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Abstract 

We propose an imitation protocol for 2-person symmetric population 
games, which leads to multiple stable equilibria in the aspiration based 
Prisoner’s Dilemma (PD) game. The imitation protocol describes 
populations in which the aspiration levels of players depend on the 
current population state. Bifurcation of a unique stable cooperative 
equilibrium is discussed. 

I. Introduction 

Evolution of cooperation is one of the most important social phenomena 
studied extensively in social, economic, biological and other contexts. The 
qualitative measures of cooperation are important characteristics of social 
groups. 

The PD game, one of the most popular games in social sciences, is 
studied as a paradigm for the evolution of cooperation, cf. for example [3, 8]. 
In the models of continuous systems of agents playing at each instant of time 
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a one-stage PD, for example in the replicator dynamics, the unique 
asymptotic equilibrium state is defection. There are various ways out of the 
dilemma, leading to cooperation in the long run. In particular, various 
approaches to overcome the “dilemma of the PD” are provided by the 
evolutionary game theory. The dynamics of evolutionary games can be 
formally derived from the revision protocols, cf. for example [9, 11]. The 
revision protocol ijρ  determines the probability of change from strategy i to j 

by an agent who plays strategy i. In particular, the revision protocol 
( ) ( ),, ijij Kxx Π−=Πρ  where x is the state of the population, iΠ  is the 

mean payoff of strategy i, K is a constant, referred to as the aspiration level, 
leads to the replicator dynamics [2, 9]. The protocol describes imitation 
driven by dissatisfaction: an i strategy (i-type) player who revises his 
strategy, compares its current payoff iΠ  with the aspiration level K 

(assumed to be larger than the highest feasible payoff), and switches to a 
randomly chosen strategy j with probability proportional to .iK Π−  

In general, the aspiration levels may depend on the state of the system 
and the type of the player. Such an idea has been considered, in a different 
setting, for example in [7], where it has been shown that strategy and state 
dependent aspiration levels may lead to the increase of cooperation in the PD 
game. There can be a threshold of the state variable (frequency threshold), 
above which the players of a given type change their aspiration level. For 
example, the players who are in majority may have different aspiration levels 
from those in minority. The question arises whether a dynamics based on 
such dissatisfaction driven imitation with state dependent aspirations can lead 
to qualitative changes in the behavior of the population, comparing with 
behavior described by the standard replicator dynamics. For particular types 
of imitation protocols this question can be answered analytically. We prove, 
using elementary mathematical tools, that if players of different types have a 
preference towards being in majority, then the population which play the PD 
game can have two stable stationary states, in which both types of players are 
present. 

We consider an infinite population of individuals, whose interactions     
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are described by a PD game, with the revision protocol ( ) =Πρ ,xij  

( )[ ],iij xKx Π−  where the aspiration levels iK  depend on the state x of the 

population, 1=i  corresponds to cooperation, 2=i  to defection. We 
demonstrate that the resulting evolutionary dynamics admits multiple stable 
stationary states if, for a given player’s type, the aspirations of majority 
significantly differ from that in minority. The difference will be modeled 
using the step functions and their smoothed approximations. In the case of 
smooth dependence of the aspiration levels on the state variable we discuss 
the bifurcation of a unique stable interior stationary state into two stable (and 
one unstable) stationary states. 

In the next section, we introduce the model. Sections III and IV describe 
the populations with linear and nonlinear aspirations, respectively. In Section 
V, we discuss the results and indicate some extensions. 

II. Model 

We consider an infinite homogeneous population of agents who at each 
instant of time are randomly matched in pairs to play a 2-person symmetric 
PD game with the payoff matrix 

 

PTD
SRC
DC

 (1) 

where .SPRT >>>  We assume that the players who play strategy i, 
,2,1=i  review their strategy according to the Poisson process with the 

arrival rate .ir  We model the corresponding stochastic processes as a 

deterministic flow ([11], [9]): ( ) [ ]∑ = ρ−ρ= 2
1 ,j ijiijijji rxrxtx  ,2,1=i  

where jx  denotes the frequency of strategy j in the population. The function 

,ijρ  referred to as the revision protocol, is proportional to the probability       

that an agent playing strategy i will switch to strategy j. Assuming =ir  
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,2,1., =iconst  with 12 1 xx −=  the rescaled dynamics reads 

 ( ) .1 1212111 ρ−ρ−= xxx  (2) 

The state of the population is identified with the proportion 1x  of the agents 

who play the first (C) strategy. The initial state of the population is denoted 
( ) .0 101 xx =  

We introduce the general revision protocol 

 ( ) ( ) ( )[ ],,, 1 iiijijjij xKxxrxx Π−≡Π=Πρ  (3) 

where ( ) ( ),, 1211 PTxPSRxS −+=Π−+=Π  and the aspiration levels 

,2,1, =iKi  depend on the current state of the population. The functions ijr  

are referred to as the conditional transition rates, cf. [9]. The inequalities 

 ( ) ( )1,00, 11 ∈∀>Π xxrij  (4) 

have to be satisfied to guarantee positivity of the revision protocols. The 
multiplier jx  in (3) indicates that the player chosen to revise his strategy 

picks up the strategy j of a randomly chosen partner. Inserting (3) into the 
dynamics (2), we obtain the population dynamics 

