Far East Journal of Mathematical Sciences (FJMS)
Volume 63, Number 2, 2012, Pages 181-202
Published Online: February 2012
Available online at http://pphmj.com/journals/fjms.htm Published by Pushpa Publishing House, Allahabad, INDIA

COMMON FIXED POINT THEOREMS FOR GENERALIZED CONTRACTIVE TYPE AND GENERALIZED QUASI-CONTRACTIVE TYPE MAPPINGS ON CONE METRIC SPACES

Seong-Hoon Cho ${ }^{\text {a,* }}$, Jee-Won Lee ${ }^{\text {a }}$, Jong-Sook Bae ${ }^{\text {b }}$ and Kwang-Soo Na ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics
Hanseo University
Chungnam, 356-706, South Korea
e-mail: shcho@hanseo.ac.kr
${ }^{\mathrm{b}}$ Department of Mathematics
Moyngji University
Yongin, 449-728, South Korea

Abstract

In this paper, some new generalized contractive type and generalized quasi-contractive type conditions for a pair of mappings in cone metric spaces are defined and certain common fixed point theorems for these mappings are established.

1. Introduction and Preliminaries

Recently, a fixed point theorem for mappings defined on cone metric spaces satisfying cone integral type contractive condition [2] is proved.
© 2012 Pushpa Publishing House
2010 Mathematics Subject Classification: 47H10, 54H25.
Keywords and phrases: fixed point, common fixed point, cone metric space.
*Corresponding author
Received October 6, 2011

In this paper, we establish some new generalized contractive type and generalized quasi-contractive type conditions for a pair of mappings defined on cone metric spaces and prove some new common fixed point theorems for these mappings. Our results are the generalizations of results in [1, 2].

Let (E, τ) be a topological vector space and $P \subset E$. Then, P is called a cone whenever
(i) P is closed, non-empty and $P \neq\{0\}$;
(ii) $a x+b y \in P$ for all $x, y \in P$ and non-negative real numbers a, b;
(iii) $P \cap(-P)=\{0\}$.

Given a cone $P \subset E$, we define a partial ordering \leq with respect to P by

$$
x \leq y \text { if and only if } y-x \in P
$$

We write $x<y$ to indicate that $x \leq y$ but $x \neq y$.
For $x, y \in P, x \ll y$ stands for $y-x \in \operatorname{int}(P)$, where $\operatorname{int}(P)$ is the interior of P.

A cone P is called regular if every increasing sequence which is bounded from above is convergent. That is, if $\left\{u_{n}\right\}$ is a sequence such that for some $z \in E$,

$$
u_{1} \leq u_{2} \leq \cdots \leq z
$$

then there exists a $u \in E$ such that

$$
\lim _{n \rightarrow \infty}\left\|u_{n}-u\right\|=0
$$

Equivalently, a cone P is regular if and only if every decreasing sequence which is bounded from below is convergent.

If E is a normed space, then a cone P is called normal whenever there exists a number $K \geq 1$ such that for all $x, y \in E, 0 \leq x \leq y$ implies $\|x\| \leq K\|y\|$. The least positive number satisfying this norm inequality is called the normal constant of P [1]. There are non-normal cones (see [3]).

It is well known [1] that every regular cone is normal (see also [3]).
For a nonempty set X, a mapping $d: X \times X \rightarrow E$ is called cone metric [1] on X if the following conditions are satisfied:
(i) $0 \leq d(x, y)$ for all $x, y \in X$, and $d(x, y)=0$ if and only if $x=y$;
(ii) $d(x, y)=d(y, x)$ for all $x, y \in X$;
(iii) $d(x, y) \leq d(x, z)+d(z, y)$ for all $x, y, z \in X$.

From now on, we assume that E is a normed space, P is a cone in E with $\operatorname{int}(P) \neq \varnothing$ and \leq is a partial ordering with respect to P. And let X be a cone metric space with a cone metric d.

The following definitions are found in [1].
Let $x \in X$, and let $\left\{x_{n}\right\}$ be a sequence of points of X. Then
(1) $\left\{x_{n}\right\}$ converges to x (denoted by $\lim _{n \rightarrow \infty} x_{n}=x$ or $x_{n} \rightarrow x$) if for any $c \in \operatorname{int}(P)$, there exists an N such that for all $n>N, d\left(x_{n}, x\right) \ll c$.
(2) $\left\{x_{n}\right\}$ is Cauchy if for any $c \in \operatorname{int}(P)$, there exists an N such that for all $n, m>N, d\left(x_{n}, x_{m}\right) \ll c$.
(3) (X, d) is complete if every Cauchy sequence in X is convergent.

Note that if P is a normal cone, then $\left\{x_{n}\right\}$ converges to x if and only if $\lim _{n \rightarrow \infty} d\left(x_{n}, x\right)=0$. Further, in this case, $\left\{x_{n}\right\}$ is a Cauchy sequence in X if and only if $\lim _{n, m \rightarrow \infty} d\left(x_{n}, x_{m}\right)=0$ (see [1]).

A function $f: P \rightarrow P$ is called <-increasing (resp. <-increasing) if, for each $x, y \in P, x<y$ (resp. $x \leq y$) if and only if $f(x)<f(y)$ (resp. $f(x) \leq f(y)$).

Let $F: P \rightarrow P$ be a function such that
(F1) $F(t)=0$ if and only if $t=0$;
(F2) $0 \ll F(t)$ for each $0 \ll t$;
(F3) F is <-increasing;
(F4) F is continuous.
We denote by $\mathfrak{J}(P, P)$ the family of functions satisfying (F1)-(F4).
Example 1.1. (1) Let $F(t)=t$ for each $t \in P$. Then $F \in \mathfrak{J}(P, P)$.
(2) Let $a, b \in E$, and let $[a, b]=\{x \in E: x=t b+(1-t) a, t \in[0,1]\}$.

Suppose that a mapping $\varphi: P \rightarrow P$ is non-vanishing cone integrable on each $[a, b] \subset P$ such that for each $c \in \operatorname{int}(P), \int_{0}^{c} \varphi d_{P} \in \operatorname{int}(P)$ (see [2]).

