COMMON FIXED POINT THEOREMS FOR GENERALIZED CONTRACTIVE TYPE AND GENERALIZED QUASI-CONTRACTIVE TYPE MAPPINGS ON CONE METRIC SPACES

Seong-Hoon Cho^{a,*}, Jee-Won Lee^a, Jong-Sook Bae^b and Kwang-Soo Na^b

^aDepartment of Mathematics Hanseo University Chungnam, 356-706, South Korea e-mail: shcho@hanseo.ac.kr

^bDepartment of Mathematics Moyngji University Yongin, 449-728, South Korea

Abstract

In this paper, some new generalized contractive type and generalized quasi-contractive type conditions for a pair of mappings in cone metric spaces are defined and certain common fixed point theorems for these mappings are established.

1. Introduction and Preliminaries

Recently, a fixed point theorem for mappings defined on cone metric spaces satisfying cone integral type contractive condition [2] is proved.

© 2012 Pushpa Publishing House

2010 Mathematics Subject Classification: 47H10, 54H25.

Keywords and phrases: fixed point, common fixed point, cone metric space.

*Corresponding author

Received October 6, 2011

In this paper, we establish some new generalized contractive type and generalized quasi-contractive type conditions for a pair of mappings defined on cone metric spaces and prove some new common fixed point theorems for these mappings. Our results are the generalizations of results in [1, 2].

Let (E, τ) be a topological vector space and $P \subset E$. Then, P is called a *cone* whenever

- (i) P is closed, non-empty and $P \neq \{0\}$;
- (ii) $ax + by \in P$ for all $x, y \in P$ and non-negative real numbers a, b;
- (iii) $P \cap (-P) = \{0\}.$

Given a cone $P \subset E$, we define a partial ordering \leq with respect to P by

$$x \le y$$
 if and only if $y - x \in P$.

We write x < y to indicate that $x \le y$ but $x \ne y$.

For $x, y \in P$, $x \ll y$ stands for $y - x \in int(P)$, where int(P) is the interior of P.

A cone P is called *regular* if every increasing sequence which is bounded from above is convergent. That is, if $\{u_n\}$ is a sequence such that for some $z \in E$,

$$u_1 \le u_2 \le \cdots \le z$$
,

then there exists a $u \in E$ such that

$$\lim_{n\to\infty}\|u_n-u\|=0.$$

Equivalently, a cone *P* is regular if and only if every decreasing sequence which is bounded from below is convergent.

If *E* is a normed space, then a cone *P* is called *normal* whenever there exists a number $K \ge 1$ such that for all $x, y \in E$, $0 \le x \le y$ implies $||x|| \le K||y||$. The least positive number satisfying this norm inequality is called the *normal constant* of *P* [1]. There are non-normal cones (see [3]).

Common Fixed Point Theorems for Generalized Contractive Type ... 183

It is well known [1] that every regular cone is normal (see also [3]).

For a nonempty set X, a mapping $d: X \times X \to E$ is called *cone metric*

- (i) $0 \le d(x, y)$ for all $x, y \in X$, and d(x, y) = 0 if and only if x = y;
- (ii) d(x, y) = d(y, x) for all $x, y \in X$;

[1] on X if the following conditions are satisfied:

(iii) $d(x, y) \le d(x, z) + d(z, y)$ for all $x, y, z \in X$.

From now on, we assume that E is a normed space, P is a cone in E with $int(P) \neq \emptyset$ and \leq is a partial ordering with respect to P. And let X be a cone metric space with a cone metric d.

The following definitions are found in [1].

Let $x \in X$, and let $\{x_n\}$ be a sequence of points of X. Then

- (1) $\{x_n\}$ converges to x (denoted by $\lim_{n\to\infty} x_n = x$ or $x_n \to x$) if for any $c \in int(P)$, there exists an N such that for all n > N, $d(x_n, x) \ll c$.
- (2) $\{x_n\}$ is *Cauchy* if for any $c \in \text{int}(P)$, there exists an N such that for all n, m > N, $d(x_n, x_m) \ll c$.
 - (3) (X, d) is *complete* if every Cauchy sequence in X is convergent.

Note that if P is a normal cone, then $\{x_n\}$ converges to x if and only if $\lim_{n\to\infty} d(x_n, x) = 0$. Further, in this case, $\{x_n\}$ is a Cauchy sequence in X if and only if $\lim_{n\to\infty} d(x_n, x_m) = 0$ (see [1]).

A function $f: P \to P$ is called *<-increasing* (resp. \leq -*increasing*) if, for each $x, y \in P$, x < y (resp. $x \le y$) if and only if f(x) < f(y) (resp. $f(x) \le f(y)$).

Let $F: P \rightarrow P$ be a function such that

- (F1) F(t) = 0 if and only if t = 0;
- (F2) $0 \ll F(t)$ for each $0 \ll t$;

- 184 Seong-Hoon Cho, Jee-Won Lee, Jong-Sook Bae and Kwang-Soo Na
 - (F3) *F* is <-increasing;
 - (F4) *F* is continuous.

We denote by $\Im(P, P)$ the family of functions satisfying (F1)-(F4).

Example 1.1. (1) Let
$$F(t) = t$$
 for each $t \in P$. Then $F \in \mathfrak{I}(P, P)$.

