AN INEQUALITY FOR THE MIXED DISCRIMINANT OF A MATRIX

Chang-Jian Zhao* and Wing-Sum Cheung†

Department of Mathematics China Jiliang University Hangzhou 310018, P. R. China e-mail: chjzhao@yahoo.com.cn chjzhao@163.com

Department of Mathematics The University of Hong Kong Pokfulam Road, Hong Kong e-mail: wscheung@hku.hk

Abstract

In this paper, a new inequality for the mixed discriminant of matrix is established, which is the matrix analogue of inequality for a symmetric function and the mixed volume function, respectively.

1. Introduction

Let $x_1, ..., x_n$ be a set of nonnegative quantities and $E_i(x)$ be the *i*th

2010 Mathematics Subject Classification: 52A40, 26D15.

Keywords and phrases: symmetric matrix, mixed volume, Aleksandrov's inequality.

Received September 17, 2011

^{© 2012} Pushpa Publishing House

^{*}Research is supported by National Natural Science Foundation of China (10971205).

[†]Research is partially supported by the Research Grants Council of the Hong Kong SAR, China (Project No: HKU7040/03P).

elementary symmetric function of an *n*-tuple $x = x(x_1, ..., x_n)$ of positive reals defined by $E_0(x) = 1$ and

$$E_i(x) = \sum_{1 < j_1 < \dots < j_i \le n} x_{j_1} x_{j_2} \cdots x_{j_i}, \quad 1 \le i \le n.$$

An interesting inequality for the symmetric function was established ([1], also see [2, p. 33]) as follows:

$$\frac{E_i(x+y)}{E_{i-1}(x+y)} \ge \frac{E_i(x)}{E_{i-1}(x)} + \frac{E_i(y)}{E_{i-1}(y)}.$$
 (1.1)

A matrix analogue of (1.1) is the following result of Bergstrom [3].

Let K and L be positive definite matrices, and let K_i and L_i denote the sub-matrices obtained by deleting the ith row and column. Then

$$\frac{\det(K+L)}{\det(K_i+L_i)} \ge \frac{\det(K)}{\det(K_i)} + \frac{\det(L)}{\det(L_i)}.$$
(1.2)

An interesting proof is due to Bellman [4] (also see [2, p. 67]). A generalization of (1.2) was established by Fan [5] (also see [6, 7]).

There is a remarkable similarity between inequalities about symmetric functions (or determinants of symmetric matrices) and inequalities about the mixed volumes of convex bodies. In 1991, Milman asked if there is a version of (1.1) or (1.2) in the theory of mixed volumes and it was stated as the following open question (see [8]):

Question 1.1. For which values of i and every pair of convex bodies K and L in \mathbb{R}^n , is it true that

$$\frac{W_i(K+L)}{W_{i+1}(K+L)} \ge \frac{W_i(K)}{W_{i+1}(K)} + \frac{W_i(L)}{W_{i+1}(L)}? \tag{1.3}$$

The convex body is the compact and convex subset with non-empty interiors in \mathbb{R}^n . $W_i(K)$ denotes the quermassintegral of convex body K and $W_{i+1}(K)$

denotes the mixed volumes $V(\underbrace{K, ..., K}_{n-i-1}, \underbrace{B, ..., B}_{i+1})$. The sum + is the usual

Minkowski vector sum.

A partial answer (*L* must be a ball) of (1.3) was established by Giannopoulos et al. (for details, see [9]). It can be proved that (1.3) is true in full generality only when i = n - 1 or i = n - 2 (see [10]).

If K and L are convex bodies in \mathbb{R}^n , and i is equal to n-1 or n-2, then

$$\frac{W_i(K+L)}{W_{i+1}(K+L)} \ge \frac{W_i(K)}{W_{i+1}(K)} + \frac{W_i(L)}{W_{i+1}(L)}.$$
(1.4)

In the paper, we establish a new matrix analogue of inequality (1.1) or (1.4).

Theorem 1.2. Let K and L be symmetric positive define matrices. If i is equal to n-1 or n-2, then

$$\frac{D_i(K+L)}{D_{i+1}(K+L)} \ge \frac{D_i(K)}{D_{i+1}(K)} + \frac{D_i(L)}{D_{i+1}(L)}.$$
 (1.5)

Here $D_i(K) = D(\underbrace{K, ..., K}_{n-i}, \underbrace{I, ..., I}_{i})$ is the mixed discriminant (see Section 2).