Let $F(t)=\int_{0}^{t} \varphi d_{P}$. Then $F \in \mathfrak{J}(P, P)$.
Note that if $\varphi: P \rightarrow P$ is subadditive, then F is subadditive (see [2]).
Let $\Phi(P, P)$ be the family of \leq-increasing and continuous functions $\phi: \operatorname{int}(P) \bigcup\{0\} \rightarrow \operatorname{int}(P) \bigcup\{0\}$ satisfying the following conditions:
$(\phi 1) \phi(t)=0$ if and only if $t=0$;
($\phi 2$) for each $t \in \operatorname{int}(P), \phi(t) \ll t$;
($\phi 3$) either $\phi(t) \leq d(x, y)$ or $d(x, y) \leq \phi(t)$ for $t \in \operatorname{int}(P) \cup\{0\}$ and $x, y \in X$.

From now on, let $C(a)=\{p \in P: a \leq p\}$ for $a \in X$, and let $F \in$ $\mathfrak{J}(P, P)$ and $\phi \in \Phi(P, P)$.

Lemma 1.1. Let E be a topological vector space. Then the following are satisfied:
(1) If, for $u, v, w \in E, u \ll v$ and $v \leq w$, then $u<w$.
(2) If $u \in E$ such that for any $c \in \operatorname{int}(P), 0 \leq u \ll c$, then $u=0$.
(3) Let $u, v, u_{n} \in E$ such that $u_{n} \leq v_{n}$ for all $n \geq 0$.

If $\lim _{n \rightarrow \infty} u_{n}=u$ and $\lim _{n \rightarrow \infty} v_{n}=v$, then $u \leq v$.
(4) If $c_{n} \in E$ and $c_{n} \rightarrow 0$, then for each $c \in \operatorname{int}(P)$, there exists an N such that $c_{n} \ll c$ for all $n>N$.

Lemma 1.2. Let $P \subset E$ be a normal cone. Suppose that $\left\{u_{n}\right\},\left\{v_{n}\right\}$ and $\left\{w_{n}\right\}$ are sequences of points in E such that $u_{n} \leq w_{n} \leq v_{n}$ for all $n \in \mathbb{N}$. If $\lim _{n \rightarrow \infty} u_{n}=u$ and $\lim _{n \rightarrow \infty} v_{n}=u$ for some $u \in E$, then $\lim _{n \rightarrow \infty} w_{n}=u$.

Proof. Since $v_{n}-u_{n}-\left(w_{n}-u_{n}\right)=v_{n}-w_{n} \in P$, we have $w_{n}-u_{n} \leq$ $v_{n}-u_{n}$, and so $\left\|w_{n}-u_{n}\right\| \leq K\left\|v_{n}-u_{n}\right\|$, where K is the normal constant of P.

Thus we have

$$
\begin{aligned}
\left\|w_{n}-u\right\| & \leq\left\|w_{n}-u_{n}\right\|+\left\|u_{n}-u\right\| \\
& \leq K\left\|v_{n}-u_{n}\right\|+\left\|u_{n}-u\right\| \\
& \leq K\left(\left\|v_{n}-u\right\|+\left\|u-u_{n}\right\|\right)+\left\|u_{n}-u\right\| \rightarrow 0 .
\end{aligned}
$$

Hence $\lim _{n \rightarrow \infty} w_{n}=u$.
Lemma 1.3. Let E be a topological vector space and $a \in\{0\} \cup \operatorname{int}(P)$.
If $F(a) \leq \phi(F(a))$, then $a=0$.
Lemma 1.4 [1]. Let $P \subset E$ be a normal cone. Suppose that $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are sequences of points in X and $x, y \in X$.

If $\lim _{n \rightarrow \infty} x_{n}=x$ and $\lim _{n \rightarrow \infty} y_{n}=y$, then $\lim _{n \rightarrow \infty} d\left(x_{n}, y_{n}\right)=$ $d(x, y)$.

2. Common Fixed Point Theorems

We prove a generalized contractive type common fixed point theorem for a pair of mappings defined on cone metric space.

Theorem 2.1. Let (X, d) be a complete cone metric space with regular cone P such that $0 \ll d(x, y)$ for $x, y \in X$ with $x \neq y$. Suppose that mappings $S, T: X \rightarrow X$ are satisfying

$$
\begin{equation*}
C(F(d(T x, S y))) \cap \phi(F(m(x, y))) \neq \varnothing \tag{2.1}
\end{equation*}
$$

for all $x, y \in X$, where

$$
m(x, y)=\left\{d(x, y), d(T x, x), d(S y, y), \frac{1}{2}\{d(T x, y)+d(S y, x)\}\right\}
$$

Then S and T have a unique common fixed point in X. Moreover, for each $x_{0} \in X$, the iterated sequence $\left\{x_{n}\right\}$ with $x_{2 n+1}=T x_{2 n}$ and $x_{2 n+2}=S x_{2 n+1}$ is convergent to the common fixed point of S and T.

Proof. We first prove that any fixed point of T is also a fixed point of S, and conversely.

If $T z=z$, then we have

$$
\begin{aligned}
m(z, z) & =\left\{d(z, z), d(T z, z), d(S z, z), \frac{1}{2}\{d(T z, z)+d(S z, z)\}\right\} \\
& =\left\{0, d(S z, z), \frac{1}{2} d(S z, z)\right\}
\end{aligned}
$$

Thus from (2.1) with $x=z, \quad y=z$, we obtain

$$
C(F(d(T z, S z))) \cap \phi(F(m(z, z))) \neq \varnothing
$$

which implies

$$
C(F(d(z, S z))) \cap \phi\left(F\left(\left\{0, d(S z, z), \frac{1}{2} d(S z, z)\right\}\right)\right) \neq \varnothing
$$

By Lemma 1.3, $d(z, S z)=0$. Hence $z=S z$.
Similarly, we have that if $S z=z$, then $T z=z$.
We now show that if S and T have a common fixed point, then the common fixed point is unique.

