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Abstract

In this paper we introduce and study the unified class [ ],,,, βαnpU

{ } ;0;10;...,3,2,1:, ≥β<α≤=∈
p

np N

of p-valently starlike and p-valently convex functions of order α in the

open unit disk E. Some properties of functions belonging to [ ]βα,,, npU

are obtained, which include radii of starlikeness and radii of convexity

involving Hadamard products (or convolution).

1. Introduction and Definition

Let ( )np,T  denote the class of functions f of the form:

( ) { }∑
∞

+=

=∈≥−=
npk

k
k

k
p npazazzf ,...,3,2,1,,0; N (1.1)

which are analytic and p-valent in the unit disk { }.1;: <∈= zzzE C

Let ( )npST ,α  and ( )npCT ,α  be the subclasses of ( )npT ,  consisting
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of p-valently starlike functions of order α and p-valently convex functions

of order α, respectively, that is,

( ) ( ) ( )
( ) ( )





 ∈α>





 ′

∈=α Ez
zf
zfznpTfnpST Re:,,

and

( ) ( ) ( )
( ) ( ) ,1Re:,,





 ∈α>





 ′′

+∈=α Ez
zf
zfznpTfnpCT

where .0 p<α≤  Yamakawa [2] easily derived the following:

( ) ( )∑
∞

+=
α ≤α≤α−≤α−⇔∈

npk
k ppaknpSTf ,0;, (1.2)

and

( ) ( ) ( )∑
∞

+=
α ≤α≤α−≤α−⇔∈

npk
k pppakknpCTf .0;, (1.3)

In this paper we consider new class ( )α,, npT  given by Yamakawa

[2]. A function ( )npf ,T∈  is said to be a member of the class ( )α,, npT

if it satisfies the inequality:

( )
( ) ( ),Re Ez
zfz

zf ∈α>






′

where .10
p

<α≤

We note that ( )α,, npT  is a subclass of ( ),,0 npT  since

( )
( )

( )
( ) .10;0ReRe

pzf
zfz

zfz
zf <α≤>





 ′

⇒α>






′

For the class ( ),,, αnpT  Yamakawa [2] has given the following

lemma.

Lemma 1.1. Let ( )npf ,T∈  satisfy the inequality

( ) ( )∑
∞

+=

≤α≤α−≤−α−
npk

k p
ppappkk .10;12 (1.4)

Then ( ).,, α∈ npf T
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However, the converse of the lemma is not true and Yamakawa [2]

defined the subclass ( )α,, npA  of ( )α,, npT  consisting of functions f

which satisfy (1.4). And let ( )α,, npB  denote the subclass of ( )np,T

consisting of functions f such that ( ) ( ).,, α∈′ npzfz A

Thus Yamakawa [2] gave the following:

Lemma 1.2. A function f defined by (1.1) is in the class ( )α,, npB  if

and only if

( ) ( )∑
∞

+=

≤α≤α−≤−α−
npk

k p
ppappkkk .10;12 2 (1.5)

In view of (1.4) and (1.5), we introduce and study some properties and

characteristics of the following general class [ ]βα,,, npU  of function

( )npf ,T∈  which also satisfy the inequality:

( ) ( )∑
∞

+=
≤β≤α−≤


 


β+β−−α−

npk
k ppa

p
kppkk .10;112 (1.6)

We can see easily

[ ] ( ) ( ) ( ),,,,,1,,, αβ+αβ−=βα npnpnp BAU

so that

[ ] ( )α=α ,,0,,, npnp AU   and  [ ] ( ).,,1,,, α=α npnp BU

The main objective here is to give some properties involving the

Hadamard products to the unified classes of ( )α,, npA  and ( )α,, npB  in

a more general form ( ).,,, βαnpU  The idea is motivated from the work

done by Srivastava et al. [1]. In [1], the authors gave results on distortion
theorem and some characteristics on modified Hadamard products. In

fact, the properties mentioned for unification of the classes ( )npST ,α

and ( )npCT ,α  satisfying (1.2) and (1.3) respectively can be easily

derived. We note that when 1=p  in the unification of classes ( )npST ,α

and ( ),, npCTα  all the properties mentioned above reduce to [1].
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2. Convolution Properties

