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Abstract 

In this paper, a new inequality for the mixed discriminant of matrix is 
established, which is the matrix analogue of inequality for a symmetric 
function and the mixed volume function, respectively. 

1. Introduction 

Let nxx ...,,1  be a set of nonnegative quantities and ( )xEi  be the ith 
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elementary symmetric function of an n-tuple ( )nxxxx ...,,1=  of positive 

reals defined by ( ) 10 =xE  and 
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An interesting inequality for the symmetric function was established ([1], 
also see [2, p. 33]) as follows: 
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A matrix analogue of (1.1) is the following result of Bergstrom [3]. 

Let K and L be positive definite matrices, and let iK  and iL  denote the 

sub-matrices obtained by deleting the ith row and column. Then 
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An interesting proof is due to Bellman [4] (also see [2, p. 67]). A 
generalization of (1.2) was established by Fan [5] (also see [6, 7]). 

There is a remarkable similarity between inequalities about symmetric 
functions (or determinants of symmetric matrices) and inequalities about the 
mixed volumes of convex bodies. In 1991, Milman asked if there is a version 
of (1.1) or (1.2) in the theory of mixed volumes and it was stated as the 
following open question (see [8]):  

Question 1.1. For which values of i and every pair of convex bodies K 

and L in ,nR  is it true that 
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The convex body is the compact and convex subset with non-empty interiors 

in .nR  ( )KWi  denotes the quermassintegral of convex body K and ( )KWi 1+  
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denotes the mixed volumes ( )....,,,...,,
11 +−− iin

BBKKV  The sum + is the usual 

Minkowski vector sum. 

A partial answer (L must be a ball) of (1.3) was established by 
Giannopoulos et al. (for details, see [9]). It can be proved that (1.3) is true in 
full generality only when 1−= ni  or 2−= ni  (see [10]). 

If K and L are convex bodies in ,nR  and i is equal to 1−n  or ,2−n  
then 
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In the paper, we establish a new matrix analogue of inequality (1.1) or 
(1.4). 

Theorem 1.2. Let K and L be symmetric positive define matrices. If i is 
equal to 1−n  or ,2−n  then 
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Here ( ) ( )
iin

i IIKKDKD ...,,,...,,
−

=  is the mixed discriminant (see Section 2). 

2. Mixed Discriminants and Aleksandrov’s Inequality 

Recall that for positive definite nn ×  matrices NKK ...,,1  and 

,...,,1 Nλλ  the determinant of the linear combination NN KK λ++λ 11  is 

a homogeneous polynomial of degree n in the iλ  (see e.g., [11]), 

( ) ( )∑
≤≤

λλ=λ++λ
Nii

iiiiNN
n

nn KKDKK
...,,1

11
1

11 ,...,,det  (2.1) 

where the coefficient ( )nii KKD ...,,1  depends only on nii KK ...,,1  (and         

not on other jK ’s) and thus may be chosen to be symmetric in its  
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arguments. The coefficient ( )nii KKD ...,,1  is called the mixed discriminant 

of ....,,1 nii KK  

The mixed discriminant ( ),...,,,...,, IIKKD  with kn −  copies of K 

and k copies of the identity matrix I, will be abbreviated by ( ).KDk  From 

(2.1), we have 
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Note that the elementary mixed discriminants ( ) ( )KDKD n...,,0  are thus 

defined as the coefficients of the polynomial 
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Obviously, ( ) ( )KKD det0 =  while ( )KnDn 1−  is the trace of K. 

The well-known Aleksandrov’s inequality for mixed discriminants can 
be stated as follows (see [12], also see [13, p. 383] or [14, p. 35]): 

Let nKK ...,,1  be real symmetric nn ×  matrices, where nKK ...,,1  are 

positive definite. Then 

( )2321 ...,,,, nKKKKD  

( ) ( ),...,,,,...,,,, 322311 nn KKKKDKKKKD≥  (2.4) 

with equality if and only if 21 KK λ=  with a real number λ. 

3. A Matrix Analogue of Inequality (1.1) or (1.4) 

Lemma 3.1. Let njK j ...,,3, =  be symmetric positive define matrices 

and ( )nKK ...,,3=M  and denote ( )M,, LKD  by ( )., LKD  If K, L, M 

are symmetric positive define matrices, then we have either 
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( ) ( ) ( ) ( )KMDKLDKKDMLD ,,,, ≥  (3.1) 

or 

( ) ( ) ( ) ( )[ ]2,,,, KKDMLDMKDLKD −  

[ ( ) ( ) ( )][ ( ) ( ) ( )].,,,,,, 22 MMDKKDMKDLLDKKDLKD −−≤  (3.2) 

Proof. From (2.4), we obtain for ,0, ≥st  

( ) ( ) ( ) .0,,, 2 ≥++++−++ sKMsKMDtKLtKLDsKMtKLD  

From the linearity of mixed discriminant, we have 

( ) [ ( ) ( ) ( )]MMDKKDKMDtstf ,,,, 22 −+  

[ ( ) ( ) ( )]LLDKKDKLDs ,,, 22 −+  

( ) ( ) ( ) ( )[ ] ,0,,,,2 ≥−+ KMDKLDKKDMLDst  

where ( )stf ,  is a linear function of t and s. It follows that the quadratic term 

is non-positive and in view of the following fact: 

( ) ( ) ( ),,,, 2 MMDKKDKMD ≥  

and 

( ) ( ) ( ),,,, 2 LLDKKDKLD ≥  

and hence, either 

( ) ( ) ( ) ( )KMDKLDKKDMLD ,,,, ≥  

or its discriminant is non-positive. This proves Lemma 3.1. 

Lemma 3.2. Let njK j ...,,3, =  be symmetric positive define matrices 

and ( )nKK ...,,3=M  and denote ( )M,, LKD  by ( )., LKD  If K, L, M 

are symmetric positive define matrices, then we have 
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Proof. From Lemma 3.1 and the Arithmetic-Geometric means inequality, 
we obtain 

( ) ( ) ( ) ( )KKDMLDKMDKLD ,,,, −  

( ( ) ( ) ( )) ( ( ) ( ) ( )) 212212 ,,,,,, MMDKKDKMDLLDKKDKLD −−≤  
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From (3.4) and the linearity of mixed discriminant, we get 
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which is the inequality (3.3). 

Theorem 3.3. Let K and L be symmetric positive define matrices. If i is 
equal to 1−n  or ,2−n  then 
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The case 2−= ni  is an immediate consequence of Lemma 3.2. 

Observe that when ,1−= ni  Theorem 3.3 reduces to the inequality 

( ) ( ) ( ),111 LDKDLKD nnn −−− +≥+  

which holds as an equality, a special case of (2.4). 
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