If $S u=T u=u$ and $S v=T v=v$, then $m(u, v)=\{0, d(u, v)\}$.
From (2.1) with $x=u$ and $y=v$, we have

$$
C(F(d(u, v))) \cap \phi(F(\{0, d(u, v)\})) \neq \varnothing .
$$

By Lemma 1.3, $u=v$.
Let $x_{0} \in X$ be fixed, and let $x_{2 n+1}=T x_{2 n}, \quad x_{2 n+2}=S x_{2 n+1}$ for all $n \geq 0$.

If there exists an $n \in \mathbb{N}$ such that $x_{n+1}=x_{n}$, then S or T has a fixed point, and so S and T have a common fixed point. Hence the proof is completed.

Thus we assume that, for any $n \geq 0, x_{n+1} \neq x_{n}$.
From (2.1) with $x=x_{2 n}$ and $y=x_{2 n-1}$, we have

$$
\begin{equation*}
C\left(F\left(d\left(T x_{2 n}, S x_{2 n-1}\right)\right)\right) \cap \phi\left(F\left(m\left(x_{2 n}, x_{2 n-1}\right)\right)\right) \neq \varnothing \tag{2.2}
\end{equation*}
$$

where

$$
\begin{aligned}
m\left(x_{2 n}, x_{2 n-1}\right)= & \left\{d\left(x_{2 n}, x_{2 n-1}\right), d\left(x_{2 n}, x_{2 n+1}\right), d\left(x_{2 n+1}, x_{2 n}\right)\right. \\
& \left.\frac{1}{2}\left\{d\left(x_{2 n+1}, x_{2 n-1}\right)+d\left(x_{2 n}, x_{2 n}\right)\right\}\right\} \\
= & \left\{d\left(x_{2 n}, x_{2 n-1}\right), d\left(x_{2 n+1}, x_{2 n}\right), \frac{1}{2} d\left(x_{2 n+1}, x_{2 n-1}\right)\right\} .
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
& C\left(F\left(d\left(x_{2 n+1}, x_{2 n}\right)\right)\right) \\
\cap & \phi\left(F\left(\left\{d\left(x_{2 n}, x_{2 n-1}\right), d\left(x_{2 n+1}, x_{2 n}\right), \frac{1}{2} d\left(x_{2 n+1}, x_{2 n-1}\right)\right\}\right)\right) \neq \varnothing
\end{aligned}
$$

which implies

$$
\begin{align*}
& C\left(F\left(d\left(x_{2 n+1}, x_{2 n}\right)\right)\right) \\
\cap & \phi\left(F\left(\left\{d\left(x_{2 n}, x_{2 n-1}\right), \frac{1}{2} d\left(x_{2 n+1}, x_{2 n}\right)+d\left(x_{2 n}, x_{2 n-1}\right)\right\}\right)\right) \neq \varnothing \tag{2.3}
\end{align*}
$$

If

$$
\begin{equation*}
F\left(d\left(x_{2 n+1}, x_{2 n}\right)\right) \leq \phi\left(F\left(\frac{1}{2}\left\{d\left(x_{2 n}, x_{2 n-1}\right)+d\left(x_{2 n+1}, x_{2 n}\right)\right\}\right)\right), \tag{2.4}
\end{equation*}
$$

then

$$
F\left(d\left(x_{2 n+1}, x_{2 n}\right)\right) \ll F\left(\frac{1}{2}\left\{d\left(x_{2 n}, x_{2 n-1}\right)+d\left(x_{2 n+1}, x_{2 n}\right)\right\}\right),
$$

and so $F\left(d\left(x_{2 n+1}, x_{2 n}\right)\right)<F\left(\frac{1}{2}\left\{d\left(x_{2 n}, x_{2 n-1}\right)+d\left(x_{2 n+1}, x_{2 n}\right)\right\}\right)$. Since F is <-increasing, $d\left(x_{2 n+1}, x_{2 n}\right)<\frac{1}{2}\left\{d\left(x_{2 n}, x_{2 n-1}\right)+d\left(x_{2 n+1}, x_{2 n}\right)\right\}$. Thus, $d\left(x_{2 n+1}, x_{2 n}\right)<d\left(x_{2 n}, x_{2 n-1}\right)$.

From (2.4), we obtain $F\left(d\left(x_{2 n+1}, x_{2 n}\right)\right) \leq \phi\left(F\left(d\left(x_{2 n}, x_{2 n-1}\right)\right)\right)$. Thus (2.3) implies $F\left(d\left(x_{2 n+1}, x_{2 n}\right)\right) \leq \phi\left(F\left(d\left(x_{2 n}, x_{2 n-1}\right)\right)\right)$.

Similarly, we have $F\left(d\left(x_{2 n+2}, x_{2 n+1}\right)\right) \leq \phi\left(F\left(d\left(x_{2 n+1}, x_{2 n}\right)\right)\right)$.
Thus, we have

$$
F\left(d\left(x_{n+1}, x_{n}\right)\right) \leq \phi\left(F\left(d\left(x_{n}, x_{n-1}\right)\right)\right) \text { for all } n \in \mathbb{N}
$$

By ($\phi 2$),

$$
F\left(d\left(x_{n+1}, x_{n}\right)\right) \ll F\left(d\left(x_{n}, x_{n-1}\right)\right) \text { for all } n \in \mathbb{N}
$$

and so

$$
F\left(d\left(x_{n+1}, x_{n}\right)\right)<F\left(d\left(x_{n}, x_{n-1}\right)\right) \text { for all } n \in \mathbb{N} .
$$

Thus,

$$
d\left(x_{n+1}, x_{n}\right) \leq d\left(x_{n}, x_{n-1}\right) \text { for all } n \in \mathbb{N} .
$$

Since P is regular, there exists an $r(0 \leq r)$ such that $\lim _{n \rightarrow \infty} d\left(x_{n+1}, x_{n}\right)$ $=r$.

Letting $n \rightarrow \infty$ in (2.3), we obtain $F(r) \leq \phi(F(r)) \ll F(r)$, which is a contradiction unless $r=0$.