(2) Let
$$a, b \in E$$
, and let $[a, b] = \{x \in E : x = tb + (1 - t)a, t \in [0, 1]\}.$

Suppose that a mapping $\varphi: P \to P$ is non-vanishing cone integrable on each $[a, b] \subset P$ such that for each $c \in int(P)$, $\int_0^c \varphi d_P \in int(P)$ (see [2]).

Let
$$F(t) = \int_0^t \varphi dP$$
. Then $F \in \mathfrak{F}(P, P)$.

Note that if $\varphi: P \to P$ is subadditive, then F is subadditive (see [2]).

Let $\Phi(P, P)$ be the family of \leq -increasing and continuous functions $\phi: int(P) \cup \{0\} \to int(P) \cup \{0\}$ satisfying the following conditions:

- $(\phi 1) \ \phi(t) = 0$ if and only if t = 0;
- $(\phi 2)$ for each $t \in int(P)$, $\phi(t) \ll t$;
- (ϕ 3) either $\phi(t) \le d(x, y)$ or $d(x, y) \le \phi(t)$ for $t \in int(P) \cup \{0\}$ and $x, y \in X$.

From now on, let $C(a) = \{p \in P : a \le p\}$ for $a \in X$, and let $F \in \mathfrak{I}(P, P)$ and $\phi \in \Phi(P, P)$.

Lemma 1.1. *Let E be a topological vector space*. *Then the following are satisfied*:

- (1) If, for $u, v, w \in E$, $u \ll v$ and $v \leq w$, then u < w.
- (2) If $u \in E$ such that for any $c \in int(P)$, $0 \le u \ll c$, then u = 0.
- (3) Let $u, v, u_n \in E$ such that $u_n \leq v_n$ for all $n \geq 0$.

If $\lim_{n\to\infty} u_n = u$ and $\lim_{n\to\infty} v_n = v$, then $u \le v$.

(4) If $c_n \in E$ and $c_n \to 0$, then for each $c \in int(P)$, there exists an N such that $c_n \ll c$ for all n > N.

Lemma 1.2. Let $P \subset E$ be a normal cone. Suppose that $\{u_n\}$, $\{v_n\}$ and $\{w_n\}$ are sequences of points in E such that $u_n \leq w_n \leq v_n$ for all $n \in \mathbb{N}$. If $\lim_{n \to \infty} u_n = u$ and $\lim_{n \to \infty} v_n = u$ for some $u \in E$, then $\lim_{n \to \infty} w_n = u$.

Proof. Since $v_n - u_n - (w_n - u_n) = v_n - w_n \in P$, we have $w_n - u_n \le v_n - u_n$, and so $||w_n - u_n|| \le K ||v_n - u_n||$, where K is the normal constant of P.

Thus we have

$$\| w_n - u \| \le \| w_n - u_n \| + \| u_n - u \|$$

$$\le K \| v_n - u_n \| + \| u_n - u \|$$

$$\le K (\| v_n - u \| + \| u - u_n \|) + \| u_n - u \| \to 0.$$

Hence $\lim_{n\to\infty} w_n = u$.

Lemma 1.3. Let E be a topological vector space and $a \in \{0\} \cup int(P)$.

If
$$F(a) \le \phi(F(a))$$
, then $a = 0$.

Lemma 1.4 [1]. Let $P \subset E$ be a normal cone. Suppose that $\{x_n\}$ and $\{y_n\}$ are sequences of points in X and $x, y \in X$.

If $\lim_{n\to\infty} x_n = x$ and $\lim_{n\to\infty} y_n = y$, then $\lim_{n\to\infty} d(x_n, y_n) = d(x, y)$.

2. Common Fixed Point Theorems

We prove a generalized contractive type common fixed point theorem for a pair of mappings defined on cone metric space.

Theorem 2.1. Let (X, d) be a complete cone metric space with regular cone P such that $0 \ll d(x, y)$ for $x, y \in X$ with $x \neq y$. Suppose that mappings $S, T: X \to X$ are satisfying

$$C(F(d(Tx, Sy))) \cap \phi(F(m(x, y))) \neq \emptyset$$
 (2.1)

for all $x, y \in X$, where

$$m(x, y) = \left\{ d(x, y), d(Tx, x), d(Sy, y), \frac{1}{2} \left\{ d(Tx, y) + d(Sy, x) \right\} \right\}.$$

Then S and T have a unique common fixed point in X. Moreover, for each $x_0 \in X$, the iterated sequence $\{x_n\}$ with $x_{2n+1} = Tx_{2n}$ and $x_{2n+2} = Sx_{2n+1}$ is convergent to the common fixed point of S and T.

Proof. We first prove that any fixed point of *T* is also a fixed point of *S*, and conversely.

If Tz = z, then we have

$$m(z, z) = \left\{ d(z, z), d(Tz, z), d(Sz, z), \frac{1}{2} \{ d(Tz, z) + d(Sz, z) \} \right\}$$
$$= \left\{ 0, d(Sz, z), \frac{1}{2} d(Sz, z) \right\}.$$

Thus from (2.1) with x = z, y = z, we obtain

$$C(F(d(Tz, Sz))) \cap \phi(F(m(z, z))) \neq \emptyset$$

which implies

$$C(F(d(z, Sz))) \cap \phi \left(F\left(\left\{0, d(Sz, z), \frac{1}{2}d(Sz, z)\right\}\right) \right) \neq \emptyset.$$

By Lemma 1.3, d(z, Sz) = 0. Hence z = Sz.

