Far East Journal of Mathematical Sciences (FJMS)
Volume 62, Number 1, 2012, Pages 89-95
Published Online: February 2012
Available online at http://pphmj.com/journals/fjms.htm Published by Pushpa Publishing House, Allahabad, INDIA

AN INEQUALITY FOR THE MIXED DISCRIMINANT OF A MATRIX

Chang-Jian Zhao* and Wing-Sum Cheung ${ }^{\dagger}$
Department of Mathematics
China Jiliang University
Hangzhou 310018, P. R. China
e-mail: chjzhao@yahoo.com.cn
chjzhao@163.com
Department of Mathematics
The University of Hong Kong
Pokfulam Road, Hong Kong
e-mail: wscheung@hku.hk

Abstract

In this paper, a new inequality for the mixed discriminant of matrix is established, which is the matrix analogue of inequality for a symmetric function and the mixed volume function, respectively.

1. Introduction

Let x_{1}, \ldots, x_{n} be a set of nonnegative quantities and $E_{i}(x)$ be the i th
© 2012 Pushpa Publishing House
2010 Mathematics Subject Classification: 52A40, 26D15.
Keywords and phrases: symmetric matrix, mixed volume, Aleksandrov's inequality.
*Research is supported by National Natural Science Foundation of China (10971205).
${ }^{\dagger}$ Research is partially supported by the Research Grants Council of the Hong Kong SAR, China (Project No: HKU7040/03P).
elementary symmetric function of an n-tuple $x=x\left(x_{1}, \ldots, x_{n}\right)$ of positive reals defined by $E_{0}(x)=1$ and

$$
E_{i}(x)=\sum_{1<j_{1}<\cdots<j_{i} \leq n} x_{j_{1}} x_{j_{2}} \cdots x_{j_{i}}, \quad 1 \leq i \leq n .
$$

An interesting inequality for the symmetric function was established ([1], also see [2, p. 33]) as follows:

$$
\begin{equation*}
\frac{E_{i}(x+y)}{E_{i-1}(x+y)} \geq \frac{E_{i}(x)}{E_{i-1}(x)}+\frac{E_{i}(y)}{E_{i-1}(y)} . \tag{1.1}
\end{equation*}
$$

A matrix analogue of (1.1) is the following result of Bergstrom [3].
Let K and L be positive definite matrices, and let K_{i} and L_{i} denote the sub-matrices obtained by deleting the i th row and column. Then

$$
\begin{equation*}
\frac{\operatorname{det}\left(K_{+}+L\right)}{\operatorname{det}\left(K_{i}+L_{i}\right)} \geq \frac{\operatorname{det}(K)}{\operatorname{det}\left(K_{i}\right)}+\frac{\operatorname{det}(L)}{\operatorname{det}\left(L_{i}\right)} \tag{1.2}
\end{equation*}
$$

An interesting proof is due to Bellman [4] (also see [2, p. 67]). A generalization of (1.2) was established by Fan [5] (also see [6, 7]).

There is a remarkable similarity between inequalities about symmetric functions (or determinants of symmetric matrices) and inequalities about the mixed volumes of convex bodies. In 1991, Milman asked if there is a version of (1.1) or (1.2) in the theory of mixed volumes and it was stated as the following open question (see [8]):

Question 1.1. For which values of i and every pair of convex bodies K and L in \mathbb{R}^{n}, is it true that

$$
\begin{equation*}
\frac{W_{i}(K+L)}{W_{i+1}(K+L)} \geq \frac{W_{i}(K)}{W_{i+1}(K)}+\frac{W_{i}(L)}{W_{i+1}(L)} ? \tag{1.3}
\end{equation*}
$$

The convex body is the compact and convex subset with non-empty interiors in \mathbb{R}^{n}. $W_{i}(K)$ denotes the quermassintegral of convex body K and $W_{i+1}(K)$
denotes the mixed volumes $V(\underbrace{K, \ldots, K}_{n-i-1}, \underbrace{B, \ldots, B}_{i+1})$. The sum + is the usual Minkowski vector sum.

A partial answer (L must be a ball) of (1.3) was established by Giannopoulos et al. (for details, see [9]). It can be proved that (1.3) is true in full generality only when $i=n-1$ or $i=n-2$ (see [10]).

If K and L are convex bodies in \mathbb{R}^{n}, and i is equal to $n-1$ or $n-2$, then

$$
\begin{equation*}
\frac{W_{i}(K+L)}{W_{i+1}(K+L)} \geq \frac{W_{i}(K)}{W_{i+1}(K)}+\frac{W_{i}(L)}{W_{i+1}(L)} . \tag{1.4}
\end{equation*}
$$

In the paper, we establish a new matrix analogue of inequality (1.1) or (1.4).

Theorem 1.2. Let K and L be symmetric positive define matrices. If i is equal to $n-1$ or $n-2$, then

$$
\begin{equation*}
\frac{D_{i}(K+L)}{D_{i+1}(K+L)} \geq \frac{D_{i}(K)}{D_{i+1}(K)}+\frac{D_{i}(L)}{D_{i+1}(L)} . \tag{1.5}
\end{equation*}
$$

Here $D_{i}(K)=D(\underbrace{K, \ldots, K}_{n-i}, \underbrace{I, \ldots, I}_{i})$ is the mixed discriminant (see Section 2).