Thus,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(x_{n+1}, x_{n}\right)=0 \tag{2.5}
\end{equation*}
$$

We now show that $\left\{x_{n}\right\}$ is a Cauchy sequence in X.
Assume that $\left\{x_{n}\right\}$ is not a Cauchy sequence.
Then there exists a $c \in \operatorname{int}(P)$ such that for all $k \in \mathbb{N}$, there exists an $m_{k}>n_{k}>k$ satisfying
(i) n_{k} is even, and m_{k} is odd,
(ii) $d\left(x_{n_{k}}, x_{m_{k-1}}\right) \leq \phi(c)$,
(iii) $\phi(c) \leq d\left(x_{n_{k}}, x_{m_{k}}\right)$.

Then we have
$\phi(c) \leq d\left(x_{n_{k}}, x_{m_{k}}\right) \leq d\left(x_{n_{k}}, x_{m_{k-1}}\right)+d\left(x_{m_{k-1}}, x_{m_{k}}\right) \leq d\left(x_{m_{k}}, x_{m_{k-1}}\right)+\phi(c)$.
By Lemma 1.2 and (2.5),

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(x_{n_{k}}, x_{m_{k}}\right)=\phi(c) \tag{2.6}
\end{equation*}
$$

We obtain

$$
d\left(x_{n_{k}-1}, x_{m_{k}-1}\right) \leq d\left(x_{n_{k}-1}, x_{n_{k}}\right)+d\left(x_{n_{k}}, x_{m_{k}-1}\right) \leq d\left(x_{n_{k}-1}, x_{n_{k}}\right)+\phi(c)
$$

and

$$
\phi(c) \leq d\left(x_{n_{k}}, x_{m_{k}}\right) \leq d\left(x_{n_{k}}, x_{n_{k}-1}\right)+d\left(x_{n_{k}-1}, x_{m_{k}-1}\right)+d\left(x_{m_{k}-1}, x_{m_{k}}\right)
$$

Thus we have

$$
\begin{aligned}
& \phi(c)-d\left(x_{n_{k}}, x_{n_{k}-1}\right)-d\left(x_{m_{k}-1}, x_{m_{k}}\right) \\
\leq & d\left(x_{n_{k}-1}, x_{m_{k}-1}\right) \\
\leq & d\left(x_{n_{k}-1}, x_{n_{k}}\right)+\phi(c) .
\end{aligned}
$$

190 Seong-Hoon Cho, Jee-Won Lee, Jong-Sook Bae and Kwang-Soo Na
By Lemma 1.2 and (2.5), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(x_{n_{k}-1}, x_{m_{k}-1}\right)=\phi(c) \tag{2.7}
\end{equation*}
$$

We have

$$
\begin{aligned}
& d\left(x_{n_{k}-1}, x_{m_{k}-1}\right)-d\left(x_{m_{k}}, x_{m_{k}-1}\right) \\
\leq & d\left(x_{m_{k}}, x_{n_{k}-1}\right) \\
\leq & d\left(x_{m_{k}}, x_{m_{k}-1}\right)+d\left(x_{m_{k}-1}, x_{n_{k}}\right)+d\left(x_{n_{k}}, x_{n_{k}-1}\right) \\
\leq & d\left(x_{m_{k}}, x_{m_{k}-1}\right)+d\left(x_{n_{k}}, x_{n_{k}-1}\right)+\phi(c)
\end{aligned}
$$

By Lemma 1.2, (2.5) and (2.7),

$$
\lim _{n \rightarrow \infty} d\left(x_{m_{k}}, x_{n_{k}-1}\right)=\phi(c)
$$

Also, we obtain

$$
\begin{aligned}
& \phi(c)-d\left(x_{m_{k}}, x_{m_{k}-1}\right) \\
\leq & d\left(x_{n_{k}}, x_{m_{k}}\right)-d\left(x_{m_{k}}, x_{m_{k}-1}\right) \\
\leq & \left(x_{n_{k}}, x_{m_{k}-1}\right) \\
\leq & \phi(c)
\end{aligned}
$$

By Lemma 1.2 and (2.5),

$$
\lim _{n \rightarrow \infty} d\left(x_{n_{k}}, x_{m_{k}-1}\right)=\phi(c)
$$

From (2.1) with $x=x_{n_{k-1}}$ and $y=x_{m_{k-1}}$, we obtain

$$
C\left(F\left(d\left(T x_{n_{k-1}}, S x_{m_{k-1}}\right)\right)\right) \cap \phi\left(F\left(m\left(x_{n_{k-1}}, x_{m_{k-1}}\right)\right)\right) \neq \varnothing
$$

where

$$
\begin{aligned}
m\left(x_{n_{k-1}}, x_{m_{k-1}}\right)=\{ & d\left(x_{n_{k-1}}, x_{m_{k-1}}\right), d\left(x_{n_{k}}, x_{n_{k-1}}\right), d\left(x_{m_{k}}, x_{m_{k-1}}\right) \\
& \left.\frac{1}{2} d\left(x_{m_{k}}, x_{n_{k-1}}\right)+d\left(x_{n_{k}}, x_{m_{k-1}}\right)\right\} .
\end{aligned}
$$

Letting $k \rightarrow \infty$ in above inequality, we obtain

$$
C(F(\phi(c))) \cap \phi(F(\{0, \phi(c)\})) \neq \varnothing .
$$

By Lemma 1.3, $\phi(c)=0$, and hence $c=0$, which is a contradiction.
Therefore, $\left\{x_{n}\right\}$ is a Cauchy sequence in X.
Since X is complete, there exists an $a \in X$ such that $\lim _{n \rightarrow \infty} x_{n}=a$.
From (2.1) with $x=x_{2 n}$ and $y=a$, we obtain

$$
\begin{equation*}
C\left(F\left(d\left(x_{2 n+1}, S a\right)\right)\right) \cap \phi\left(F\left(m\left(x_{2 n}, a\right)\right)\right) \neq \varnothing \tag{2.8}
\end{equation*}
$$

where

$$
\begin{aligned}
& m\left(x_{2 n}, a\right) \\
= & \left\{d\left(x_{2 n}, a\right), d\left(x_{2 n+1}, x_{2 n}\right), d(S a, a), \frac{1}{2}\left\{d\left(x_{2 n+1}, a\right)+d\left(S a, x_{2 n}\right)\right\}\right\} .
\end{aligned}
$$

Letting $n \rightarrow \infty$ in (2.8), we obtain

$$
C(F(d(a, S a))) \cap \phi\left(F\left(\left\{0, d(S a, a), \frac{1}{2} d(S a, a)\right\}\right)\right) \neq \varnothing
$$

By Lemma 1.3, $d(a, S a)=0$. Thus, $S a=a$.
By the proof above, a is a unique common fixed point of S and T.
Corollary 2.2. Let (X, d) be a complete cone metric space with regular cone P such that $0 \ll d(x, y)$ for $x, y \in X$ with $x \neq y$. Suppose that a mapping $\varphi: P \rightarrow P$ is non-vanishing cone integrable on each $[a, b] \subset P$ such that for each $c \in \operatorname{int}(P), \int_{0}^{c} \varphi d_{P} \in \operatorname{int}(P)$.

