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Abstract

In this paper, some new generalized contractive type and generalized
quasi-contractive type conditions for a pair of mappings in cone metric
spaces are defined and certain common fixed point theorems for these
mappings are established.

1. Introduction and Preliminaries

Recently, a fixed point theorem for mappings defined on cone metric
spaces satisfying cone integral type contractive condition [2] is proved.
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In this paper, we establish some new generalized contractive type and
generalized quasi-contractive type conditions for a pair of mappings defined
on cone metric spaces and prove some new common fixed point theorems for
these mappings. Our results are the generalizations of results in [1, 2].

Let (E, t) be a topological vector space and P — E. Then, P is called a
cone whenever

(i) P is closed, non-empty and P = {0};

(ii) ax + by € P forall x, y € P and non-negative real numbers a, b;

(iii) PN (-P) = {0}.

Given a cone P < E, we define a partial ordering < with respect to P
by

x <y ifandonlyif y—x e P.

We write x < y toindicate that x <y but x = y.

For x, y e P, x <y stands for y — x e int(P), where int(P) is the
interior of P.

A cone P is called regular if every increasing sequence which is bounded
from above is convergent. That is, if {u,} is a sequence such that for some

z e E,

U1SU2§"'SZ,
then there exists a u € E such that
lim |u, —u|=0.
n—oo
Equivalently, a cone P is regular if and only if every decreasing sequence
which is bounded from below is convergent.

If E is a normed space, then a cone P is called normal whenever there
exists a number K >1 such that for all x,ye E, 0<x<y implies
| x| < K|yl The least positive number satisfying this norm inequality is
called the normal constant of P [1]. There are non-normal cones (see [3]).
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It is well known [1] that every regular cone is normal (see also [3]).

For a nonempty set X, a mapping d : X x X — E is called cone metric
[1] on X if the following conditions are satisfied:

(i) 0<d(x,y) forall x, y e X, and d(x, y) =0 ifandonly if x = y;
(i) d(x, y) =d(y, x) forall x, y € X;
(iii) d(x, y) <d(x, z)+d(z, y) forall x, y, z € X.

From now on, we assume that E is a normed space, P is a cone in E with
int(P) = & and < is a partial ordering with respect to P. And let X be a

cone metric space with a cone metric d.
The following definitions are found in [1].
Let x € X, and let {x,} be a sequence of points of X. Then

(1) {x,} converges to x (denoted by lim,_,., X, = x or x, —> x) if for

any c e int(P), there exists an N such that forall n > N, d(x,, x) < c.

(2) {xn} is Cauchy if for any c e int(P), there exists an N such that for
all n, m> N, d(x,, xy) < c.

(3) (X, d) is complete if every Cauchy sequence in X is convergent.

Note that if P is a normal cone, then {x,} converges to x if and only if
lim,_,., d(X,, X) = 0. Further, in this case, {x,} is a Cauchy sequence in X

if and only if lim, o, d(Xy, Xyn) = 0 (see [1]).

A function f : P — P is called <-increasing (resp. <-increasing) if, for
each x,ye P, x<y (resp.x<vy) if and only if f(x)< f(y) (resp.
f(x)< f(y)).

Let F : P — P be afunction such that

(F1) F(t)=0 ifandonly if t = O;

(F2) 0 < F(t) foreach 0 < t;
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(F3) F is <-increasing;
(F4) F is continuous.

We denote by 3 (P, P) the family of functions satisfying (F1)-(F4).
Example 1.1. (1) Let F(t) =t foreach t € P. Then F € 3(P, P).
(2)Leta,be E,andlet [a,b]={xe E:x=th+(1-t)a, t ][0, 1]}.
Suppose that a mapping ¢ : P — P is non-vanishing cone integrable on

each [a, b] = P such that for each ¢ € int(P), J.g(pdp e int(P) (see [2]).

Let F(t) = [ odp. Then F < 3(P, P)

Note that if ¢ : P — P is subadditive, then F is subadditive (see [2]).