Similarly, we have that if Sz = z, then Tz = z.

We now show that if S and T have a common fixed point, then the common fixed point is unique.

If
$$Su = Tu = u$$
 and $Sv = Tv = v$, then $m(u, v) = \{0, d(u, v)\}$.

From (2.1) with x = u and y = v, we have

$$C(F(d(u, v))) \cap \phi(F(\{0, d(u, v)\})) \neq \emptyset.$$

By Lemma 1.3, u = v.

Let $x_0 \in X$ be fixed, and let $x_{2n+1} = Tx_{2n}$, $x_{2n+2} = Sx_{2n+1}$ for all $n \ge 0$.

If there exists an $n \in \mathbb{N}$ such that $x_{n+1} = x_n$, then S or T has a fixed point, and so S and T have a common fixed point. Hence the proof is completed.

Thus we assume that, for any $n \ge 0$, $x_{n+1} \ne x_n$.

From (2.1) with
$$x = x_{2n}$$
 and $y = x_{2n-1}$, we have

$$C(F(d(Tx_{2n}, Sx_{2n-1}))) \cap \phi(F(m(x_{2n}, x_{2n-1}))) \neq \emptyset,$$
 (2.2)

where

$$m(x_{2n}, x_{2n-1}) = \left\{ d(x_{2n}, x_{2n-1}), d(x_{2n}, x_{2n+1}), d(x_{2n+1}, x_{2n}), \right.$$

$$\left. \frac{1}{2} \left\{ d(x_{2n+1}, x_{2n-1}) + d(x_{2n}, x_{2n}) \right\} \right\}$$

$$= \left\{ d(x_{2n}, x_{2n-1}), d(x_{2n+1}, x_{2n}), \frac{1}{2} d(x_{2n+1}, x_{2n-1}) \right\}.$$

Thus we have

$$C(F(d(x_{2n+1}, x_{2n})))$$

$$\bigcap \phi \bigg(F \bigg(\bigg\{ d(x_{2n}, \, x_{2n-1}), \, d(x_{2n+1}, \, x_{2n}), \, \frac{1}{2} \, d(x_{2n+1}, \, x_{2n-1}) \bigg\} \bigg) \bigg) \neq \emptyset$$

which implies

$$C(F(d(x_{2n+1}, x_{2n})))$$

$$\bigcap \phi \left(F \left(\left\{ d(x_{2n}, x_{2n-1}), \frac{1}{2} d(x_{2n+1}, x_{2n}) + d(x_{2n}, x_{2n-1}) \right\} \right) \right) \neq \emptyset. \quad (2.3)$$

If

$$F(d(x_{2n+1}, x_{2n})) \le \phi \left(F\left(\frac{1}{2} \left\{ d(x_{2n}, x_{2n-1}) + d(x_{2n+1}, x_{2n}) \right\} \right) \right), \quad (2.4)$$

then

$$F(d(x_{2n+1}, x_{2n})) \ll F\left(\frac{1}{2}\{d(x_{2n}, x_{2n-1}) + d(x_{2n+1}, x_{2n})\}\right),$$

and so
$$F(d(x_{2n+1}, x_{2n})) < F\left(\frac{1}{2}\{d(x_{2n}, x_{2n-1}) + d(x_{2n+1}, x_{2n})\}\right)$$
. Since F

is <-increasing,
$$d(x_{2n+1}, x_{2n}) < \frac{1}{2} \{d(x_{2n}, x_{2n-1}) + d(x_{2n+1}, x_{2n})\}$$
. Thus, $d(x_{2n+1}, x_{2n}) < d(x_{2n}, x_{2n-1})$.

From (2.4), we obtain $F(d(x_{2n+1}, x_{2n})) \le \phi(F(d(x_{2n}, x_{2n-1})))$. Thus (2.3) implies $F(d(x_{2n+1}, x_{2n})) \le \phi(F(d(x_{2n}, x_{2n-1})))$.

Similarly, we have
$$F(d(x_{2n+2}, x_{2n+1})) \le \phi(F(d(x_{2n+1}, x_{2n})))$$
.

Thus, we have

$$F(d(x_{n+1}, x_n)) \le \phi(F(d(x_n, x_{n-1})))$$
 for all $n \in \mathbb{N}$.

By $(\phi 2)$,

$$F(d(x_{n+1}, x_n)) \ll F(d(x_n, x_{n-1}))$$
 for all $n \in \mathbb{N}$

and so

$$F(d(x_{n+1}, x_n)) < F(d(x_n, x_{n-1}))$$
 for all $n \in \mathbb{N}$.

Thus,

$$d(x_{n+1}, x_n) \le d(x_n, x_{n-1})$$
 for all $n \in \mathbb{N}$.

Since P is regular, there exists an $r(0 \le r)$ such that $\lim_{n \to \infty} d(x_{n+1}, x_n) = r$.

Letting $n \to \infty$ in (2.3), we obtain $F(r) \le \phi(F(r)) \ll F(r)$, which is a contradiction unless r = 0.

$$\lim_{n \to \infty} d(x_{n+1}, x_n) = 0. \tag{2.5}$$

We now show that $\{x_n\}$ is a Cauchy sequence in X.