If mappings $S, T: X \rightarrow X$ are satisfying

$$
C\left(\int_{0}^{d(T x, S y)} \varphi d_{P}\right) \cap \phi\left(\left\{\int_{0}^{u} \varphi d_{P}: u \in m(x, y)\right\}\right) \neq \varnothing
$$

for all $x, y \in X$, then S and T have a unique common fixed point in X.

Seong-Hoon Cho, Jee-Won Lee, Jong-Sook Bae and Kwang-Soo Na Moreover, for each $x_{0} \in X$, the iterated sequence $\left\{x_{n}\right\}$ with $x_{2 n+1}=T x_{2 n}$ and $x_{2 n+2}=S x_{2 n+1}$ is convergent to the common fixed point of S and T.

Theorem 2.3. Let (X, d) be a complete cone metric space with normal cone P. Suppose that mappings $S, T: X \rightarrow X$ are satisfying

$$
\begin{equation*}
C(F(d(T x, S y))) \cap k F(m(x, y)) \neq \varnothing \tag{2.9}
\end{equation*}
$$

for all $x, y \in X$, where $k \in[0,1$), and $F: P \rightarrow P$ is satisfying (F1), (F3) and (F4) such that
(1) F is subadditive;
(2) if, for $\left\{c_{n}\right\} \subset P, \lim _{n \rightarrow \infty} F\left(c_{n}\right)=0$, then $\lim _{n \rightarrow \infty} c_{n}=0$.

Then S and T have a unique common fixed point in X. Moreover, for each $x_{0} \in X$, the iterated sequence $\left\{x_{n}\right\}$ with $x_{2 n+1}=T x_{2 n}$ and $x_{2 n+2}=S x_{2 n+1}$ is convergent to the common fixed point of S and T.

Proof. As in the proof of Theorem 2.1, we have that any fixed point of T is also a fixed point of S, and conversely. Also, if S and T have a common fixed point, then the common fixed point is unique.

Let $x_{0} \in X$ be fixed, and let $x_{2 n+1}=T x_{2 n}, x_{2 n+2}=S x_{2 n+1}$ for all $n \geq 0$.

Then we may assume that for any $n \geq 0, x_{n+1} \neq x_{n}$.

Let $x=x_{2 n}$ and $y=x_{2 n-1}$ in (2.9).

Then, as in proof of Theorem 2.1, we have

$$
\begin{align*}
& C\left(F\left(d\left(x_{2 n+1}, x_{2 n}\right)\right)\right) \\
\cap & k F\left(\left\{d\left(x_{2 n}, x_{2 n-1}\right), \frac{1}{2}\left\{d\left(x_{2 n+1}, x_{2 n}\right)+d\left(x_{2 n}, x_{2 n-1}\right)\right\}\right\}\right) \neq \varnothing \tag{2.10}
\end{align*}
$$

If

$$
\begin{equation*}
F\left(d\left(x_{2 n+1}, x_{2 n}\right)\right) \leq k F\left(\frac{1}{2}\left\{d\left(x_{2 n}, x_{2 n-1}\right)+d\left(x_{2 n+1}, x_{2 n}\right)\right\}\right) \tag{2.11}
\end{equation*}
$$

then $F\left(d\left(x_{2 n+1}, x_{2 n}\right)\right)<F\left(\frac{1}{2}\left\{d\left(x_{2 n}, x_{2 n-1}\right)+d\left(x_{2 n+1}, x_{2 n}\right)\right\}\right)$.
Since F is <-increasing,

$$
d\left(x_{2 n+1}, x_{2 n}\right)<\frac{1}{2}\left\{d\left(x_{2 n}, x_{2 n-1}\right)+d\left(x_{2 n+1}, x_{2 n}\right)\right\} .
$$

Thus, $d\left(x_{2 n+1}, x_{2 n}\right)<d\left(x_{2 n}, x_{2 n-1}\right)$.
From (2.11), we obtain $F\left(d\left(x_{2 n+1}, x_{2 n}\right)\right) \leq k F\left(d\left(x_{2 n}, x_{2 n-1}\right)\right)$. Thus (2.10) implies $F\left(d\left(x_{2 n+1}, x_{2 n}\right)\right) \leq k F\left(d\left(x_{2 n}, x_{2 n-1}\right)\right)$.

Similarly, we have $F\left(d\left(x_{2 n+2}, x_{2 n+1}\right)\right) \leq k F\left(d\left(x_{2 n+1}, x_{2 n}\right)\right)$.
Thus, we have

$$
F\left(d\left(x_{n+1}, x_{n}\right)\right) \leq k F\left(d\left(x_{n}, x_{n-1}\right)\right) \text { for all } n \in \mathbb{N} .
$$

Hence

$$
F\left(d\left(x_{n+1}, x_{n}\right)\right) \leq k F\left(d\left(x_{n}, x_{n-1}\right)\right) \leq \cdots \leq k^{n} F\left(d\left(x_{1}, x_{0}\right)\right) .
$$

We now show that $\left\{x_{n}\right\}$ is a Cauchy sequence in X.
For $m>n$, we have that

$$
\begin{aligned}
& F\left(d\left(x_{n}, x_{m}\right)\right) \leq F\left(d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+2}\right)+\cdots+d\left(x_{m-1}, x_{m}\right)\right) \\
\leq & F\left(d\left(x_{n}, x_{n+1}\right)\right)+F\left(d\left(x_{n+1}, x_{n+2}\right)\right)+\cdots+F\left(d\left(x_{m-1}, x_{m}\right)\right) \\
\leq & k^{n} F\left(d\left(x_{1}, x_{0}\right)\right)+k^{n+1} F\left(d\left(x_{1}, x_{0}\right)\right)+\cdots+k^{m-1} F\left(d\left(x_{1}, x_{0}\right)\right) \\
\leq & \frac{k^{m}}{1-k} F\left(d\left(x_{1}, x_{0}\right)\right) \rightarrow 0 .
\end{aligned}
$$

Hence $\lim _{n, m \rightarrow \infty} d\left(x_{n}, x_{m}\right)=0$. By Lemma 1.1, for any $c \in \operatorname{int}(P)$, there exists an N such that for all $n>N, d\left(x_{n}, x_{m}\right) \ll c$.