Let ®(P, P) be the family of <-increasing and continuous functions
¢ :int(P)U {0} — int(P)U {0} satisfying the following conditions:

(1) ¢(t) =0 ifandonly if t = 0;
(¢2) for each t € int(P), ¢(t) < t;

(¢3) either ¢(t) < d(x, y) or d(x, y) < ¢(t) for t eint(P)U {0} and
X, ¥y e X.

From now on, let C(a)={peP:a<p} for ae X, and let F e
3(P, P) and ¢ € ®(P, P).

Lemma 1.1. Let E be a topological vector space. Then the following are
satisfied:

(1) If, for u, v, we E, u < v and v <w, then u < w.
(2) If u € E such that forany ¢ e int(P), 0 <u < ¢, then u = 0.

(3) Let u, v, u, € E suchthat u, < v, forall n > 0.
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If limp_,,u, =u and limy_,, vy =V, thenu < v.

(4) If ¢, € E and ¢, — 0O, then for each ¢ € int(P), there exists an N

such that ¢, < ¢ forall n > N.

Lemma 1.2. Let P — E be a normal cone. Suppose that {u,}, {v,}
and {w,} are sequences of points in E such that u, <w, <v, for all
neN If lim,,,uy,=u and lim,_,, v, =u for some u e E, then

im0 Wy = UL

Proof. Since v, —up — (W, —Uy) =V, — W, € P, we have w, —u, <
Vj, — Uy, and so | wy —up | < K| v, —up |, where K is the normal constant
of P.

Thus we have
W —u <[y —up [+ un - uf]
< K[[Vp = un [+]up —u]
< K(lvn —uf+Ju-uq ) +]up —uff—0.
Hence lim,_,,, W, = u. O
Lemma 1.3. Let E be a topological vector space and a € {0} U int(P).
If F(a) < ¢(F(a)), then a = 0.

Lemma 1.4 [1]. Let P < E be a normal cone. Suppose that {x,} and

{yn} are sequences of pointsin X and x, y € X.

If im0 X, = x and limy_ Yy =Y, then lim,_, d(x,, yp) =
d(x, y).

2. Common Fixed Point Theorems

We prove a generalized contractive type common fixed point theorem for
a pair of mappings defined on cone metric space.
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Theorem 2.1. Let (X, d) be a complete cone metric space with regular
cone P such that 0 < d(x, y) for x, y e X with x # y. Suppose that
mappings S, T : X — X are satisfying

C(F(d(Tx, Sy) N o(F(M(x, y))) = @ (2.1)

forall x, y € X, where

m(x, ) = fd(x y), d(Tx, x) d(Sy, y), 5 {d(Tx, )+ d(5y. 0} -

Then S and T have a unique common fixed point in X. Moreover, for each
Xo € X, the iterated sequence {X,} With Xop,1 = TXo, and Xonio = SXoni1

is convergent to the common fixed point of Sand T.

Proof. We first prove that any fixed point of T is also a fixed point of S,
and conversely.

If Tz = z, then we have

m(z, 7) = {d(z, 2), d(T2, 2), d(S2, 2), S {d(Tz, 2) + d(Sz, z)}}

_ {o, (s, 2), d(sz, z)}.
Thus from (2.1) with x = , y = z, we obtain
C(F(d(Tz, S2))) N d(F(M(z, 2))) # &
which implies
C(F(d(z, S2)N ¢(F({O, d(sz, 2), > d(sz, z)}D £ Q.

By Lemma 1.3, d(z, Sz) = 0. Hence z = Sz.
Similarly, we have that if Sz = z, then Tz = z.

We now show that if S and T have a common fixed point, then the
common fixed point is unique.
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If Su=Tu =u and Sv =Tv = v, then m(u, v) = {0, d(u, v)}.
From (2.1) with x = u and y = v, we have
C(F(d(u, v))) N (F({0, d(u, v)})) # @.
By Lemma 1.3, u =v.