2. Mixed Discriminants and Aleksandrov's Inequality

Recall that for positive definite $n \times n$ matrices K_{1}, \ldots, K_{N} and $\lambda_{1}, \ldots, \lambda_{N}$, the determinant of the linear combination $\lambda_{1} K_{1}+\cdots+\lambda_{N} K_{N}$ is a homogeneous polynomial of degree n in the λ_{i} (see e.g., [11]),

$$
\begin{equation*}
\operatorname{det}\left(\lambda_{1} K_{1}+\cdots+\lambda_{N} K_{N}\right)=\sum_{1 \leq i_{1}, \ldots, i_{n} \leq N} \lambda_{i_{1}} \cdots \lambda_{i_{n}} D\left(K_{i_{1}}, \ldots, K_{i_{n}}\right), \tag{2.1}
\end{equation*}
$$

where the coefficient $D\left(K_{i_{1}}, \ldots, K_{i_{n}}\right)$ depends only on $K_{i_{1}}, \ldots, K_{i_{n}}$ (and not on other K_{j} 's) and thus may be chosen to be symmetric in its
arguments. The coefficient $D\left(K_{i_{1}}, \ldots, K_{i_{n}}\right)$ is called the mixed discriminant of $K_{i_{1}}, \ldots, K_{i_{n}}$.

The mixed discriminant $D(K, \ldots, K, I, \ldots, I)$, with $n-k$ copies of K and k copies of the identity matrix I, will be abbreviated by $D_{k}(K)$. From (2.1), we have

$$
\begin{equation*}
D_{i}(K+\lambda I)=\sum_{j=0}^{n-i}\binom{n-i}{j} \lambda^{j} D_{i+j}(K) \tag{2.2}
\end{equation*}
$$

Note that the elementary mixed discriminants $D_{0}(K), \ldots, D_{n}(K)$ are thus defined as the coefficients of the polynomial

$$
\begin{equation*}
\operatorname{det}(K+\lambda I)=\sum_{i=0}^{n}\binom{n}{i} \lambda^{i} D_{i}(K) . \tag{2.3}
\end{equation*}
$$

Obviously, $D_{0}(K)=\operatorname{det}(K)$ while $n D_{n-1}(K)$ is the trace of K.
The well-known Aleksandrov's inequality for mixed discriminants can be stated as follows (see [12], also see [13, p. 383] or [14, p. 35]):

Let K_{1}, \ldots, K_{n} be real symmetric $n \times n$ matrices, where K_{1}, \ldots, K_{n} are positive definite. Then

$$
\begin{align*}
& D\left(K_{1}, K_{2}, K_{3}, \ldots, K_{n}\right)^{2} \\
\geq & D\left(K_{1}, K_{1}, K_{3}, \ldots, K_{n}\right) D\left(K_{2}, K_{2}, K_{3}, \ldots, K_{n}\right), \tag{2.4}
\end{align*}
$$

with equality if and only if $K_{1}=\lambda K_{2}$ with a real number λ.

3. A Matrix Analogue of Inequality (1.1) or (1.4)

Lemma 3.1. Let $K_{j}, j=3, \ldots, n$ be symmetric positive define matrices and $\mathcal{M}=\left(K_{3}, \ldots, K_{n}\right)$ and denote $D(K, L, \mathcal{M})$ by $D(K, L)$. If K, L, M are symmetric positive define matrices, then we have either

$$
\begin{equation*}
D(L, M) D(K, K) \geq D(L, K) D(M, K) \tag{3.1}
\end{equation*}
$$

or

$$
\begin{align*}
& {[D(K, L) D(K, M)-D(L, M) D(K, K)]^{2} } \\
\leq & {\left[D(K, L)^{2}-D(K, K) D(L, L)\right]\left[D(K, M)^{2}-D(K, K) D(M, M)\right] . } \tag{3.2}
\end{align*}
$$

Proof. From (2.4), we obtain for $t, s \geq 0$,

$$
D(L+t K, M+s K)^{2}-D(L+t K, L+t K) D(M+s K, M+s K) \geq 0
$$

From the linearity of mixed discriminant, we have

$$
\begin{aligned}
& f(t, s)+t^{2}\left[D(M, K)^{2}-D(K, K) D(M, M)\right] \\
& +s^{2}\left[D(L, K)^{2}-D(K, K) D(L, L)\right] \\
& +2 s t[D(L, M) D(K, K)-D(L, K) D(M, K)] \geq 0,
\end{aligned}
$$

where $f(t, s)$ is a linear function of t and s. It follows that the quadratic term is non-positive and in view of the following fact:

$$
D(M, K)^{2} \geq D(K, K) D(M, M)
$$

and

$$
D(L, K)^{2} \geq D(K, K) D(L, L)
$$

and hence, either

$$
D(L, M) D(K, K) \geq D(L, K) D(M, K)
$$

or its discriminant is non-positive. This proves Lemma 3.1.
Lemma 3.2. Let $K_{j}, j=3, \ldots, n$ be symmetric positive define matrices and $\mathcal{M}=\left(K_{3}, \ldots, K_{n}\right)$ and denote $D(K, L, \mathcal{M})$ by $D(K, L)$. If K, L, M are symmetric positive define matrices, then we have

$$
\begin{equation*}
\frac{D(L+M, L+M)}{D(L+M, K)} \geq \frac{D(L, L)}{D(L, K)}+\frac{D(M, M)}{D(M, K)} \tag{3.3}
\end{equation*}
$$