Hence $\left\{x_{n}\right\}$ is a Cauchy sequence in X, and hence $\lim _{n \rightarrow \infty} x_{n}=a \in X$ exists. As in the proof of Theorem 2.1, a is a unique common fixed point of S and T.

Remark 2.1. Let a mapping $\varphi: P \rightarrow P$ be non-vanishing and subadditive cone integrable on each $[a, b] \subset P$ such that for each $c \in \operatorname{int}(P)$, $\int_{0}^{c} \varphi d_{P} \in \operatorname{int}(P)$.

Let $F(t)=\int_{0}^{t} \varphi d_{P}$. Then F satisfies (F1), (F3), (F4), and conditions (1) and (2) in Theorem 2.3.

Corollary 2.4. Let (X, d) be a complete cone metric space with normal cone P. Suppose that a mapping $\varphi: P \rightarrow P$ is non-vanishing and subadditive cone integrable on each $[a, b] \subset P$ such that for each $c \in \operatorname{int}(P), \int_{0}^{c} \varphi d_{P} \in \operatorname{int}(P)$. Suppose that mappings $S, T: X \rightarrow X$ are satisfying

$$
C\left(\int_{0}^{d(T x, S y)} \varphi d_{P}\right) \cap k\left\{\int_{0}^{u} \varphi d_{P}: u \in m(x, y)\right\} \neq \varnothing
$$

for all $x, y \in X$, where $k \in[0,1)$.
Then S and T have a unique common fixed point in X. Moreover, for each $x_{0} \in X$, the iterated sequence $\left\{x_{n}\right\}$ with $x_{2 n+1}=T x_{2 n}$ and $x_{2 n+2}=S x_{2 n+1}$ is convergent to the common fixed point of S and T.

Corollary 2.5 [2]. Let (X, d) be a complete cone metric space with normal cone P. Suppose that a mapping $\varphi: P \rightarrow P$ is non-vanishing and subadditive cone integrable on each $[a, b] \subset P$ such that for each $c \in$
$\operatorname{int}(P), \int_{0}^{C} \varphi d_{P} \in \operatorname{int}(P)$. Suppose that mapping $T: X \rightarrow X$ is satisfying

$$
\int_{0}^{d(T x, T y)} \varphi d_{P} \leq k \int_{0}^{d(x, y)} \varphi d_{P}
$$

for all $x, y \in X$, where $k \in[0,1)$.
Then T has a unique fixed point in X. Moreover, for each $x_{0} \in X$, the iterated sequence $\left\{x_{n}\right\}$ with $x_{n+1}=T x_{n}$ is convergent to the fixed point of T.

Theorem 2.6. Let (X, d) be a complete cone metric space with normal cone P. Suppose that mappings $S, T: X \rightarrow X$ are satisfying

$$
\begin{equation*}
C(F(d(T x, S y))) \cap k F(M(x, y)) \neq \varnothing \tag{2.12}
\end{equation*}
$$

for all $x, y \in X$, where $k \in\left[0, \frac{1}{2}\right)$ and

$$
M(x, y)=\{d(x, y), d(T x, x), d(S y, y), d(T x, y), d(S y, x)\}
$$

and $F: P \rightarrow P$ is satisfying (F1), (F3) and (F4) such that
(1) F is subadditive;
(2) if, for $\left\{c_{n}\right\} \subset P, \lim _{n \rightarrow \infty} F\left(c_{n}\right)=0$, then $\lim _{n \rightarrow \infty} c_{n}=0$.

Then S and T have a unique common fixed point in X. Moreover, for each $x_{0} \in X$, the iterated sequence $\left\{x_{n}\right\}$ with $x_{2 n+1}=T x_{2 n}$ and $x_{2 n+2}=S x_{2 n+1}$ is convergent to the common fixed point of S and T.

Proof. As in the proof of Theorem 2.1, we have that any fixed point of T is also a fixed point of S, and conversely. Also, we have that if S and T have a common fixed point, then the common fixed point is unique.

Let $x_{0} \in X$ be fixed, and let $x_{2 n+1}=T x_{2 n}, \quad x_{2 n+2}=S x_{2 n+1}$ for all $n \geq 0$.

Then we may assume that, for any $n \geq 0, x_{n+1} \neq x_{n}$.

In fact, if there exists an $n \in \mathbb{N}$ such that $x_{n+1}=x_{n}$, then S or T has a fixed point, and so S and T have a common fixed point. Hence the proof is completed.