Assume that $\{x_n\}$ is not a Cauchy sequence.

Then there exists a $c \in int(P)$ such that for all $k \in \mathbb{N}$, there exists an $m_k > n_k > k$ satisfying

- (i) n_k is even, and m_k is odd,
- (ii) $d(x_{n_k}, x_{m_{k-1}}) \le \phi(c)$,

(iii)
$$\phi(c) \leq d(x_{n_k}, x_{m_k})$$
.

Then we have

$$\phi(c) \leq d(x_{n_k}, x_{m_k}) \leq d(x_{n_k}, x_{m_{k-1}}) + d(x_{m_{k-1}}, x_{m_k}) \leq d(x_{m_k}, x_{m_{k-1}}) + \phi(c).$$

By Lemma 1.2 and (2.5),

$$\lim_{n \to \infty} d(x_{n_k}, x_{m_k}) = \phi(c). \tag{2.6}$$

We obtain

$$d(x_{n_k-1}, \, x_{m_k-1}) \leq d(x_{n_k-1}, \, x_{n_k}) + d(x_{n_k}, \, x_{m_k-1}) \leq d(x_{n_k-1}, \, x_{n_k}) + \phi(c)$$

and

$$\phi(c) \le d(x_{n_k}, x_{m_k}) \le d(x_{n_k}, x_{n_k-1}) + d(x_{n_k-1}, x_{m_k-1}) + d(x_{m_k-1}, x_{m_k}).$$

Thus we have

$$\begin{split} & \phi(c) - d(x_{n_k}, x_{n_k-1}) - d(x_{m_k-1}, x_{m_k}) \\ & \leq d(x_{n_k-1}, x_{m_k-1}) \\ & \leq d(x_{n_k-1}, x_{n_k}) + \phi(c). \end{split}$$

By Lemma 1.2 and (2.5), we have

$$\lim_{n \to \infty} d(x_{n_k - 1}, x_{m_k - 1}) = \phi(c). \tag{2.7}$$

We have

$$\begin{split} &d(x_{n_k-1},\ x_{m_k-1}) - d(x_{m_k},\ x_{m_k-1})\\ &\leq d(x_{m_k},\ x_{n_k-1})\\ &\leq d(x_{m_k},\ x_{m_k-1}) + d(x_{m_k-1},\ x_{n_k}) + d(x_{n_k},\ x_{n_k-1})\\ &\leq d(x_{m_k},\ x_{m_k-1}) + d(x_{n_k},\ x_{n_k-1}) + \phi(c). \end{split}$$

By Lemma 1.2, (2.5) and (2.7),

$$\lim_{n\to\infty}d(x_{m_k},\,x_{n_k-1})=\phi(c).$$

Also, we obtain

$$\begin{split} & \phi(c) - d(x_{m_k}, x_{m_k-1}) \\ & \leq d(x_{n_k}, x_{m_k}) - d(x_{m_k}, x_{m_k-1}) \\ & \leq (x_{n_k}, x_{m_k-1}) \\ & \leq \phi(c). \end{split}$$

By Lemma 1.2 and (2.5),

$$\lim_{n\to\infty} d(x_{n_k}, x_{m_k-1}) = \phi(c).$$

From (2.1) with $x = x_{n_{k-1}}$ and $y = x_{m_{k-1}}$, we obtain

$$C(F(d(Tx_{n_{k-1}},\,Sx_{m_{k-1}})))\cap \phi(F(m(x_{n_{k-1}},\,x_{m_{k-1}})))\neq\varnothing,$$

where

$$m(x_{n_{k-1}}, x_{m_{k-1}}) = \left\{ d(x_{n_{k-1}}, x_{m_{k-1}}), d(x_{n_k}, x_{n_{k-1}}), d(x_{m_k}, x_{m_{k-1}}), d(x_{m_k}, x_{m_{k-1}}), d(x_{m_k}, x_{m_{k-1}}) \right\}.$$

Letting $k \to \infty$ in above inequality, we obtain

$$C(F(\phi(c))) \cap \phi(F(\{0, \phi(c)\})) \neq \emptyset.$$

By Lemma 1.3, $\phi(c) = 0$, and hence c = 0, which is a contradiction.

Therefore, $\{x_n\}$ is a Cauchy sequence in X.

Since X is complete, there exists an $a \in X$ such that $\lim_{n\to\infty} x_n = a$.

From (2.1) with $x = x_{2n}$ and y = a, we obtain

$$C(F(d(x_{2n+1}, Sa))) \cap \phi(F(m(x_{2n}, a))) \neq \emptyset, \tag{2.8}$$

where

$$m(x_{2n}, a)$$

$$= \left\{ d(x_{2n}, a), d(x_{2n+1}, x_{2n}), d(Sa, a), \frac{1}{2} \left\{ d(x_{2n+1}, a) + d(Sa, x_{2n}) \right\} \right\}.$$

Letting $n \to \infty$ in (2.8), we obtain

$$C(F(d(a, Sa))) \cap \phi \left(F\left(\left\{0, d(Sa, a), \frac{1}{2}d(Sa, a)\right\}\right) \right) \neq \emptyset.$$

By Lemma 1.3, d(a, Sa) = 0. Thus, Sa = a.