 ( ) ( ) ( )[ ].11 211112111 Π−Π+−−−= xKxKxxx  (5) 

In the next section, we discuss the stationary states of (5) for aspiration 
levels which depend linearly on the population state, and find sufficient 
conditions for the existence of a unique polymorphic equilibrium in 
populations playing the PD game. In the subsequent section, we show that if 
the players of each type have preferences for majority, described by the 
relevant aspiration levels, then two stable polymorphic equilibria are 
possible. For brevity, we introduce the notation: 

the cases ( ) ( )01lim 1 =∞→ txt  are referred to as the full cooperation (full 

defection), 

the case ( ) ( )1,0lim 11 ∈= ∗
∞→ xtxt  corresponds to the partial 

cooperation. 
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III. Linear Aspirations 

Let us assume that the aspirations iK  of i-strategists are linear functions 

of :ix  

 ( ) ( ) .2,1,1,0,,, =∈∈+= ixRcbxbcxK iiiiiiii  (6) 

With the notation ,: 21 bbTPSRd −−−+−=  ,: 212 PSbcce −++−=  

the dynamics (5) reads: ( ) ( )edxxxx +−= 1111 1  which straightforwardly 

implies 

Proposition 1. 

(1) If 0>e  and ,0>+ ed  then 11 =∗x  is stable in ( ].1,0  

(2) If 0>e  and 0<+ ed  ( ),00 >+< edande  then ∈−=∗
d
ex1  

( )1,0  is stable (unstable) in (0, 1). 

(3) If 0<e  and ,0<+ ed  then 01 =∗x  is stable in [ ).1,0  

In particular, in agreement with intuition, if ,12 cc  then full 

cooperation is the asymptotic limit for all initial data ,110 ≠x  cf. p.1. For 

intermediate values of 12 cc −  (obtained from p.2), the population tends to 

partial stable cooperation. The particular case of constant aspirations: 
021 == bb  is reported in the Appendix, p.1. The linear aspirations do not 

admit multiple cooperation levels. 

IV. Nonlinear Aspirations 

In this section, we study populations for which the aspiration level of a 
given type of players who are in minority differs significantly from their 
aspiration level when they are in majority. To model such preferences, we 
choose step functions and their smooth approximations. We prove that such 
aspirations admit two stable interior stationary states of (5). We define 

( ) 111 hxK =  for 21 ,5.0 hx ≤  for ,5.01 >x  (7) 
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( ) 322 hxK =  for 42 ,5.0 hx ≤  for ,5.02 >x  (8) 

where +∈ Rhi  are fixed constants, .1 12 xx −=  We consider populations in 

which both C- and D-players prefer to be in majority, i.e., to play more 
frequent strategy. In order to model such preferences, we assume 21 hh >  and 

.43 hh >  For example, the assumption 21 hh >  implies that the aspiration        

1K  is bigger for 5.01 ≤x  (C-players in minority) than for 5.01 >x                        

(C-players in majority). In consequence, the transition from strategy 1=i  to 

2=i  is faster when C-players are in minority: ( )Π⇒<< ,5.0 11211
lrl xrxx  

( ).,112 Π> rxr  To see this, we calculate from (3) and (7), 

 ( ) ( ) ( ) ( ) .0,, 1121112112 >−−+−=Π−Π SRxxhhxrxr lrrl  (9) 

Simple calculation shows that for the PD game the positivity requirements 
(4) for the conditional transition rates hold if the following four inequalities 
are satisfied: 

 ( ) ( ).2
1,,,2

1
4321 PTPhThRhSRSh −+>>>−+>  (10) 

The dynamics (5) has the form 

 ( ) ( ),1 1111 xGxxx −=  (11) 

with the piecewise continuous function ( ),0: ≠−+−= TPSRU  

 ( )
⎩
⎨
⎧

<<+−+−

≤<+−+−
=

.15.0,

,5.00,
:

1123

1114
1 xUxPShh

xUxPShh
xG  (12) 

The number of stationary points of (11) and their stability are determined by 
the limits of ( )1xG  at :1,5.0,0 111 === xxx  ,: 141 PShhe −+−=  =:2e  

,214 UPShh 1+−+−  ,2
1: 233 UPShhe +−+−=  .: 234 TRhhe −+−=  

In particular, the existence of two stable stationary points is proved by 

Proposition 2. If ,0,0,0,0 4321 <><> eeee  then there exist two 
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locally stable stationary points of the dynamics (11): 

( ) ( ).1,5.0,5.0,0 23
2

41
1 ∈

−+−
=∈

−+−
= ∗∗

U
SPhhxU

SPhhx  (13) 

For example for the payoffs [R, S, T, P] = [2, 0, 7, 1] and [ ]4321 ,,, hhhh  

= [5, 4, 8, 7] (note ),, 4321 hhhh >>  there exist two locally stable equilibria 

.4
3,4

1
21 == ∗∗ xx  Other examples of populations with stepwise aspirations, 

which satisfy the positivity conditions (10) and have two interior stationary 
states are given in the Appendix, p.2. 

