
m

m
i

i
i

t
x
xxsx

x

xs

p

1

1

1
1

1
11

.1+= tp

The On-line Preemptive Scheduling on Parallel Machines … 55

To complete the proof of the algorithm, we need to show that all
invariants are kept after an assignment of a job. This is clear for the first two
invariants, from the definition of the algorithm.

Lemma 2.2 If the invariants are fulfilled after step t, then they are also
satisfied after step .1+t

Proof. According to the definition of the algorithm, there exists a

machine l such that for ,li < ,1 t
i

t
i QQ =+ for ,mil ≤< ,1

1 t
i

t
i QQ +
+ = and

t
l

t
l

t
l QQQ 1

1
+

+ ≤< (for convenience let .)1
1

+
+ = tt

m rLBQ

If ,lk < then

∑ ∑
∑
∑

= = =
−

=
−

+ ≤=
k

i

k

i

t
m
i

i
i

k
i

i
it

ii
t
ii S

xs

xs
QsQs

1 1 1
1

1
1

1

.1

1
1

1
1

+

=
−

=
−

∑
∑

≤ t
m
i

i
i

k
i

i
i

S
xs

xs

If ,mkl ≤≤ then we need to show

 ∑
∑
∑

+=

+

=
−

+=
−

+ ≥
m

ki

t
m
i

i
i

m
ki

i
it

ii S
xs

xs
Qs

1

1

1
1

1
1

1 . (2.2)

Since ,, 1
1 t

i
t
i QQmil +
+ =≤< so

∑
+=

+
m

ki

t
iiQs

1

1

∑
+=

−
+ +=

m

ki

t
ii

t QsrLB
2

1
1

Lin Wang and Zhenfu Yan 56

∑ ∑
+= += +

+−

+

++
⎟
⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛+=

m

ki

m

ki

t
ii

k
k

i
i

k
kt

ii
t Qss

s
s

s
s
sQsrLB

2 3 2
11

2
11

∑ ∑ ∑
+= += −

−−

=+

++
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛+=

m

ki

m

kj j

j

j

j
m

ji

t
ii

k
kt

ii
t

s
s

s
s

Qss
sQsrLB

2 3 1

21

2
11

.1
1 1

1

1

1
1 ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞

⎜
⎜
⎝

⎛
+

−
≥ ∑
∑

−

+=

+

=
−

t
m

ki

i
i

t
m

m
i

i
i

SxsLBx
x

xs

Let .1
1

+
+ μ= t

t Sp Then 1
1

1 1,max +
=

+
⎭⎬
⎫

⎩⎨
⎧μ≥ ∑ tm

i i
t SsLB and =tS

() .1 1+μ− tS Simple calculations show that inequality (2.2) holds.

3. Conclusion

We have given an approximation algorithm for the on-line preemptive
scheduling on parallel machines which have nonsimultaneous machine
available times, its worst-case performance ratio is

()
()

()

()
.

1
1

1∑ =
−−

≤≤ m
i

i
i

m

xsx

x
LB

IA
IOPT

IA

If ,1=is then its worst-case performance ratio is
()

.
1 mm

m

mm
m

−−

References

 [1] C. Y. Lee, Parallel machine scheduling with nonsimultaneous machine available
time, Discrete Appl. Math. 30 (1991), 53-61.

 [2] Jianjun Wen and Donglei Du, Preemptive on-line scheduling for two uniform
processors, Oper. Res. Lett. 23 (1998), 113-116.

 [3] B. Chen, A. van Vliet and G. J. Woeginger, An optimal algorithm for preemptive
on-line scheduling, Oper. Res. Lett. 18 (1995), 127-131.

The On-line Preemptive Scheduling on Parallel Machines … 57

 [4] Yuzhong Zhang, Shouyang Wang, Bo Chen and Shuxia Zhang, On-line
preemptive scheduling on uniform machines, J. Syst. Sci. Complex. 14 (2001),
373-377.

 [5] Guo-Hui Lin, En-Yu Yao and Yong He, Parallel machine scheduling to maximize
the minimum load with nonsimultaneous machine available times, Oper. Res. Lett.
22 (1998), 75-81.

 [6] Leah Epstein and Jiří Sgall, A lower bound for on-line scheduling on uniformly
related machines, Oper. Res. Lett. 26 (2000), 17-22.

 [7] Leah Epstein, Optimal preemptive on-line scheduling on uniform processors with
non-decreasing speed ratios, Oper. Res. Lett. 29 (2001), 93-98.