From (2.12) with $x=x_{2 n}$ and $y=x_{2 n-1}$, we have

$$
\begin{equation*}
C\left(F\left(d\left(T x_{2 n}, S x_{2 n-1}\right)\right)\right) \cap k F\left(M\left(x_{2 n}, x_{2 n-1}\right)\right) \neq \varnothing, \tag{2.13}
\end{equation*}
$$

where

$$
\begin{aligned}
& M\left(x_{2 n}, x_{2 n-1}\right) \\
= & \left\{d\left(x_{2 n}, x_{2 n-1}\right), d\left(x_{2 n}, x_{2 n+1}\right), d\left(x_{2 n+1}, x_{2 n}\right), d\left(x_{2 n+1}, x_{2 n-1}\right), d\left(x_{2 n}, x_{2 n}\right)\right\} \\
= & \left\{d\left(x_{2 n}, x_{2 n-1}\right), d\left(x_{2 n+1}, x_{2 n}\right), d\left(x_{2 n+1}, x_{2 n+1}\right)\right\} .
\end{aligned}
$$

Thus we have

$$
C\left(F\left(d\left(T x_{2 n+1}, x_{2 n}\right)\right)\right) \cap k F\left(\left\{d\left(x_{2 n}, x_{2 n-1}\right), d\left(x_{2 n+1}, x_{2 n-1}\right)\right\}\right) \neq \varnothing
$$

which implies

$$
\begin{align*}
& C\left(F\left(d\left(x_{2 n+1}, x_{2 n}\right)\right)\right) \\
\cap & k F\left(\left\{d\left(x_{2 n}, x_{2 n-1}\right), d\left(x_{2 n+1}, x_{2 n}\right)+d\left(x_{2 n}, x_{2 n-1}\right)\right\}\right) \neq \varnothing \tag{2.14}
\end{align*}
$$

If

$$
F\left(d\left(x_{2 n+1}, x_{2 n}\right)\right) \leq k F\left(d\left(x_{2 n}, x_{2 n-1}\right)\right)
$$

then $F\left(d\left(x_{2 n+1}, x_{2 n}\right)\right) \leq \frac{k}{1-k} F\left(d\left(x_{2 n}, x_{2 n-1}\right)\right)$ because $k \leq \frac{k}{1-k}$.
If

$$
F\left(d\left(x_{2 n+1}, x_{2 n}\right)\right) \leq k F\left(d\left(x_{2 n}, x_{2 n-1}\right)+d\left(x_{2 n+1}, x_{2 n}\right)\right),
$$

then $F\left(d\left(x_{2 n+1}, x_{2 n}\right)\right) \leq k F\left(d\left(x_{2 n}, x_{2 n-1}\right)\right)+k F\left(d\left(x_{2 n+1}, x_{2 n}\right)\right)$, and so $F\left(d\left(x_{2 n+1}, x_{2 n}\right)\right) \leq \frac{k}{1-k} F\left(d\left(x_{2 n}, x_{2 n-1}\right)\right)$.

Thus, (2.14) implies $F\left(d\left(x_{2 n+1}, x_{2 n}\right)\right) \leq \frac{k}{1-k} F\left(d\left(x_{2 n}, x_{2 n-1}\right)\right)$.
Similarly, we have $F\left(d\left(x_{2 n+2}, x_{2 n+1}\right)\right) \leq \frac{k}{1-k} F\left(d\left(x_{2 n+1}, x_{2 n}\right)\right)$.
Thus, we have
$F\left(d\left(x_{n+1}, x_{n}\right)\right) \leq h F\left(d\left(x_{n}, x_{n-1}\right)\right)$ for all $n \in \mathbb{N}$, where $h=\frac{k}{1-k}$.
Hence

$$
F\left(d\left(x_{n+1}, x_{n}\right)\right) \leq h^{n} F\left(d\left(x_{1}, x_{0}\right)\right) .
$$

As in the proof of Theorem 2.3, we have that $\left\{x_{n}\right\}$ is a Cauchy sequence in X, and so the limit $\lim _{n \rightarrow \infty} x_{n}=a \in X$ exists.

From (2.12) with $x=x_{2 n}$ and $y=a$, we obtain

$$
\begin{equation*}
C\left(F\left(d\left(x_{2 n+1}, S a\right)\right)\right) \cap k F\left(M\left(x_{2 n}, a\right)\right) \neq \varnothing \tag{2.15}
\end{equation*}
$$

where
$M\left(x_{2 n}, a\right)=\left\{d\left(x_{2 n}, a\right), d\left(x_{2 n+1}, x_{2 n}\right), d(S a, a), d\left(x_{2 n+1}, a\right), d\left(S a, x_{2 n}\right)\right\}$.
Letting $n \rightarrow \infty$ in (2.15), we obtain

$$
C(F(d(a, S a))) \cap k F(\{0, d(S a, a)\}) \neq \varnothing .
$$

By Lemma 1.3, $d(a, S a)=0$. Thus, $S a=a$.
Therefore, a is a unique common fixed point of S and T.
Corollary 2.7. Let (X, d) be a complete cone metric space with normal cone P. Suppose that a mapping $\varphi: P \rightarrow P$ is non-vanishing and subadditive cone integrable on each $[a, b] \subset P$ such that for each $c \in \operatorname{int}(P), \int_{0}^{c} \varphi d_{P}$ $\in \operatorname{int}(P)$. Suppose that mappings $S, T: X \rightarrow X$ are satisfying

$$
C\left(\int_{0}^{d(T x, S y)} \varphi d_{P}\right) \cap k\left\{\int_{0}^{u} \varphi d_{P}: u \in M(x, y)\right\} \neq \varnothing
$$

for all $x, y \in X$, where $k \in\left[0, \frac{1}{2}\right)$.
Then S and T have a unique common fixed point in X. Moreover, for each $x_{0} \in X$, the iterated sequence $\left\{x_{n}\right\}$ with $x_{2 n+1}=T x_{2 n}$ and $x_{2 n+2}$ $=S x_{2 n+1}$ is convergent to the common fixed point of S and T.

The following example illustrates our main theorem.
Example 2.1. Let $E=\mathbb{R}^{2}$ and $P=\{(x, y) \in E: x, y \geq 0\}$.
Let $X=\left\{\frac{1}{n}: n=1,2, \ldots\right\} \cup\{0\}$, and let $d(x, y)=(|x-y|,|x-y|)$. Then (X, d) is a complete cone metric space and P is regular.

Let $F(s, t)=\left(s^{\frac{1}{s}}, t^{\frac{1}{t}}\right)$ for all $(s, t) \in P$ and $\phi(a, b)=\frac{1}{2}(a, b)$ for all $(a, b) \in \operatorname{int}(P) \cup\{0\}$.