Discontinuity of aspirations is not necessary to obtain dynamics with 
multiple internal states. Let us consider the aspirations in the form of a 
hyperbolic tangent. We demonstrate a bifurcation of the unique interior 
equilibrium when the bifurcation parameter (the slope of the hyperbolic 

tangent) increases. We choose ,2
1tanh ⎥⎦
⎤

⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛ −+= iiii xcbaK  ,2,1=i  the 

PD payoffs [ ] [ ]1,7,0,2,,, =PTSR  and ,2
9

1 =a  ,2
15

2 =a  == 21 bb  

,

2tanh2

1

⎟
⎠
⎞⎜

⎝
⎛

− c  with c determining the slope of the aspirations. For “very 

steep” slopes (e.g., )10=c  there are three interior equilibria, ,25.01 =∗x  

,50.02 =∗x  ,75.03 =∗x  the middle one unstable, the other two stable. For 

,87.3=c  we still have three equilibria ,46.01 ≈∗x  ,48.02 =∗x  54.03 ≈∗x  

with the same stability properties. For ,86.3=c  two stable equilibria merged 

with the unstable one, and the unique equilibrium is .54.01 ≈∗x  Similar 

bifurcations exist for the “intermediate” case of piecewise linear aspirations. 
We omit details. 

V. Discussion 

In this note, we proposed an imitation protocol based on imitation driven 
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by dissatisfaction, in which the aspiration levels of different types of the 
players depend on the state of the population. We proved, applying simple 
mathematical arguments, that if the aspiration of a given type of players 
when they are in minority differs significantly from their aspiration in 
majority, then the relevant evolutionary dynamics admits multiple interior 
stationary states. We focused on the PD game, however, the presented idea 
can be applied to any symmetric two-person game. 

The method can be applied to other types of the revision protocols, for 
example ( ) ( ),, iijij Kxx Π+=Πρ  for which we obtain the dynamics (5). 

One could also consider state dependent conditional transition rates for 
asymmetric population games, in which the decision of changing strategy 
would depend on the states of both populations. 
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VI. Appendix 

1. For ,021 == bb  we obtain from (5), (6) the evolution equation 

( ) ( ) ( ),1 11111 xxxxPSRTx −−−+−= ∗  

.:,: 121 ccK
PSRT

PSKx −=
−+−

−+
=∗  (14) 

For ,0=−+− PSRT  the evolution equation reads ( )111 1 xxx −=  

( ).PSK −+  SPK −>  ( )SPK −<  implies full cooperation (full 

defection). In particular, for the benefit-cost formulation of the PD game: 
,bT =  ,cbR −=  ,0=P  ,cS −=  the dynamics (5) reads ( )111 1 xxx −=  

( ),cK −  with no interior equilibria. 

For ,0=K  i.e., when the aspirations of both types of players are the 
same, (14) is the standard replicator dynamics, with full defection as the 
unique stationary state for all .110 <x  For ,0≠K  the asymptotic behavior 

of the population depends on the relation between SPRT −− ,  and K: 

A. For { },,max SPRTK −−≥  the population converges to full 

cooperation ( ].1,010 ∈∀x  

B. For { } { },,min,max SPRTKSPRT −−>>−−  there exists the 

polymorphic equilibrium ( ),1,01 ∈∗x  globally stable for SPRT −>−  and 

unstable for .SPRT −<−  

C. For { },,min SPRTK −−≤  the population converges to full 

defection [ ).1,010 ∈∀x  

2. Examples of two interior equilibria for the step aspirations [with 
discontinuity at ( )].1,0∈t  
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a. :, 4321 hhhh <>  ,368.0≈t  [ ] [ ],2,7,1,3,,, =PTSR  [ ]4321 ,,, hhhh  

[ ].9,8,5,7=  The stationary states 3
2,3

1
21 == ∗∗ xx  are stable. 

b. :, 4321 hhhh <>  ,605.0≈t  [ ] [ ],5,7,1,6,,, =PTSR  [ ]4321 ,,, hhhh  

[ ].8,9,7,5=  The stationary states ,
3
1

1 =∗x  
3
2

2 =∗x  are unstable. Note that 

due to the discontinuity of the rhs of (11), a numerical solution with initial 
state between the unstable stationary states would oscillate around the 
threshold t. 

c. :, 4321 hhhh <>  ,386.0≈t  [ ] [ ],2,7,1,3,,, =PTSR   [ ]4321 ,,, hhhh  

[ ].4,8,5,2=  The stationary states ,
3
1

1 =∗x  
3
2

2 =∗x  are unstable. 