Let xg € X be fixed, and let Xyn.1 = TXon, Xopi2 = SXopyq for all
n=>0.

If there exists an n € N such that x,,; = X,, then S or T has a fixed
point, and so S and T have a common fixed point. Hence the proof is
completed.

Thus we assume that, forany n >0, X1 # X,.
From (2.1) with x = Xp,, and y = Xp,_1, We have
C(F(d(Txzn, Sx2n-1))) N &(F(M(Xan, Xon-1))) # D, (22)
where

M(X2n, Xon-1) = {d(Xva Xon—1) d(X2n, Xon41), d(Xon1s Xon ),
1
3{800n1,700.1) + 40, o0 )|

1
= {d(XZn’ Xon—1)r d(Xan41, X2n), §d(x2n+lv X2n—1)}-

Thus we have

C(F(d(X2n+1, X2n)))
N ¢(F({d(x2n, Xon-1): d(X2n 11, X2n), %d(x2n+1: X2n—1)})) i

which implies

C(F(d(x2n+1: X2n)))

N ¢(F({d(x2n, Xon-1), %d(x2n+11 X2n) + d(Xon, in—l)}D Q. (2.3)
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If

F(d(Xan41, X2n)) < ¢(F(%{d(x2n, Xon-1) + d(Xon 41, in)}D, (2.4)
then

F(d0ne1. Yon)) < F{ 518000, Xan 1)+ d0ian1, Xon)} |

1 ]
and so F(d(Xon11, X2n)) < F(E {d(X2n, Xan-1) + d(X2n41, in)}j- Since F

is <-increasing, d(Xop41, Xop) < %{d(XZn, Xon_1) + d(Xon41, Xon)})- Thus,
d(Xan41, Xon) < d(Xzn, Xon-1)
From (2.4), we obtain F(d(Xon41, Xon)) < O(F(d(Xon, Xon_1)))- Thus
(2.3) implies F(d(Xan11, X2n)) < ¢(F(d(X2n, Xon-1)))
Similarly, we have F(d(Xon42, Xon41)) < O(F(d(Xon41, Xon)))-
Thus, we have
F(d(Xp11, Xp)) < &(F(d(X,, Xp_1))) forall n e N.
By (2),
F(d(Xn41, X)) < F(d(X, X,_1)) forall n e N
and so
F(d(Xp11, Xp)) < F(d(Xy, Xn—1)) forall n e N.
Thus,
d(Xn41, Xn) < d(Xp, Xq—1) forall n e N.
Since P is regular, there exists an r(0 < r) such that nIi_r)nood(xnﬂ, Xn)
=T,

Letting n — o in (2.3), we obtain F(r) < ¢(F(r)) < F(r), which is a
contradiction unless r = 0.
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Thus,
lim d(X,,1, X5) = 0. (2.5)
n—o
We now show that {x,} is a Cauchy sequence in X.

Assume that {x,} is not a Cauchy sequence.

Then there exists a ¢ < int(P) such that for all k € N, there exists an
m, > n, > k satisfying

(i) ny iseven, and my is odd,
(i1) d(Xn, » Xmy ;) < (C),
(iii) d(c) < d(Xn, + Xm, )
Then we have
o(c) < d(Xn s Xmy ) < d (X Xmy_y )+ d(Xmy_y0 Xmy ) < d(Xmye s X )+ 0(C).
By Lemma 1.2 and (2.5),
nli_r)noO d(Xn, » Xm, ) = ¢(C). (2.6)
We obtain
d(Xn, —1 Xmy -1) < d(Xn, —1 Xn, ) + d(Xny s Xy 1) < d(Xn, _1, Xp, ) + (C)
and
o(c) < d(Xn, s Xm, ) < d(Xn, s Xn, —1) + d(Xn, 1, Xmy —1) + d Xy —10 X, )-
Thus we have
¢o(¢) = d(Xny » Xn 1) = d(Xmy -1, Xm, )
< d(Xpy 1+ Xmy -1)

