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Abstract

It is still an open problem whether or not for A an integer greater than 1
and 0 < a <1, the Hausdorff dimension of the graph of the Weierstrass

function W(x) = ik‘i“ sinA'nx equals to 2 —a. This paper provides a
i=1

partial solution of the open problem, i.e., it is shown that the Hausdorff

dimension of the graph of Weierstrass function equals to 2 —a for large

integers A. Moreover, our proof is based on the method, it is called power

law combining 6 —t technique. This method may be used to treated

some non-linear problem.

A. Introduction

It is an open question that for A >1, 0 < a <1, whether or not the Hausdorff
dimension of the graph of Weierstrass function
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0
W(x) = Zx"“ sindlnx, x e R (1.1)
i=1

equalsto 2 — a [3, p. 649]. There are many attempts to solve the problem stated in
(1.1). We list some of them, Berry and Lewls [1], Kaplan et al. [5], Mauldin and
Williams [7], Mandelbrot [6], Hu and Lau [4], Hua [2], Sun and Wen [8]. But all of
these works do not exactly solve this problem. The goal of present paper is to show
that the Hausdorff dimension of the graph of Weierstrass function equals to 2 — o
for large integer A.

B. Preliminary

B.1. Notation and terminology
In the following, we will state the notation and terminology.

Unless explicitly stated otherwise, throughout present paper, let A, i, j, k, I, m, n
be positive integers, 6 and t be real numbers with -1 <6 <1 and 0 < 1t <1. Value

6 and t may change at each step. Different fixed values of 6 and t will be denoted as
0, 0,0 ..and 1, 7, 7", .... Special fixed values of 6 and t will be denoted as 6;,

Tj.
Notation can be adjusted by stating, fox example,
0'sin(ax" + b) + 06" cos(cx™ £ d) = 20.

Of cause, we do not know the exact value 26, but we do know the exact bound of
20. By using this technique, we can track the magnitude exactly and simplified
expression. Thus, two conflicting goads, accuracy and simplicity, can be achieved by
wisely using this technique. We call this method 6 — t technique.

B.2. 6 — t technique combining power law
We will make the following assumption on the power law.

Let 0 < o < B and let a, b be real numbers, note that

an* + b = (1+o(r))ar* as L — oo,
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This means the sum ax® + ba® merges into aA”. For simplified expression, we call
this property power law. In the following, we will explain the method of 6 —t
technique combining power law.

We want to solve following complicated equation:

2k'n 0o (k + k) 2(k' — k)
(cos 5 +}\‘l—a_1+ 5 5
. 2k'm ) 3
SIn—=— (z(k’—k)) T (2(k’—k)7c) o
+ - =\,
2 A 3037 —1) A

where 0 < k < k" < A. By 6 — 1 technique,

k'+k)m 20m
2OFe -1 a0Fe -1

T (2(k’—k)n)3: (2n)’ 7 2(k'—K)m
33 —1) A -y A

We label the left hand side of above equation by I:

| 2k'n 0o 20% 2(k'— k)=
= | cos + o +— -
L S B Y G |

!,

. 2k'n )
@t 2K -K)m Sin—=— (Z(k’ - k)nj _

" 3 *-1 A 2 A

By power law, we have

!,

sin& 2
| = [ cos 2k'n N G 2(k' —k)m N )y (Z(k - k)n) .
A o _q A 2 A

Thus, original complicated equation almost equivalent to following simpler equation
for large integer A:

)

sin—2kn 2
(COS 2k'n eo l) 2(k —k)TC + A (2('( —k)n) =\

n ¢ ola_ n 2 x
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B.3. A variant of the net measure

We now state the variant of net measure. The net measure is equate to the
Hausdorff measure and behaves much more convenient for our purpose. It is worth
mentioning that Theorem 5.1 of [3] continuous to hold, even though Falconer has