By the proof above, a is a unique common fixed point of S and T.

Corollary 2.2. Let (X, d) be a complete cone metric space with regular cone P such that $0 \ll d(x, y)$ for $x, y \in X$ with $x \neq y$. Suppose that a mapping $\varphi: P \to P$ is non-vanishing cone integrable on each $[a, b] \subset P$ such that for each $c \in int(P)$, $\int_0^c \varphi d_P \in int(P)$.

If mappings $S, T: X \to X$ are satisfying

$$C\left(\int_{0}^{d(Tx, Sy)} \varphi d_{P}\right) \cap \phi\left(\left\{\int_{0}^{u} \varphi d_{P} : u \in m(x, y)\right\}\right) \neq \emptyset$$

for all $x, y \in X$, then S and T have a unique common fixed point in X.

192 Seong-Hoon Cho, Jee-Won Lee, Jong-Sook Bae and Kwang-Soo Na Moreover, for each $x_0 \in X$, the iterated sequence $\{x_n\}$ with $x_{2n+1} = Tx_{2n}$ and $x_{2n+2} = Sx_{2n+1}$ is convergent to the common fixed point of S and T.

Theorem 2.3. Let (X, d) be a complete cone metric space with normal cone P. Suppose that mappings $S, T : X \to X$ are satisfying

$$C(F(d(Tx, Sy))) \cap kF(m(x, y)) \neq \emptyset$$
 (2.9)

for all $x, y \in X$, where $k \in [0, 1)$, and $F : P \to P$ is satisfying (F1), (F3) and (F4) such that

(1) F is subadditive;

(2) if, for
$$\{c_n\} \subset P$$
, $\lim_{n\to\infty} F(c_n) = 0$, then $\lim_{n\to\infty} c_n = 0$.

Then S and T have a unique common fixed point in X. Moreover, for each $x_0 \in X$, the iterated sequence $\{x_n\}$ with $x_{2n+1} = Tx_{2n}$ and $x_{2n+2} = Sx_{2n+1}$ is convergent to the common fixed point of S and T.

Proof. As in the proof of Theorem 2.1, we have that any fixed point of T is also a fixed point of S, and conversely. Also, if S and T have a common fixed point, then the common fixed point is unique.

Let $x_0 \in X$ be fixed, and let $x_{2n+1} = Tx_{2n}$, $x_{2n+2} = Sx_{2n+1}$ for all $n \ge 0$.

Then we may assume that for any $n \ge 0$, $x_{n+1} \ne x_n$.

Let
$$x = x_{2n}$$
 and $y = x_{2n-1}$ in (2.9).

Then, as in proof of Theorem 2.1, we have

$$C(F(d(x_{2n+1}, x_{2n})))$$

$$\bigcap kF\left(\left\{d(x_{2n},\,x_{2n-1}),\,\frac{1}{2}\left\{d(x_{2n+1},\,x_{2n})+d(x_{2n},\,x_{2n-1})\right\}\right\}\right)\neq\varnothing.\quad(2.10)$$

If

$$F(d(x_{2n+1}, x_{2n})) \le kF\left(\frac{1}{2}\left\{d(x_{2n}, x_{2n-1}) + d(x_{2n+1}, x_{2n})\right\}\right), \quad (2.11)$$

then
$$F(d(x_{2n+1}, x_{2n})) < F\left(\frac{1}{2} \{d(x_{2n}, x_{2n-1}) + d(x_{2n+1}, x_{2n})\}\right)$$

Since *F* is <-increasing,

$$d(x_{2n+1}, x_{2n}) < \frac{1}{2} \{ d(x_{2n}, x_{2n-1}) + d(x_{2n+1}, x_{2n}) \}.$$

Thus, $d(x_{2n+1}, x_{2n}) < d(x_{2n}, x_{2n-1})$.

From (2.11), we obtain $F(d(x_{2n+1}, x_{2n})) \le kF(d(x_{2n}, x_{2n-1}))$. Thus (2.10) implies $F(d(x_{2n+1}, x_{2n})) \le kF(d(x_{2n}, x_{2n-1}))$.

Similarly, we have $F(d(x_{2n+2}, x_{2n+1})) \le kF(d(x_{2n+1}, x_{2n}))$.

Thus, we have

$$F(d(x_{n+1}, x_n)) \le kF(d(x_n, x_{n-1}))$$
 for all $n \in \mathbb{N}$.

Hence

$$F(d(x_{n+1}, x_n)) \le kF(d(x_n, x_{n-1})) \le \dots \le k^n F(d(x_1, x_0)).$$

We now show that $\{x_n\}$ is a Cauchy sequence in X.

For m > n, we have that

$$F(d(x_{n}, x_{m})) \leq F(d(x_{n}, x_{n+1}) + d(x_{n+1}, x_{n+2}) + \dots + d(x_{m-1}, x_{m}))$$

$$\leq F(d(x_{n}, x_{n+1})) + F(d(x_{n+1}, x_{n+2})) + \dots + F(d(x_{m-1}, x_{m}))$$

$$\leq k^{n} F(d(x_{1}, x_{0})) + k^{n+1} F(d(x_{1}, x_{0})) + \dots + k^{m-1} F(d(x_{1}, x_{0}))$$

$$\leq \frac{k^{m}}{1 - k} F(d(x_{1}, x_{0})) \to 0.$$

Hence $\lim_{n,m\to\infty} d(x_n, x_m) = 0$. By Lemma 1.1, for any $c \in int(P)$, there exists an N such that for all n > N, $d(x_n, x_m) \ll c$.