Let the function mf  defined by

( ) ( )∑
∞

+=

=−=
npk

k
mk

p
m mzazzf ,2,1,, (2.7)

be in the class ( ),, npT  we denote by ( ) ( )zff 21 ∗  the convolution (or

Hadamard product) of the functions ( )zf1  and ( ),2 zf  that is,

( ) ( ) ∑
∞

+=

−=∗
npk

k
kk

p zaazzff .: 2,1,21 (2.8)

Theorem 2.1. Let the functions ,mf  for ( )2,1=m  defined by (2.7) be

in class [ ].,,, βαnpU  Then

( ) ( ) [ ],,,,21 βγ∈∗ npzff U

where

( )
( ) ( )[ ] ( )[ ] ( ) ( )

.
111

11
22

2

α−+−+β+β−++α−

α−−=γ
pnppnnpnnpp

pn
p

  (2.9)

The result is sharp for functions f given by

( ) ( )
( )( )[ ] ( )[ ] ( ).2,1,

11
1 =

+β+β−++α−
α−−= + mz

nnpnnpp
ppzzf npp

m  (2.10)

Proof. To prove Theorem 2.1, we must find the largest γ such that

( )

( )∑
∞

+=
≤

γ−




 


 


β+β−−γ−

npk
kk aa

pp
p
kppkk

,1
1

12

2,1,

for [ ] ( ).2,1,,,, =βγ∈ mnpfm U  Since [ ],,,, βα∈ npfm U  for ( ),2,1=m

we have

( )

( )∑
∞

+=

≤
α−





 





 





β+β−−α−

npk
ika

pp
p
kppkk

.1
1

12
,
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Therefore, by the Cauchy-Schwarz inequality, we get

( )

( )∑
∞

+=

≤
α−






 





β+β−−α−

1
2,1, .1

1

12

ij
kk aa

pp
p
kppkk

(2.11)

This implies that we need only show that

( )

( ) 2,1,1

12

kk aa
p

p
kppkk

γ−




 


β+β−−γ−

( )

( ) ( )( ),,
1

12
2,1, npkaa

p
p
kppkk

kk +≥
α−






 





β+β−−α−

≤

or equivalently, that

( ) ( )
( ) ( ) ( )( ).,

21
21

2,1, npk
ppkkp
ppkkpaa kk +≥

−γ−α−
−α−γ−≤

Hence, by the inequality (2.11), it suffices to prove that

( )

( )

( ) ( )
( ) ( ) ( )( ).,

21
21

12

1 npk
ppkkp
ppkkp

p
kppkk

pp +≥
−γ−α−
−α−γ−≤






 





β+β−−α−

α−  (2.12)

It follows from (2.12), that

( ) ( )

( ) ( )
( )( ).,

112

11
22

2
npk

ppk
p
kppkk

pkp
p

+≥
α−−



 





β+β−−α−

α−−+≤γ  (2.13)

Now, defining the function ( )kτ  by

( ) ( ) ( )

( ) ( )
( )( ).,

112

11:
22

2
npk

ppk
p
kppkk

pkp
p

k +≥
α−−



 





β+β−−α−

α−−+=τ  (2.14)

We see that ( )kτ  is an increasing function of .npk +=  Therefore, we

conclude that

( ) ( )

( )( )[ ] ( )( )
.

111

11:
22

2

α−+−



 





 +β+β−++α−

α−−=+τ≤γ
pnpp

p
npnnpp

pn
p

np

(2.15)
The proof is complete.
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Letting 0=β  and ,1=β  we will find Corollary 2.2 and Corollary 2.3,

respectively.

Corollary 2.2. Let the functions ,mf  for ( )2,1=m  defined by (2.7) be

in class ( ).,, αnpA  Then

( ) ( ) ( ),,,21 γ∈∗ npzff A

where

( )
( )( )[ ] ( )( )

.
11

11
22

2

α−+−++α−

α−−=γ
pnppnnpp

pn
p

(2.16)

The result is sharp for functions f given by

( ) ( )
( ) ( ) ( ).2,1,
1

1 =
++α−

α−−= + mz
nnpp

pp
zzf npp

m (2.17)

Corollary 2.3. Let the functions ,mf  for ( )2,1=m  defined by (2.7) be

in class ( ).,, αnpB  Then

( ) ( ) ( ),,,21 γ∈∗ npzff B

where

( )

( ) ( )[ ] ( ) ( )
.