A =2

In the following, we now give the definition of measure p(E). Let N be the

collection of all 2-dimensional half-open A squares S, that is,
S = [ %my, 27 (my + 1] x [ my, A8 (my + 1)),
where K is a non-negative integer and m;, m, are integers. A square S is called a kth

square if its length equals to A K Let Ny be the collection of all 2-dimensional

half-open kth squares S. A collection A of squares is called an (n, n+ m) set if
AcUjLIN;. Let Ec R? and E < Us,eaSi, we will call A an (n, n+m)

cover of E. We now define
o nem(E) = inf{z |Si[°:Sj € Aand Alis an (n, n + m) cover of E},

where | S; | denote the length of square S;. Furthermore, we define
ES(E)= lim lim r’-rs1,n+m(E)- (2.1)
N—00 M—o0
In the following, we will prove a proposition, that is,

u®(C) = p°(C), Cisacompact set.

In order to prove the proposition, we need the following definition. The cover A

of Cis called a A" -cover of C, if A is a collection of k-squares, where k > n:
~2—0 (Y 2-a . : :
T €)= mf{z |Si|“* :S; € A, Als a collection of k-squares, where k > n}.

Proposition 3.1. Let C be a compact set. Then

u¥(C) = p*(C).



On the Hausdorff Dimension of the Graph of the Weierstrass Function 89

Proof. We easily see that any (n, n+ m) cover of C isa A" -cover of C. This

implies
R im(C) 2 F5(C) forany m 2 0.

Therefore, we obtain
lim B3 ¥im(C) = W25H(C). (2.2)
m-—o x

We will show lim ﬁﬁfnﬁm(c) < ﬁi_‘na(c). Given any ¢ > 0, by definition of
m—o

ﬁijr?(c), there isa A" -cover of C such that
2— _
Z [Si | < },L}Z;r?(C)+e.
SieA

Note that S-dimension net measure of the boundary of a square equals to O for
S > 1. Hence, without loss of generality, we may suppose A is an open cover. Then,
by Heine-borel theorem, there is a finite subset B of A which covers C, that is,

DolsiFe< Y s

SjeB SjeA
Note that B is a (n,, n; + m;) cover of C, we have

R o om, (©) S HER(C) + 6
Clearly, we have

lim {2°%(C) < pi__r?(C)+a.

m—oo €
Since this is true for each ¢, so that

. ~2_ 2-

im Hp, m(C) < TH(C). (2.3)

Combining (2.2) and (2.3), we have

lim [i7°%.(C) = u?=}(C).

m-—oo
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For each & in interval (0, %} there is an uniquely ng such that }% <d< ﬁ

S0
lim u2=%(C) = li L ~2-q
imu§ *(C)= lim lim pg 7 (C).
3—0 nN—o00 M—o0

This proves our proposition.

B.4. Three geometry properties

In the following, we specify three geometry properties:

B.4.a. Skelton of the graph of function W(x)

We note that Wn(ln) = Wn+1[ln) = ..., Consequently, we deduce
A A
W) —w [
) )

In other words, the partial sum Wn(}%n] is exact value of W(x). Let us call

the point (lnwn(ln)j a fixed point. The collection of all fixed points
A A

(in Wn(injj forms a skeleton of the graph of function
A A/ n=12,..:j=0,1,2,.., A" -1

W (x), since the function W(x) is continuous and the length of period %n — 0 as

n — oo, Moreover, the collection of fixed points has regular configuration.
The collection of abscissa of fixed points forms a net in interval [0, 2]. First,
we divide the interval [0, 2] into A equal subintervals

+ —_

i 2_k j+2(k+1)
A }\‘2,7\. 22

:|k=0,1,2,...,k—1

By repeating above partition, we get a net u{[z—: Z(J—:l)} }
A A n=1,2,..; j=0,1,2,...A"-1
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B.4.b. The sine-like curve

Below we present the shape of the graph of function W,(x) based on

[ﬂ, M} We easily shift the graph of W,,(x) based on [ﬂ Z(J—Jrl)} onto
7\.n }\,n }\’n Xn

the graph of W, (x) based on [0, iﬂ} Consequently, we get recent function g,(x):
A

_ 2] 2] —NAt i AN
g, (x) = (Wnl(x—n + x) —Wnl(%—nj) + 2% sin A'nx.