Hence $\{x_n\}$ is a Cauchy sequence in X, and hence $\lim_{n\to\infty} x_n = a \in X$ exists. As in the proof of Theorem 2.1, a is a unique common fixed point of S and T.

Remark 2.1. Let a mapping $\varphi: P \to P$ be non-vanishing and subadditive cone integrable on each $[a, b] \subset P$ such that for each $c \in int(P)$, $\int_0^c \varphi d_P \in int(P)$.

Let $F(t) = \int_0^t \varphi d_P$. Then F satisfies (F1), (F3), (F4), and conditions (1) and (2) in Theorem 2.3.

Corollary 2.4. Let (X, d) be a complete cone metric space with normal cone P. Suppose that a mapping $\varphi: P \to P$ is non-vanishing and subadditive cone integrable on each $[a, b] \subset P$ such that for each $c \in int(P)$, $\int_0^c \varphi d_P \in int(P)$. Suppose that mappings $S, T: X \to X$ are satisfying

$$C\left(\int_0^{d(Tx,Sy)} \varphi d_P\right) \cap k\left\{\int_0^u \varphi d_P : u \in m(x, y)\right\} \neq \emptyset$$

for all $x, y \in X$, where $k \in [0, 1)$.

Then S and T have a unique common fixed point in X. Moreover, for each $x_0 \in X$, the iterated sequence $\{x_n\}$ with $x_{2n+1} = Tx_{2n}$ and $x_{2n+2} = Sx_{2n+1}$ is convergent to the common fixed point of S and T.

Corollary 2.5 [2]. Let (X, d) be a complete cone metric space with normal cone P. Suppose that a mapping $\varphi: P \to P$ is non-vanishing and subadditive cone integrable on each $[a, b] \subset P$ such that for each $c \in P$

 $int(P), \int_0^c \varphi d_P \in int(P)$. Suppose that mapping $T: X \to X$ is satisfying

$$\int_{0}^{d(Tx,Ty)} \varphi d_{P} \le k \int_{0}^{d(x,y)} \varphi d_{P}$$

for all $x, y \in X$, where $k \in [0, 1)$.

Then T has a unique fixed point in X. Moreover, for each $x_0 \in X$, the iterated sequence $\{x_n\}$ with $x_{n+1} = Tx_n$ is convergent to the fixed point of T.

Theorem 2.6. Let (X, d) be a complete cone metric space with normal cone P. Suppose that mappings $S, T : X \to X$ are satisfying

$$C(F(d(Tx, Sy))) \cap kF(M(x, y)) \neq \emptyset$$
 (2.12)

for all $x, y \in X$, where $k \in \left[0, \frac{1}{2}\right)$ and

$$M(x, y) = \{d(x, y), d(Tx, x), d(Sy, y), d(Tx, y), d(Sy, x)\},\$$

and $F: P \rightarrow P$ is satisfying (F1), (F3) and (F4) such that

(1) F is subadditive;

(2) if, for
$$\{c_n\} \subset P$$
, $\lim_{n\to\infty} F(c_n) = 0$, then $\lim_{n\to\infty} c_n = 0$.

Then S and T have a unique common fixed point in X. Moreover, for each $x_0 \in X$, the iterated sequence $\{x_n\}$ with $x_{2n+1} = Tx_{2n}$ and $x_{2n+2} = Sx_{2n+1}$ is convergent to the common fixed point of S and T.

Proof. As in the proof of Theorem 2.1, we have that any fixed point of T is also a fixed point of S, and conversely. Also, we have that if S and T have a common fixed point, then the common fixed point is unique.

Let $x_0 \in X$ be fixed, and let $x_{2n+1} = Tx_{2n}$, $x_{2n+2} = Sx_{2n+1}$ for all $n \ge 0$.

Then we may assume that, for any $n \ge 0$, $x_{n+1} \ne x_n$.

In fact, if there exists an $n \in \mathbb{N}$ such that $x_{n+1} = x_n$, then S or T has a fixed point, and so S and T have a common fixed point. Hence the proof is completed.

From (2.12) with
$$x = x_{2n}$$
 and $y = x_{2n-1}$, we have

$$C(F(d(Tx_{2n}, Sx_{2n-1}))) \cap kF(M(x_{2n}, x_{2n-1})) \neq \emptyset,$$
 (2.13)

where

$$M(x_{2n}, x_{2n-1})$$

=
$$\{d(x_{2n}, x_{2n-1}), d(x_{2n}, x_{2n+1}), d(x_{2n+1}, x_{2n}), d(x_{2n+1}, x_{2n-1}), d(x_{2n}, x_{2n})\}$$

=
$$\{d(x_{2n}, x_{2n-1}), d(x_{2n+1}, x_{2n}), d(x_{2n+1}, x_{2n+1})\}.$$

Thus we have

$$C(F(d(Tx_{2n+1}, x_{2n}))) \cap kF(\{d(x_{2n}, x_{2n-1}), d(x_{2n+1}, x_{2n-1})\}) \neq \emptyset$$

which implies

$$C(F(d(x_{2n+1}, x_{2n})))$$

$$\bigcap kF(\{d(x_{2n}, x_{2n-1}), d(x_{2n+1}, x_{2n}) + d(x_{2n}, x_{2n-1})\}) \neq \emptyset.$$
 (2.14)

If

$$F(d(x_{2n+1}, x_{2n})) \le kF(d(x_{2n}, x_{2n-1})),$$

then
$$F(d(x_{2n+1}, x_{2n})) \le \frac{k}{1-k} F(d(x_{2n}, x_{2n-1}))$$
 because $k \le \frac{k}{1-k}$.