2. Mixed Discriminants and Aleksandrov's Inequality

Recall that for positive definite $n \times n$ matrices $K_1, ..., K_N$ and $\lambda_1, ..., \lambda_N$, the determinant of the linear combination $\lambda_1 K_1 + \cdots + \lambda_N K_N$ is a homogeneous polynomial of degree n in the λ_i (see e.g., [11]),

$$\det(\lambda_1 K_1 + \dots + \lambda_N K_N) = \sum_{1 \le i_1, \dots, i_n \le N} \lambda_{i_1} \cdots \lambda_{i_n} D(K_{i_1}, \dots, K_{i_n}), \quad (2.1)$$

where the coefficient $D(K_{i_1}, ..., K_{i_n})$ depends only on $K_{i_1}, ..., K_{i_n}$ (and not on other K_j 's) and thus may be chosen to be symmetric in its

arguments. The coefficient $D(K_{i_1}, ..., K_{i_n})$ is called the *mixed discriminant* of $K_{i_1}, ..., K_{i_n}$.

The mixed discriminant D(K, ..., K, I, ..., I), with n - k copies of K and k copies of the identity matrix I, will be abbreviated by $D_k(K)$. From (2.1), we have

$$D_{i}(K + \lambda I) = \sum_{i=0}^{n-i} {n-i \choose j} \lambda^{j} D_{i+j}(K).$$
 (2.2)

Note that the elementary mixed discriminants $D_0(K)$, ..., $D_n(K)$ are thus defined as the coefficients of the polynomial

$$\det(K + \lambda I) = \sum_{i=0}^{n} {n \choose i} \lambda^{i} D_{i}(K). \tag{2.3}$$

Obviously, $D_0(K) = \det(K)$ while $nD_{n-1}(K)$ is the trace of K.

The well-known Aleksandrov's inequality for mixed discriminants can be stated as follows (see [12], also see [13, p. 383] or [14, p. 35]):

Let $K_1, ..., K_n$ be real symmetric $n \times n$ matrices, where $K_1, ..., K_n$ are positive definite. Then

$$D(K_1, K_2, K_3, ..., K_n)^2$$

$$\geq D(K_1, K_1, K_3, ..., K_n)D(K_2, K_2, K_3, ..., K_n), \tag{2.4}$$

with equality if and only if $K_1 = \lambda K_2$ with a real number λ .

3. A Matrix Analogue of Inequality (1.1) or (1.4)

Lemma 3.1. Let K_j , j = 3, ..., n be symmetric positive define matrices and $\mathcal{M} = (K_3, ..., K_n)$ and denote $D(K, L, \mathcal{M})$ by D(K, L). If K, L, \mathcal{M} are symmetric positive define matrices, then we have either

$$D(L, M)D(K, K) \ge D(L, K)D(M, K)$$
 (3.1)

or

$$[D(K, L)D(K, M) - D(L, M)D(K, K)]^2$$

$$\leq [D(K, L)^{2} - D(K, K)D(L, L)][D(K, M)^{2} - D(K, K)D(M, M)]. \quad (3.2)$$

Proof. From (2.4), we obtain for $t, s \ge 0$,

$$D(L + tK, M + sK)^2 - D(L + tK, L + tK)D(M + sK, M + sK) \ge 0.$$

From the linearity of mixed discriminant, we have

$$f(t, s) + t^{2}[D(M, K)^{2} - D(K, K)D(M, M)]$$

$$+ s^{2}[D(L, K)^{2} - D(K, K)D(L, L)]$$

$$+ 2st[D(L, M)D(K, K) - D(L, K)D(M, K)] \ge 0,$$

where f(t, s) is a linear function of t and s. It follows that the quadratic term is non-positive and in view of the following fact:

$$D(M, K)^2 \ge D(K, K)D(M, M),$$

and

$$D(L, K)^2 \ge D(K, K)D(L, L),$$

and hence, either

$$D(L, M)D(K, K) \ge D(L, K)D(M, K)$$

or its discriminant is non-positive. This proves Lemma 3.1.