< d(Xnk ~1s X )+ ¢(c).
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By Lemma 1.2 and (2.5), we have
im d(Xp, -1, Xm, 1) = $(C)- 2.7)
We have
d(Xn, ~1» Xmy —1) — d(Xmy + Xmy 1)
< d(Xmy + Xn, 1)
< d(Xmy» Xmy 1) + d(Xmy —1, Xn, )+ d(Xn s Xn 1)
< d(Xmy s Xmy—1) + d(Xn s Xn —1) + (C).
By Lemma 1.2, (2.5) and (2.7),
1im (s, Xn, 1) = 9(C).

Also, we obtain
o(c) — d(Xm, » Xm, 1)

< d(Xny » Xm, ) = d(Xmy o+ Xy —1)
< (X Xmy-1)
< ¢(c).
By Lemma 1.2 and (2.5),
1im (s, Xm, 1) = 9(C).
From (2.1) with x = Xn, 4 and y = Xmy_q» We obtain
C(F(d(TXn_y» SXmy_ ) N O(F(MOXn 0 Xy, ))) = D,

where

m(Xnk,ly ka,l) = {d(xnkli ka,l )1 d(Xnk’ Xnk,]_ )1 d(ka1 ka,j_ )’

1
Ed(xmk | Xnk_l) + d(xnk ) ka—l )}
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Letting k — <o in above inequality, we obtain

C(F(9(c)) N &(F ({0, ¢(c)) = @.

By Lemma 1.3, ¢(c) = 0, and hence ¢ = 0, which is a contradiction.
Therefore, {x,} is a Cauchy sequence in X.

Since X is complete, there exists an a € X such that lim,_,, x, = a.
From (2.1) with x = Xo,, and y = a, we obtain

C(F(d(xzn+1, Sa))) N ¢(F(M(xzn, a))) # &, (2.8)

where

M(izn, )
1
~{d0czn, @) Q0 11, Xn). A58, ), 5 {00 1, )+ d(S2, Xz
Letting n — <o in (2.8), we obtain

C(F(d(a, Sa))N ¢(F({o, d(Sa, a), %d(Sa, a)}D -2

By Lemma 1.3, d(a, Sa) = 0. Thus, Sa = a.
By the proof above, a is a unique common fixed point of Sand T. O

Corollary 2.2. Let (X, d) be a complete cone metric space with regular
cone P such that 0 < d(x, y) for x, y € X with x = y. Suppose that a

mapping ¢ : P — P is non-vanishing cone integrable on each [a, b] < P

such that for each ¢ e int(P), _[g(pdp e int(P).

If mappings S, T : X — X are satisfying

CUS(TX'SY)@dpj N (I)({J(:(Pdp U e m(x, y)}j %)

for all x, y e X, then S and T have a unique common fixed point in X.
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Moreover, for each xg € X, the iterated sequence {xn} With Xo,,1 = TXop,

and Xpn,2 = SXon41 IS convergent to the common fixed point of Sand T.

Theorem 2.3. Let (X, d) be a complete cone metric space with normal

cone P. Suppose that mappings S, T : X — X are satisfying
C(F(d(Tx, Sy))) N kF(m(x, y)) # & (2.9

forall x, y € X, where k €[0,1), and F : P — P is satisfying (F1), (F3)
and (F4) such that

(1) F is subadditive;
(2) if, for {c,} = P, lim,_,o, F(cy) =0, then lim,_,., ¢, = 0.

Then S and T have a unique common fixed point in X. Moreover, for each
Xo € X, the iterated sequence {X,} with Xop1 = TXo, and Xopni2 = SXopny1

is convergent to the common fixed point of Sand T.

Proof. As in the proof of Theorem 2.1, we have that any fixed point of T
is also a fixed point of S, and conversely. Also, if S and T have a common
fixed point, then the common fixed point is unique.