If

$$F(d(x_{2n+1}, x_{2n})) \le kF(d(x_{2n}, x_{2n-1}) + d(x_{2n+1}, x_{2n})),$$

then
$$F(d(x_{2n+1}, x_{2n})) \le kF(d(x_{2n}, x_{2n-1})) + kF(d(x_{2n+1}, x_{2n}))$$
, and so $F(d(x_{2n+1}, x_{2n})) \le \frac{k}{1-k} F(d(x_{2n}, x_{2n-1}))$.

Thus, (2.14) implies
$$F(d(x_{2n+1}, x_{2n})) \le \frac{k}{1-k} F(d(x_{2n}, x_{2n-1}))$$
.

Similarly, we have
$$F(d(x_{2n+2}, x_{2n+1})) \le \frac{k}{1-k} F(d(x_{2n+1}, x_{2n}))$$
.

Thus, we have

$$F(d(x_{n+1}, x_n)) \le hF(d(x_n, x_{n-1}))$$
 for all $n \in \mathbb{N}$, where $h = \frac{k}{1-k}$.

Hence

$$F(d(x_{n+1}, x_n)) \le h^n F(d(x_1, x_0)).$$

As in the proof of Theorem 2.3, we have that $\{x_n\}$ is a Cauchy sequence in X, and so the limit $\lim_{n\to\infty} x_n = a \in X$ exists.

From (2.12) with $x = x_{2n}$ and y = a, we obtain

$$C(F(d(x_{2n+1}, Sa))) \cap kF(M(x_{2n}, a)) \neq \emptyset, \tag{2.15}$$

where

$$M(x_{2n}, a) = \{d(x_{2n}, a), d(x_{2n+1}, x_{2n}), d(Sa, a), d(x_{2n+1}, a), d(Sa, x_{2n})\}.$$

Letting $n \to \infty$ in (2.15), we obtain

$$C(F(d(a, Sa))) \cap kF(\{0, d(Sa, a)\}) \neq \emptyset.$$

By Lemma 1.3, d(a, Sa) = 0. Thus, Sa = a.

Therefore, a is a unique common fixed point of S and T.

Corollary 2.7. Let (X, d) be a complete cone metric space with normal cone P. Suppose that a mapping $\varphi: P \to P$ is non-vanishing and subadditive cone integrable on each $[a, b] \subset P$ such that for each $c \in int(P)$, $\int_0^c \varphi d_P \in int(P)$. Suppose that mappings $S, T: X \to X$ are satisfying

for all $x, y \in X$, where $k \in \left[0, \frac{1}{2}\right]$.

Then S and T have a unique common fixed point in X. Moreover, for each $x_0 \in X$, the iterated sequence $\{x_n\}$ with $x_{2n+1} = Tx_{2n}$ and $x_{2n+2} = Sx_{2n+1}$ is convergent to the common fixed point of S and T.

The following example illustrates our main theorem.

Example 2.1. Let
$$E = \mathbb{R}^2$$
 and $P = \{(x, y) \in E : x, y \ge 0\}$.

Let
$$X = \left\{ \frac{1}{n} : n = 1, 2, ... \right\} \cup \{0\}$$
, and let $d(x, y) = (|x - y|, |x - y|)$.

Then (X, d) is a complete cone metric space and P is regular.

Let
$$F(s, t) = \left(s^{\frac{1}{s}}, t^{\frac{1}{t}}\right)$$
 for all $(s, t) \in P$ and $\phi(a, b) = \frac{1}{2}(a, b)$ for all $(a, b) \in int(P) \cup \{0\}$.

Suppose that mappings S and T are defined by

$$Tx = Sx = \begin{cases} 0, \ x = 0, \\ \frac{1}{n+1}, \ x = \frac{1}{n}, \ n \ge 1. \end{cases}$$

We show that (2.1) is satisfied.

We consider the following three cases:

Case 1. x = y.

Then d(x, y) = 0 and F(d(x, y)) = 0. Thus $F(d(Tx, Sy)) = F(0) = \phi(F(0)) = \phi(F(d(x, y)))$, and so (2.1) is satisfied.

Case 2.
$$x = 0$$
, $y = \frac{1}{n} \left(\text{or } x = \frac{1}{n}, \ y = 0 \right)$.