Lemma 3.2. Let K_j , j = 3, ..., n be symmetric positive define matrices and $\mathcal{M} = (K_3, ..., K_n)$ and denote $D(K, L, \mathcal{M})$ by D(K, L). If K, L, \mathcal{M} are symmetric positive define matrices, then we have

$$\frac{D(L+M, L+M)}{D(L+M, K)} \ge \frac{D(L, L)}{D(L, K)} + \frac{D(M, M)}{D(M, K)}.$$
 (3.3)

Proof. From Lemma 3.1 and the Arithmetic-Geometric means inequality, we obtain

$$D(L, K)D(M, K) - D(L, M)D(K, K)$$

$$\leq (D(L, K)^{2} - D(K, K)D(L, L))^{1/2}(D(M, K)^{2} - D(K, K)D(M, M))^{1/2}$$

$$\leq \frac{D(M, K)}{2D(L, K)}(D(L, K)^{2} - D(K, K)D(L, L))$$

$$+ \frac{D(L, K)}{2D(M, K)}(D(M, K)^{2} - D(K, K)D(M, M)).$$

Hence

$$2D(L, M) \ge \frac{D(M, K)}{D(L, K)} \times D(L, L) + \frac{D(L, K)}{D(M, K)} \times D(M, M).$$
 (3.4)

From (3.4) and the linearity of mixed discriminant, we get

$$D(L + M, L + M)$$

$$= D(L, L) + 2D(L, M) + D(M, M)$$

$$\geq D(L, L) \left(1 + \frac{D(M, K)}{D(L, K)} \right) + D(M, M) \left(1 + \frac{D(L, K)}{D(M, K)} \right),$$

which is the inequality (3.3).

Theorem 3.3. Let K and L be symmetric positive define matrices. If i is equal to n-1 or n-2, then

$$\frac{D_i(K+L)}{D_{i+1}(K+L)} \ge \frac{D_i(K)}{D_{i+1}(K)} + \frac{D_i(L)}{D_{i+1}(L)}.$$
(3.5)

The case i = n - 2 is an immediate consequence of Lemma 3.2.

Observe that when i = n - 1, Theorem 3.3 reduces to the inequality

$$D_{n-1}(K+L) \ge D_{n-1}(K) + D_{n-1}(L),$$

which holds as an equality, a special case of (2.4).

References

- [1] M. Marcus and I. Lopes, Inequalities for symmetric functions and Hermitian matrices, Canad. J. Math. 8 (1956), 524-531.
- [2] E. F. Bechenbach and R. Bellman, Inequalities, Springer-Verlag, Berlin-Göttingen, Heidelberg, 1961.
- [3] H. Bergstrom, A triangle inequality for matrices, Den Elfte Skandinaviski Matematiker-kongress, Trondheim, 1949, Oslo: John Grundt Tanums Forlag, 1952.
- [4] R. Bellman, Notes on matrix theory-IV: an inequality due to Bergstrom, Amer. Math. Monthly 62 (1955), 172-173.
- [5] K. Fan, Some inequalities concerning positive-definite Hermitian matrices, Proc. Cambridge Phil. Soc. 51 (1955), 414-421.
- [6] K. Fan, Problem 4786, Amer. Math. Monthly 65 (1958), 289.
- [7] L. Mirsky, Maximum principles in matrix theory, Proc. Glasgow Math. Assoc. 4 (1958), 34-37.
- [8] A. Dembo, T. M. Cover and J. A. Thomas, Information theoretic inequalities, IEEE Trans. Inform. Theory 37 (1991), 1501-1518.
- [9] A. Giannopoulos, M. Hartzoulaki and G. Paouris, On a local version of the Aleksandrov-Fenchel inequality for the quermassintegrals of a convex body, Proc. Amer. Math. Soc. 130 (2002), 2403-2412.
- [10] M. Fradelizi, A. Giannopoulos and M. Meyer, Some inequalities about mixed volumes, Israel J. Math. 135 (2003), 157-179.
- [11] E. Lutwak, D. Yang and G. Zhang, A new affine invariant for polytopes and Schneider's projection problem, Trans. Amer. Math. Soc. 353 (2001), 1767-1779.
- [12] A. D. Aleksandrov, Zur Theorie der gemischten Volumina von konvexen Körpen, Die gemischten Diskriminanten und die gemischten Volumina (in Russian), Mat. Sb. 3 (1950), 227-252.
- [13] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Cambridge Univ. Press, 1993.
- [14] P. Pranayanuntana, Elliptic Brunn-Minkowski Theory, UMT Dissertations Publishing, 2003.