Proof. From Lemma 3.1 and the Arithmetic-Geometric means inequality, we obtain

$$
\begin{aligned}
& D(L, K) D(M, K)-D(L, M) D(K, K) \\
\leq & \left(D(L, K)^{2}-D(K, K) D(L, L)\right)^{1 / 2}\left(D(M, K)^{2}-D(K, K) D(M, M)\right)^{1 / 2} \\
\leq & \frac{D(M, K)}{2 D(L, K)}\left(D(L, K)^{2}-D(K, K) D(L, L)\right) \\
+ & \frac{D(L, K)}{2 D(M, K)}\left(D(M, K)^{2}-D(K, K) D(M, M)\right) .
\end{aligned}
$$

Hence

$$
\begin{equation*}
2 D(L, M) \geq \frac{D(M, K)}{D(L, K)} \times D(L, L)+\frac{D(L, K)}{D(M, K)} \times D(M, M) \tag{3.4}
\end{equation*}
$$

From (3.4) and the linearity of mixed discriminant, we get

$$
\begin{aligned}
& D(L+M, L+M) \\
= & D(L, L)+2 D(L, M)+D(M, M) \\
\geq & D(L, L)\left(1+\frac{D(M, K)}{D(L, K)}\right)+D(M, M)\left(1+\frac{D(L, K)}{D(M, K)}\right),
\end{aligned}
$$

which is the inequality (3.3).
Theorem 3.3. Let K and L be symmetric positive define matrices. If i is equal to $n-1$ or $n-2$, then

$$
\begin{equation*}
\frac{D_{i}(K+L)}{D_{i+1}(K+L)} \geq \frac{D_{i}(K)}{D_{i+1}(K)}+\frac{D_{i}(L)}{D_{i+1}(L)} . \tag{3.5}
\end{equation*}
$$

The case $i=n-2$ is an immediate consequence of Lemma 3.2.
Observe that when $i=n-1$, Theorem 3.3 reduces to the inequality

$$
D_{n-1}(K+L) \geq D_{n-1}(K)+D_{n-1}(L),
$$

which holds as an equality, a special case of (2.4).

References

[1] M. Marcus and I. Lopes, Inequalities for symmetric functions and Hermitian matrices, Canad. J. Math. 8 (1956), 524-531.
[2] E. F. Bechenbach and R. Bellman, Inequalities, Springer-Verlag, BerlinGöttingen, Heidelberg, 1961.
[3] H. Bergstrom, A triangle inequality for matrices, Den Elfte Skandinaviski Matematiker-kongress, Trondheim, 1949, Oslo: John Grundt Tanums Forlag, 1952.
[4] R. Bellman, Notes on matrix theory-IV: an inequality due to Bergstrom, Amer. Math. Monthly 62 (1955), 172-173.
[5] K. Fan, Some inequalities concerning positive-definite Hermitian matrices, Proc. Cambridge Phil. Soc. 51 (1955), 414-421.
[6] K. Fan, Problem 4786, Amer. Math. Monthly 65 (1958), 289.
[7] L. Mirsky, Maximum principles in matrix theory, Proc. Glasgow Math. Assoc. 4 (1958), 34-37.
[8] A. Dembo, T. M. Cover and J. A. Thomas, Information theoretic inequalities, IEEE Trans. Inform. Theory 37 (1991), 1501-1518.
[9] A. Giannopoulos, M. Hartzoulaki and G. Paouris, On a local version of the Aleksandrov-Fenchel inequality for the quermassintegrals of a convex body, Proc. Amer. Math. Soc. 130 (2002), 2403-2412.
[10] M. Fradelizi, A. Giannopoulos and M. Meyer, Some inequalities about mixed volumes, Israel J. Math. 135 (2003), 157-179.
[11] E. Lutwak, D. Yang and G. Zhang, A new affine invariant for polytopes and Schneider's projection problem, Trans. Amer. Math. Soc. 353 (2001), 1767-1779.
[12] A. D. Aleksandrov, Zur Theorie der gemischten Volumina von konvexen Körpen, Die gemischten Diskriminanten und die gemischten Volumina (in Russian), Mat. Sb. 3 (1950), 227-252.
[13] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Cambridge Univ. Press, 1993.
[14] P. Pranayanuntana, Elliptic Brunn-Minkowski Theory, UMT Dissertations Publishing, 2003.