We label first term of g,,(x) by I:

n—.

1 ) )
| = X"“(sin X'n(ﬂ+ xj—sin ?Jnﬂj
— A A

n-1 ) i ) .

=2 E A% sin %cos k'n(z—rf + %)
4 A
-1

Next, we note 0 < x < in we see
A

n-1 _
<Y wolte) < oA
- |
i=1
Therefore, we can write
n
gn(x) = k?n:}” A" 4 sin o,
-1

Since 0 < x < in we obtain
A

Ox
YL |

gn(x) = A" 4 sinx", where 0 < x < 2.
Thus, the second term is much larger than first term for large A. Since the second
term dominates function g,(x) and shift does not change the shape of graph of

function W,(x), so all graphs of W, (x) based on [2—: 2(1—:1)} are more or less
A A
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slightly deviation from the position of graph of A "* sin A"nx +Wn_1(2—rfj on each
by

interval [2—: 2(1—:1)} In this sense, we call the graph of W,(x) based on
A A
[ﬂ, M} lever n sine-like curve.
ATA"
Next, we want to show that different lever sine-like curves are quasi-similar. We

consider the sequence of function A "*sinA"nx, n =1, 2, .... The ratio r, = T—“
n

decides the shape of function A™"*sinA"nx, where h,(l,) is the height (reps;

)\‘—n(l
-n
length) of function A~"* sin A"nx. We note that -1 = — A — () p_
My o (MH)a
x—(n+1)

1, 2, .... Thus, we conclude that different lever sine-like curves are quasi-similar.

B.4.c. Quasi-self similar property

Below we present the construction of the graph of W,,{(x) based on

{ﬂ, M} from the graph of W, (x) based on [ﬂ 2i+Y 1)}
7\4n }\,n }\’n )\‘n

QM} is a lever n sine-like
}\’n 7\‘”

curve (see, e.g., B.4b) and the graph of W,,4(x) on each subinterval
2—j+ 2k ,2_j+2(k+1)

Xn kn+1 }\’n 7\‘n+1 k=012 &

The graph of W,(x) based on [

is a lever n +1 sine-like curve. Thus, the

graph of W, 4(x) based on [2—rf 2(1—:1)} is to replace lever (n +1) sine-like
A A

curve on the, respectively, arc of a lever n sine-like curve. This yields the
construction of the graph of W(x) is to repeat above proceed again and again.
Therefore, the graph of W(x) builds up by pieces quasi-similar to the entire set but

on a smaller scale. Here, we note that same lever sine-like curves have almost same
shape and differential lever sine-like curves are quasi-similar but in different scales.
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In this way, we describe the shape of W(x) not only in macro-scale, but also in

micro-scale, we call this property quasi-self similar.

The construction of lever (n +1) sine-like curve based on [2—: 2(1—:1)} may
A A

view as a movement of lever (n +1) sine-like curve; that is, the lever (n +1) sine-

like curve moves on the fixed points {(ﬂ + 2 W, [ﬂ + 2K D} A
k=0,1,...,%

N an +1° U }bn+1

vertical change of d; = Wn(ﬂ + 2k +11)) —Wn(ﬂ + 2k1) units corresponds
' xn er- }\’n }JH-

to a horizontal change of dx = % units as lever (n +1) sine-like curve moving
A

from left to right along x-axis. We call d;  kth pace in jth lever n sine-like curve.
The kth pace dj measures the vertical increment in kth moving. Note that

diy = % + cos 2k'n ﬁx‘”“ < A (MDe  which will be shown in
J! }\'l—(l _ 1 }\. }\4

Lemma 3.2. An immediate consequence is that y = h (horizontal line) intersects in
nearly mid-point of S,.; and height S, ; almost equals to 2 (Mo Thi

yields the lever (n + 1) sine-like curves which move up and down not too far from

Sn+1,k Position will intersect with y = h either. In the following, we introduce the
concept of intersection number for quantitative description of distribution of lever
(n +1) sine-like curves in a lever n sine-like curve.