Let xg € X be fixed, and let Xoni1 = TXon, Xopyo = SXopyq for all
n>0.

Then we may assume that forany n > 0, X1 # Xp-
Let X = Xpp and y = Xop_1 In (2.9).
Then, as in proof of Theorem 2.1, we have

C(F(d(X2n+1, X2n)))

N kF({d(XZn’ Xon—1); %{d(x2n+lv Xon) + d(Xon, X2n—1)}}j = Q. (2.10)
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If

F(d(Xon41, X2n)) < kF(% {d(X2n, Xon-1) + d(X2n11, Xon )}): (2.11)

1
then F(d(Xon41, Xon)) < F(§ {d(X2n, Xon-1) + d(Xon 11, X2n)})-
Since F is <-increasing,
1
d(Xon41, Xon) < E{d(xm, Xon-1) + d(Xan41, Xon)}-

Thus, d(Xani1, Xon) < d(X2n, X2n-1)-

From (2.11), we obtain F(d(Xon41, Xon)) < kKF(d(Xon, Xon_1))- Thus
(2.10) implies F(d(Xan41, X2n)) < KF(d(X2n, Xon-1))-

Similarly, we have F(d(Xon12, Xon41)) < KF(d(Xon41, Xop))-
Thus, we have
F(d(Xh41, X)) < kKF(d(X,, Xp_1)) forall n e N.
Hence
F(d(Xn41, X)) < KF(d(Xp, Xq-1)) < --- < K"F(d(xq, Xp)).

We now show that {x,} is a Cauchy sequence in X.

For m > n, we have that

F(d(Xn, Xm)) < F(d(Xn, Xn41) + d(Xns10 Xni2) + o+ d(Xm_1, Xm)
< F(d(Xn, Xn+1) + F(d(Xn11, Xni2)) + -+ + F(d (X1, Xm))
< K"F(d(x, Xo)) + K"IF(d(xg, X)) + -+ KM IE(d (%, Xo))

m

S1-k

F(d(x, X)) = 0.
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Hence lim, ., d(Xy, Xn) = 0. By Lemma 1.1, for any c < int(P),

there exists an N such that for all n > N, d(x,, Xy) < C.

Hence {x,} is a Cauchy sequence in X, and hence lim,_,,, X, = a € X

exists. As in the proof of Theorem 2.1, a is a unique common fixed point of S
and T. O

Remark 2.1. Let a mapping ¢:P — P be non-vanishing and

subadditive cone integrable on each [a, b] = P such that for each ¢ € int(P),

J-:(Pdp e int(P).

Let F(t) = J-(t)(pdp. Then F satisfies (F1), (F3), (F4), and conditions (1)
and (2) in Theorem 2.3.

Corollary 2.4. Let (X, d) be a complete cone metric space with
normal cone P. Suppose that a mapping ¢ : P — P is non-vanishing

and subadditive cone integrable on each [a, b] = P such that for each
c € int(P), I(;:(pdp e int(P). Suppose that mappings S, T : X — X are

satisfying

0

T

forall x, y € X, where k € [0, 1).

Then S and T have a uniqgue common fixed point in X. Moreover,
for each xg € X, the iterated sequence {x,} with x5,,1 = TXxy, and

Xon42 = SXon4q IS cOnvergent to the common fixed point of S and T.

Corollary 2.5 [2]. Let (X, d) be a complete cone metric space with
normal cone P. Suppose that a mapping ¢ : P — P is non-vanishing and
subadditive cone integrable on each [a, b] = P such that for each ce
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int(P), I;(Pdp e int(P). Suppose that mapping T : X — X is satisfying

J-d(Tx,Ty)

d(x,y)
dp <k d
0 ¢Up Io ¢Up

forall x, y € X, where k € [0, 1).

Then T has a unique fixed point in X. Moreover, for each xp € X, the

iterated sequence {x,} with x,,1; = Tx, is convergent to the fixed point of T.