Suppose that mappings S and T are defined by

$$
T x=S x=\left\{\begin{array}{l}
0, x=0 \\
\frac{1}{n+1}, x=\frac{1}{n}, n \geq 1
\end{array}\right.
$$

We show that (2.1) is satisfied.
We consider the following three cases:
Case 1. $x=y$.
Then $d(x, y)=0$ and $F(d(x, y))=0$. Thus $F(d(T x, S y))=F(0)=$ $\phi(F(0))=\phi(F(d(x, y)))$, and so (2.1) is satisfied.

Case 2. $x=0, y=\frac{1}{n}\left(\right.$ or $\left.x=\frac{1}{n}, y=0\right)$.
Then

$$
\begin{aligned}
F(d(T x, S y)) & =F\left(d\left(0, \frac{1}{n+1}\right)\right) \\
& =F\left(\frac{1}{n+1}, \frac{1}{n+1}\right) \\
& =\left(\left(\frac{1}{n+1}\right)^{n+1},\left(\frac{1}{n+1}\right)^{n+1}\right) \\
& =\left(\frac{1}{n+1}\left(\frac{1}{n+1}\right)^{n}, \frac{1}{n+1}\left(\frac{1}{n+1}\right)^{n}\right) \\
& \leq\left(\frac{1}{2}\left(\frac{1}{n}\right)^{n}, \frac{1}{2}\left(\frac{1}{n}\right)^{n}\right) \\
& =\phi(F(d(x, y))) .
\end{aligned}
$$

Case 3. $x=\frac{1}{n}, y=\frac{1}{m}$.
Then

$$
\begin{aligned}
& F(d(T x, S y)) \\
= & F\left(d\left(\frac{1}{n+1}, \frac{1}{m+1}\right)\right) \\
= & F\left(\left|\frac{1}{n+1}-\frac{1}{m+1}\right|\left|\frac{1}{n+1}-\frac{1}{m+1}\right|\right) \\
= & \left(\left(\frac{|n-m|}{(n+1)(m+1)}\right)^{\frac{(n+1)(m+1)}{|n-m|}},\left(\frac{|n-m|}{(n+1)(m+1)}\right)^{\frac{(n+1)(m+1)}{|n-m|}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\left(\frac{|n-m|}{(n+1)(m+1)}\right)^{\frac{n+m+1}{|n-m|}},\left(\frac{n m}{(n+1)(m+1)}\right)^{\frac{n m}{|n-m|}}\left(\frac{|n-m|}{n m}\right)^{\frac{n m}{|n-m|}},\right. \\
& \left.\left(\frac{|n-m|}{(n+1)(m+1)}\right)^{\frac{n+m+1}{|n-m|}},\left(\frac{n m}{(n+1)(m+1)}\right)^{\frac{n m}{|n-m|}}\left(\frac{|n-m|}{n m}\right)^{\frac{n m}{|n-m|}}\right) \\
& \leq\left(\frac{1}{2} \cdot 1 \cdot\left(\frac{|n-m|}{n m}\right)^{\frac{n m}{|n-m|}}, \frac{1}{2} \cdot 1 \cdot\left(\frac{|n-m|}{n m}\right)^{\frac{n m}{|n-m|}}\right) \\
& =\frac{1}{2}\left(\left(\frac{|n-m|}{n m}\right)^{\frac{n m}{|n-m|}},\left(\frac{|n-m|}{n m}\right)^{\frac{n m}{|n-m|}}\right) \\
& =\phi(F(d(x, y))) .
\end{aligned}
$$

Thus S and T satisfy all conditions of Theorem 2.1, and so they have a unique common fixed point.

But we cannot obtain

$$
C(d(T x, S y)) \cap k m(x, y) \neq \varnothing
$$

for all $x, y \in X$, where $k \in[0,1)$.
That is, the following general contractive inequality is not satisfied:
There exists a $k \in[0,1)$ such that for all $x, y \in X$,

$$
\begin{equation*}
d(T x, S y) \leq k u \tag{2.16}
\end{equation*}
$$

for some $u \in m(x, y)$.
Suppose that (2.16) is satisfied.
Let $x=\frac{1}{n}$ and $y=\frac{1}{n+1}$.
Then we have

$$
d(T x, S y)=\left(\frac{1}{(n+1)(n+2)}, \frac{1}{(n+1)(n+2)}\right)
$$

and

$$
m(x, y)=\left\{\left(\frac{1}{n(n+1)}, \frac{1}{n(n+1)}\right),\left(\frac{1}{(n+1)(n+2)}, \frac{1}{(n+1)(n+2)}\right)\right\}
$$

If

$$
u=\left(\frac{1}{(n+1)(n+2)}, \frac{1}{(n+1)(n+2)}\right)
$$

then

$$
\begin{aligned}
\left(\frac{1}{(n+1)(n+2)}, \frac{1}{(n+1)(n+2)}\right) & =d(T x, S y) \\
& \leq k\left(\frac{1}{(n+1)(n+2)}, \frac{1}{(n+1)(n+2)}\right)
\end{aligned}
$$

which is a contradiction.
If

$$
u=\left(\frac{1}{n(n+1)}, \frac{1}{n(n+1)}\right),
$$

then

$$
\left(\frac{1}{(n+1)(n+2)}, \frac{1}{(n+1)(n+2)}\right)=d(T x, S y) \leq k\left(\frac{1}{n(n+1)}, \frac{1}{n(n+1)}\right)
$$

Thus we obtain

$$
\left(\frac{k}{n(n+1)}-\frac{1}{(n+1)(n+2)}, \frac{k}{n(n+1)}-\frac{1}{(n+1)(n+2)}\right) \in P
$$

and so

$$
0 \leq \frac{k}{n(n+1)}-\frac{1}{(n+1)(n+2)}
$$

and hence $k \geq 1$, which is a contradiction.
Hence (2.16) is not satisfied.

Acknowledgment

This research is supported by Hanseo University.

References

[1] L. G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 332(2) (2007), 1468-1476.
[2] F. Khojaseh, Z. Goodarzi and A. Razani, Some fixed point theorems of integral type contraction in cone metric spaces, Fixed Point Theory and Applications, 2010, Article ID 189684, 13 page, doi:10.1155/2010/189648.
[3] Sh. Rezapour and R. Hamlbarani, Some notes on the paper Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 345 (2008), 719-724.