Remark. In some scene, the shape of the graph of W, ;(x) based on

[ﬂ, M} looks like a saw-toothed sine curve.
}\n }\’n

B.4.d. Intersection number

We now give the definition of intersection number. Let y = h be a horizontal

line which intersects with the lever n sine-like curve, the intersection number
In41(h) is defined as the number of lever (n +1) sine-like curves which intersect

with the line y = h. In addition, let y = h be a horizontal line with
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Wn(ﬂ-i- Zk?) <h <Wn(ﬂ+ Zqu.
7\‘“ }\’n+ }\’n }J’H’

We call 2k’ integer phase of horizontal line y = h. In above case, the intersection

’

number 1,,,41(h) will be denoted by In+1(%). In the following, we will characterize

the intersection number In+1(#j in two cases.

2j+1

kn

The graph of W,(x) based on [Z—rf } is approximately symmetric with
A

o1
2]+§

respect to the vertical line x = . In the right hand side, the situation is

similar by symmetry of the graph. Therefore, in general case, collection of lever
(n +1) sine-like curves which intersect horizontal line y = h forms two groups of

four parts. Two graphs of lever (n +1) sine-like curves can be visualized as two

stairs. First, we roughly estimate the intersection number. We consider left hand side
stair first. By projecting the fixed points

2j 2k 2j 2k
(_n + n+l’ Wh (_n + n+1 D , L,
AA A A k=...,k'=1, k', K'+1,...

on a vertical line, it is not hard to verify that the sequence {d  fy_ 1 k' k41 1S

an approximately arithmetic sequence and d; \ is average value of this sequence.

The situation in right hand side is similar. Thus, we conclude that estimate of

27\/-(“‘*'1)& 47\‘*(n+1)(1
I,.1(h) is two time of ratio T ie., T By Lemma 3.2, we have
is i
4}\1—(n+1) o B 27\(1—0.
d; B ! '
Ik fcos k™, _O
7\‘ 7\‘1*(1 _ 1

In bottom, y = h may not intersect with lever (n +1) sine-like curves fully, the

intersection number is less than in general case, so the estimate keeps true in weakly
mean. The situation will roughly change as the line y = h moves up to top. We see
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that two stairs become closer as h increases. When line y = hg in position below the
top in a distance, then two stairs meet together. We claim that 1, 4(hg) is the
maximum intersection number. First, we consider the case h <hgy, by
monotonously, we have I,,1(h) < 1,,1(hg). Then for the case hy <h and y =h
below the top, in the case lever (n +1) sine-like curves which interest with y = h
will intersect y = hy so that 1,,4(h) < 1,,1(hg). This observation is a key for
solving the open problem.

We now explain how to precisely estimate the intersection number. In above

estimate, we use symmetry of the graph of W, (x) based on [Z—rf 21—:1} In fact,
A by

1
2]+§

W, (X) = W,_1(x) + A" sin A"nx is not symmetry with line x = . We see

2i 2% 2i  n-2K

Wn }\’_n+ }\‘n+l _Wn k_n+ }\{I’H—l
(2] a2k 2i  n-2K
S ) el )

2] 2k 2j A-=2k
In general, we have wn_l(;\—n+ ;J”l) - Wn_l(k—n+ i )i 0. By property

}\‘n

two, A" sinA"nx is main term and w,,_;(x) is small term which may view as an

impact to a symmetric function. The impact makes a deviation from normal position.

Now we suppose that w,, (z—g L2 ) =W, (ﬂ + Lkl) Then 2K =K) reasures
A

7\‘”4’1 }\’n 7\‘”4’1 A
the deviation. For precisely estimating intersection number, we have to compute the
deviation number M precisely.

C. Main Results

C.1. The statement of the main results

We now present Lemma 3.2 which provides base formula for following results.
In the following, we will also characterize of the shape of W,(x) based on
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[2—: 21—:1} Let us present a theorem about deviation number which may be
A A

sharp remainder estimates. The concept of intersection number is the key to solve
this open problem. We also obtain following theorem which describes the
distribution of intersection number. Let us state our main results about intersection
number.