Theorem 2.6. Let (X, d) be a complete cone metric space with normal
cone P. Suppose that mappings S, T : X — X are satisfying

C(F(d(Tx, Sy)) NkF(M(x, y)) # & (2.12)
forall x, y € X, where k [0, %) and

M(x, y) = {d(x, y), d(Tx, x), d(Sy, y), d(Tx, y), d(Sy, x)},
and F : P — P issatisfying (F1), (F3) and (F4) such that
(1) F is subadditive;
(2) if, for {c,} = P, lim,_,,, F(c,) =0, then lim,_,,, ¢, = 0.

Then S and T have a unique common fixed point in X. Moreover, for each
Xp € X, the iterated sequence {X,} with Xon41 =TXo, @nd Xon42 = SXoni1

is convergent to the common fixed point of Sand T.

Proof. As in the proof of Theorem 2.1, we have that any fixed point of T
is also a fixed point of S, and conversely. Also, we have that if S and T have
a common fixed point, then the common fixed point is unique.

Let xg € X be fixed, and let Xon,1 = TXon, Xonyo = SXonyq for all
n=0.

Then we may assume that, forany n > 0, Xy, # X,
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In fact, if there exists an n € N such that x,,1 = X, then Sor T has a

fixed point, and so S and T have a common fixed point. Hence the proof is
completed.

From (2.12) with X = X, and y = Xp,_1, wWe have
C(F(d(Tx2n, Sx2n-1))) NKF(M(X2n, X2n_1)) # 9, (2.13)
where
M (X2n, X2n-1)
={d(X2n, X2n-1). d(Xan, X2n+1) d(X2n41, Xon ) d(X2n11, Xon-1). d(Xan, Xon )}
= {d(X2n, Xon-1), d(Xon11, Xon), d(Xon41, Xons1)h
Thus we have
C(F(d(Tx2n41, X2n))) N KFE({d(Xan, Xon-1) d(X2n41, Xon-1)}) # &
which implies
C(F(d(X2n+1, X2n)))
NKF({d(x2n, Xon-1), d(Xon11, Xon) + d(Xon, Xon1)}) = @ (2.14)
If

F(d(X2n+1, Xon)) < KF(d(%2n, X2n-1)),

then F(d(Xgns1. Xan)) < 11 F(Qkzn, ¥on1)) because k <

If
F(d(X2n+1, X2n)) < KF(d(X2n, Xon_1) + d(Xon41, X2n)),
then  F(d(Xan41, X2n)) < KF(d(X2n, Xon-1)) + KF(d(X2n41, X2n)), and so

F(d(na1. Y2n)) < 7o F(0(kan, Xan-1)
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Thus, (2.14) implies F(d(Xon41, X2p)) < ﬁ F(d(Xon, Xon_1))-

Similarly, we have F(d(Xon,2, Xon41)) <

k
1—k F(d(Xan11, X2n))-
Thus, we have

F(A0s1, %)) < (A0, ¥0-1) forall n e N, where h =

Hence
F(d(Xn+1, %)) < h"F(d (x4, X))

As in the proof of Theorem 2.3, we have that {x,} is a Cauchy sequence

in X, and so the limit lim,_,, X, = a € X exists.
From (2.12) with x = Xo,, and y = a, we obtain
C(F(d(x9n41, Sa))) NKF(M (X9, @)) # T, (2.15)
where
M (Xzn, @) = {d(Xzn, @), d(Xons1, X2n), d(Sa, @), d(Xzn41, @), d(Sa, Xon)}.
Letting n — oo in (2.15), we obtain
C(F(d(a, Sa))) N kF({0, d(Sa, a)}) # <.
By Lemma 1.3, d(a, Sa) = 0. Thus, Sa = a.
Therefore, a is a uniqgue common fixed point of Sand T. O