11

11
22

2

α−+−




 +++α−

α−−=γ
pnpp

p
npnnpp

pn
p

     (2.18)

The result is sharp for functions f given by

( ) ( )

( ) ( )( )
( ).2,1,

2
1

1 =





 +++α−

α−−= + mz
npnnpp

pp
zzf npp

m     (2.19)

Theorem 2.4. Let the functions ,mf  for ( )2,1=m  defined by (2.7) be

in class [ ].,,, βαnpU  Then the function ( )zh  defined by

( ) ( )∑
∞

+=

+−=
npk

k
kk

p zaazzh ,: 2
2,

2
1, (2.20)

belongs to the class [ ],,,, βγnpU  where
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( )
( ) ( )[ ] ( )[ ] ( ) ( )

.
1211

121
22

2

α−+−+β+β−++α−

α−−=γ
pnppnnpnnpp

pn
p

(2.21)

The result is sharp for the functions

( ) ( )
( )( )[ ] ( )[ ] ( ).2,1,

11
1 =

+β+β−++α−
α−−= + mz

nnpnnpp
ppzzf npp

m  (2.22)

Proof. Noting that

{ }

( )∑∞

+= α−






 





β+β−−α−

npk mka
pp

p
kppkk

2
,22

2
2

1

12

{ }

( ) ,1
1

12
2

, ≤
















α−






 





β+β−−α−

≤ ∑∞

+= npk mka
pp

p
kppkk

for [ ],,,, βα∈ npfm U  for ( ),2,1=m  we have

{ }

( )
[ ]∑

∞

+=

≤+
α−






 





β+β−−α−

npk
kk aa

pp

p
kppkk

.1
12

12
2

2,
2

1,22

2
2

Therefore, we have to find the largest γ such that

{ } { }

( )
,

12

12

1
2

2

2

α−






 





β+β−−α−

≤
γ−
−γ−

pp

p
kppkk

p
ppkk (2.23)

that is,

( ) ( )

( ) ( )
( )( ).,

1212

121
22

2
npk

ppk
p
kppkk

pkp
p

+≥
α−−



 





β+β−−α−

α−−+≤γ   (2.24)

Now, defining the function ( )kτ  by

( ) ( )( )

( ) ( )
( )( ).,

1212

121:
22

2
npk

ppk
p
kppkk

pkp
p

k +≥
α−−



 





β+β−−α−

α−−+=τ  (2.25)
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We see that ( )kτ  is an increasing function of k. Thus, we conclude that

( ) ( )

( )( )[ ] ( )( )
.

1211

121:
22

2

α−+−



 





 +β+β−++α−

α−−=+τ≤γ
pnpp

p
npnnpp

pn
p

np

(2.26)
The proof is completed.

By setting ,0=β  we will arrive at the following corollary.

Corollary 2.5. Let the functions ,mf  for ( )2,1=m  defined by (2.7) be

in class ( ).,, αnpA  Then the function ( )zh  defined by (2.20) belongs to

the class ( ),,, γnpA  where

( )
( ) ( )[ ] ( ) ( )

.
121

121
22

2

α−+−++α−

α−−=γ
pnppnnpp

pn
p

(2.27)

The result is sharp for the functions given by (2.17).

Letting ,1=β  we will find a corollary as follows:

Corollary 2.5′. Let the functions ,mf  for ( )2,1=m  defined by (2.7) be

in class ( ).,, αnpB  Then the function ( )zh  defined by (2.20) belongs to the

class ( ),,, γnpB  where

( )

( ) ( )[ ] ( ) ( )
.

121

121
22

2

α−+−




 +++α−

α−−=γ
pnpp

p
npnnpp

pn
p

(2.28)

The result is sharp for the functions given by (2.19).

3. Radii Convexity and Starlikeness

The radii of convexity for class [ ]βα,,, npU  is given by the following

theorem.