Then

$$F(d(Tx, Sy)) = F\left(d\left(0, \frac{1}{n+1}\right)\right)$$

$$= F\left(\frac{1}{n+1}, \frac{1}{n+1}\right)$$

$$= \left(\left(\frac{1}{n+1}\right)^{n+1}, \left(\frac{1}{n+1}\right)^{n+1}\right)$$

$$= \left(\frac{1}{n+1}\left(\frac{1}{n+1}\right)^n, \frac{1}{n+1}\left(\frac{1}{n+1}\right)^n\right)$$

$$\leq \left(\frac{1}{2}\left(\frac{1}{n}\right)^n, \frac{1}{2}\left(\frac{1}{n}\right)^n\right)$$

$$= \phi(F(d(x, y))).$$

Case 3.
$$x = \frac{1}{n}, y = \frac{1}{m}.$$

Then

$$F(d(Tx, Sy))$$

$$= F\left(d\left(\frac{1}{n+1}, \frac{1}{m+1}\right)\right)$$

$$= F\left(\left|\frac{1}{n+1} - \frac{1}{m+1}\right|, \left|\frac{1}{n+1} - \frac{1}{m+1}\right|\right)$$

$$= \left(\frac{|n-m|}{(n+1)(m+1)}\right)^{\frac{(n+1)(m+1)}{|n-m|}}, \left(\frac{|n-m|}{(n+1)(m+1)}\right)^{\frac{(n+1)(m+1)}{|n-m|}}\right)$$

$$= \left(\frac{\left| n-m \right|}{(n+1)(m+1)} \right)^{\frac{n+m+1}{\left| n-m \right|}}, \left(\frac{nm}{(n+1)(m+1)} \right)^{\frac{nm}{\left| n-m \right|}} \left(\frac{\left| n-m \right|}{nm} \right)^{\frac{nm}{\left| n-m \right|}},$$

$$\left(\frac{\left| n-m \right|}{(n+1)(m+1)} \right)^{\frac{n+m+1}{\left| n-m \right|}}, \left(\frac{nm}{(n+1)(m+1)} \right)^{\frac{nm}{\left| n-m \right|}} \left(\frac{\left| n-m \right|}{nm} \right)^{\frac{nm}{\left| n-m \right|}} \right)$$

$$\leq \left(\frac{1}{2} \cdot 1 \cdot \left(\frac{\left| n-m \right|}{nm} \right)^{\frac{nm}{\left| n-m \right|}}, \frac{1}{2} \cdot 1 \cdot \left(\frac{\left| n-m \right|}{nm} \right)^{\frac{nm}{\left| n-m \right|}} \right)$$

$$= \frac{1}{2} \left(\left(\frac{\left| n-m \right|}{nm} \right)^{\frac{nm}{\left| n-m \right|}}, \left(\frac{\left| n-m \right|}{nm} \right)^{\frac{nm}{\left| n-m \right|}} \right)$$

$$= \phi(F(d(x, y))).$$

Thus *S* and *T* satisfy all conditions of Theorem 2.1, and so they have a unique common fixed point.

But we cannot obtain

$$C(d(Tx, Sy)) \cap km(x, y) \neq \emptyset$$

for all $x, y \in X$, where $k \in [0, 1)$.

That is, the following general contractive inequality is not satisfied:

There exists a $k \in [0, 1)$ such that for all $x, y \in X$,

$$d(Tx, Sy) \le ku \tag{2.16}$$

for some $u \in m(x, y)$.

Suppose that (2.16) is satisfied.

Let
$$x = \frac{1}{n}$$
 and $y = \frac{1}{n+1}$.

Then we have

$$d(Tx, Sy) = \left(\frac{1}{(n+1)(n+2)}, \frac{1}{(n+1)(n+2)}\right)$$

and

$$m(x, y) = \left\{ \left(\frac{1}{n(n+1)}, \frac{1}{n(n+1)} \right), \left(\frac{1}{(n+1)(n+2)}, \frac{1}{(n+1)(n+2)} \right) \right\}.$$

If

$$u = \left(\frac{1}{(n+1)(n+2)}, \frac{1}{(n+1)(n+2)}\right),$$

then

$$\left(\frac{1}{(n+1)(n+2)}, \frac{1}{(n+1)(n+2)}\right) = d(Tx, Sy)$$

$$\leq k \left(\frac{1}{(n+1)(n+2)}, \frac{1}{(n+1)(n+2)}\right)$$

which is a contradiction.

If

$$u = \left(\frac{1}{n(n+1)}, \frac{1}{n(n+1)}\right),$$

then

$$\left(\frac{1}{(n+1)(n+2)}, \frac{1}{(n+1)(n+2)}\right) = d(Tx, Sy) \le k\left(\frac{1}{n(n+1)}, \frac{1}{n(n+1)}\right).$$

Thus we obtain

$$\left(\frac{k}{n(n+1)} - \frac{1}{(n+1)(n+2)}, \frac{k}{n(n+1)} - \frac{1}{(n+1)(n+2)}\right) \in P,$$

and so

$$0 \le \frac{k}{n(n+1)} - \frac{1}{(n+1)(n+2)},$$

and hence $k \ge 1$, which is a contradiction.

Hence (2.16) is not satisfied.

Acknowledgment

This research is supported by Hanseo University.

References

- [1] L. G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 332(2) (2007), 1468-1476.
- [2] F. Khojaseh, Z. Goodarzi and A. Razani, Some fixed point theorems of integral type contraction in cone metric spaces, Fixed Point Theory and Applications, 2010, Article ID 189684, 13 page, doi:10.1155/2010/189648.
- [3] Sh. Rezapour and R. Hamlbarani, Some notes on the paper Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 345 (2008), 719-724.