Corollary 2.7. Let (X, d) be a complete cone metric space with normal
cone P. Suppose that a mapping ¢ : P — P is non-vanishing and subadditive

cone integrable on each [a, b] = P such that for each ¢ e int(P), Ig(Pdp

e int(P). Suppose that mappings S, T : X — X are satisfying
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d(Tx, Sy) u
CUO (pdpjﬂk{-‘-o([)dp tu e M(x, y)};t@

forall x, y € X, where k e [0, %)

Then S and T have a unigue common fixed point in X. Moreover,
for each xy e X, the iterated sequence {x,} with Xo,.1 = TXon, and Xop42

= SXpp41 IS convergent to the common fixed point of S and T.
The following example illustrates our main theorem.
Example 2.1. Let E = R% and P = {(x, y) e E : X, y > O}.

Let X ={%:n=1, 2, ...}U{O}, and let d(x, y)=(|x—yl| |x=y]|).

Then (X, d) is a complete cone metric space and P is regular.

11
Let F(s, t) = [ss, ttJ for all (s,t) e P and ¢(a, b) = %(a, b) for all

(a, b) € int(P) U {0}.
Suppose that mappings S and T are defined by

0, x=0,
TX=8x=7 1

—— X==,n21.
n+1 n

We show that (2.1) is satisfied.
We consider the following three cases:
Casel. x=y.

Then d(x, y)=0 and F(d(x, y))=0. Thus F(d(Tx, Sy))= F(0) =
®(F(0)) = ¢(F(d(x, y))), and so (2.1) is satisfied.
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Case 2. x=0,y=%(orx=%,y=0).

IA

Then
F(d(Tx, Sy))
Case 3. X =1, y =l.
n m
Then

F(d(Tx, Sy))

et )

3336

O(F(d(x, y))).

_F 1 3 1 1 3 1
B n+1 m+1/|{n+1 m+1
(n+1)(m+1) (n+1)(m+1)
[n-m]| [n-m| [n-m|

- l(@oars) T (FoeeD

199
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n+m+l _nhm_ _hm_
- ((n Lnl)_(r;nkl)) " ’ ((n + 1r)]r(nm + 1)) n—m(%j o "

n+m+1 nm nm
[n-m| \fn-m] nm [n-m[([n—m|\n=m]
(n+1)(m+1) "{(n+1)(m+1) nm
nm nm
< E-l- |n_m| ‘n_m"l,l, |n_m| |n-m|
2 nm 2 nm
nm nm

_ 2] (In=m]\a-mp (Ln=m] Yo
2 nm ’ nm

= o(F(d(x, ¥)))

Thus S and T satisfy all conditions of Theorem 2.1, and so they have a
unique common fixed point.

But we cannot obtain
C(d(Tx, Sy)) N km(x, y) # &
forall x, y € X, where k € [0, 1).
That is, the following general contractive inequality is not satisfied:
There exists a k € [0, 1) such that for all x, y € X,
d(Tx, Sy) < ku (2.16)
for some u € m(x, y).

Suppose that (2.16) is satisfied.

1
Letx_ﬁand Y=

Then we have

1 1
d(Tx, Sy) = ((n +)(n+2)" (n+1)(n+ 2))
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and

mx, ¥) = {(n(nl+ 5 e} (T ETD Grms 2>)}'
If

~ 1 1
u= ((n +1)(n+2)" (n+1)(n+ 2))’

then

1 1
((n +)(n+2)" (n+1)(n+ 2)) = d(Tx, Sy)

<K 1 1
T +)(n+2) (n+1)(n+2)
which is a contradiction.

If

v= (n(n1+ 1)’ n(n1+ 1)}'

then

1 1 1 1
((n D0+ haDne 2)) = d(Tx, Sy) < k(n(n 1) +1))'

Thus we obtain

k 1 k 1 p
(n(n+1)_(n+1)(n+2)’n(n+1)_(n+1)(n+2)je ’
and so

k 1
0< nn+1) (+1)(n+2)’

and hence k > 1, which is a contradiction.

Hence (2.16) is not satisfied.
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