Theorem 3.6. Let the functions f be in the class [ ].,,, βαnpU  Then

the function f is p-valently convex in the disk ( ),,,,1 δα< nprz  where

( )
( ) ( )

( ) ( ) .
1

12
inf,,,

1

1

pk

k kpk
p
kppkkp

npr

−

















δ−α−






 





β+β−−α−δ−

=δα    (3.29)
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Proof. It is sufficient to show that

( )
( ) ( )

( )

∑
∑

∞

+=
−

∞

+=
−

−

α−
=−−′

′′

npk
pk

k

npk
pk

k

zkap

zakk
p

zf
zfz 1

( )

∑
∑

∞

+=
−

∞

+=
−

−

α−
≤

npk
pk

k

npk
pk

k

zkap

zakk
(3.30)

which implies that

( ) ( )
( ) ( )1−−
′
′′

−δ− p
zf
zfz

p

( )
( )

∑
∑

∞

+=
−

∞

+=
−

−

α−
−δ−≥

npk
pk

k

npk
pk

k

zkap

zakk
p

( ) ( ) ( )[ ]

∑
∑

∞

+=
−

∞

+=
−

−

−+δ−−δ−
≥

npk
pk

k

npk
pk

k

zkap

zapkkpkpp

( ) ( )
.

∑
∑

∞

+=
−

∞

+=
−

−

δ−−δ−
≥

npk
pk

k

npk
pk

k

zkap

zakkpp
(3.31)

Hence from (3.29), if

( )
( )

( )

( ) .
1

12

α−






 





β+β−−α−

δ−
δ−≤−

p
p
kppkk

kk
pz pk (3.32)

According to (1.6)

( ) ( ) ( ) ( )∑
∞

+=

− =δ−−δ−>δ−−δ−
npk

pk
k ppppzakkpp .0 (3.33)
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Hence from (3.31), we obtain

( )
( ) .1 δ−<−′
′′

+ pp
zf
zfz

Therefore

( )
( ) ,01Re >









′
′′

+
zf
zfz

which shows that f  is p-valently convex in the disk ( ).,,,1 δα< nprz

By setting 0=β  and ,1=β  we have Corollary 3.7 and Corollary 3.8,

respectively.

Corollary 3.7. Let the functions f be in the class ( ).,, αnpA  Then the

function f is p-valently convex in the disk ( ),,,,2 δα< nprz  where

( ) ( ) ( )
( ) ( ) .
1

2inf,,,

1

2
pk

k kpk
ppkkp

npr −









δ−α−
−α−δ−=δα (3.34)

Corollary 3.8. Let the functions f be in the class ( ).,, αnpB  Then the

function f is p-valently convex in the disk ( ),,,,3 δα< nprz  where

( )
( ) ( )

( ) ( ) .
1

2
inf,,,

1

3

pk

k kpk
p
kppkkp

npr

−

















δ−α−






−α−δ−

=δα (3.35)

Theorem 3.9. Let the functions f be in the class [ ].,,, βαnpU  Then

the function f is p-valently starlike in the disk ( ),,,,4 δα< nprz  where

( )
( ) ( )

( ) ( ) .
1

12
inf,,,

1

4

pk

k kpp
p
kppkkp

npr

−

















δ−α−






 





β+β−−α−δ−

=δα (3.36)

Proof. It is sufficient to show that

( )
( ) .δ−<−
′

pp
zf
zfz

By using the similar method of Theorem 3.6 and (1.6), we will obtain
(3.36).
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Letting 0=β  and ,1=β  we have Corollary 3.10 and Corollary 3.11,

respectively.

Corollary 3.10. Let the functions f be in the class ( ).,, αnpA  Then

the function f is p-valently starlike in the disk ( ),,,,5 δα< nprz  where

( ) ( ) ( )
( ) ( ) .
1

2inf,,,

1

5
pk

k kpp
ppkkp

npr −









δ−α−
−α−δ−=δα (3.37)

Corollary 3.11. Let the functions f be in the class ( ).,, αnpB  Then

the function f is p-valently starlike in the disk ( ),,,,6 δα< nprz  where

( )
( ) ( )

( ) ( ) .
1

2
inf,,,

1

6

pk

k kpp
p
kppkkp

npr

−

















δ−α−




−α−δ−
=δα (3.38)
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