We now give some lemmas which give to compute the minimum cover of the
graph T, N R,. Above formulas on form and content are alike. Since each n-square
S in some sine-like curve, we may view first form formula as a global property and
second formulas as a local property. This means that the global property and local
property are comparable. This result may be extended, but first we have to show a
proposition.

2
We begin by setting :%arccos%+l— 1—(%) . Assume that r,_; is

2
constructed, we define r, = Zr;‘c*l arccos 2:”{1 +1-,1- (2%1) , n=23 ..,

we call r, contraction coefficient. It is easy to show lim r, = 0.
n—

We now can state the extension in the general setting. Finely, Theorem 3.13
solves the open problem.

C.2. Proofs of main results

© - -
C.2.a. Lemma 3.2. Let W(x) = > A"'*sinA'nx be the Weierstrass function
i=1

and let 0 < k < k" < k" < A. Then for large X, we have

(@)
2i 2i 2%
Y [ S Y [F RS
7\‘n }J’H’l 7\‘n }J’H’l

.2k
1, r_ SIN—T7 r_ 2
:(COSZKTE 0 jZ(k kK)m N (2(k k)n) A (3.)
1

o ola x 2 x




On the Hausdorff Dimension of the Graph of the Weierstrass Function 97

(b)

2, 20) (2L, 2)
7\‘“+1

w( :
7\‘n xn +. xn

2k’ —sindln ﬂ+ 2kn
)\‘n }\’n-f—l

= Z?Ci“ sin Al 2j +
- 7\‘” }\’n-f—l
i=1

—no 2|(TE_ 2kTC
+ A (sm—}M sin % )

(3.2)

Proof. We may write

W(ﬁ+ 2k1j_w(ﬂ+ 2k1)
7\‘n kn+ 7\/” 7\‘n+

ZK "*[sm A (21 2Imj—sin xin(ﬂ+ 2kn ﬂ
}\‘rH—l kn }\‘rH—l

i=1

—no 2k T _ 2kTC
+ A (sm—}L smT j
(3.3)

= A¢k + Bk

First, we estimate Ay y,

2k _ sin A 2] + 2kn
7\/” 7\‘n+1

o] i (2]
Ay = Zk '“[Sln x'n(k—: + I
i=1

n-1 ,
)i sm )n cos A ( J k +1kj
— 7\‘ 7\(I’H—
-k)m 2jn
ia
- ZZX Sm n+1 i cos kn+1—i

(k' — I()ﬁsin (K + k?nsinxi (ﬂ-i- K+ k)- (3.4)
n 2kn+1

—|(X.
B 42 A N+l N
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Note that
n-— , .
Zk"“ sm (k- )n cos 2jm
= xn+1—| ;\‘n—l
r_ n-1 ) ’ 3 —no
_K-lz E)NZNQ’“) cos 2% +9((k k)nj ;1 , (3.5)
er’ — anl 6 >\‘ 7\‘ -1 1
n-1 ’ ' - '
Zk‘i“ sin K =007 G K+ Oz 5, pn 20 K=K
= xn +1-i 27\dn +1-i }\‘n 27\/“ +1
’ _ ’ 2
= oK K+ k)7, -na (3.6)
WP(E* - 1)
Set
n(l-a)
Zx'(l“” cos 247 _ B0t . (3.7)
n i 7\]_‘1 _1
Substituting to (3.5), we have
n-1 , .
Z?C”“ sin (k' ~ k?n cos 20T
L }Ln+17| }\nfl
i=1
_ % K-k - ((k _k)“jx‘”‘l. 3.8)
w1 A 3037% —1) A

Combining (3.4), (3.6) and (3.8), we get

Ak,'k:{ 0 2k'-K)x 9 (2(k’—k))3+ e'(k'—k)an_m_ 59)

e A 1203 -l A (A2 —1)
By elementary calculus, we have

o 2k'n 2_kTC —na
kayk_(sm 7 —sin % )x
. 2k'm 5 3
2k 2(k'-k)n M5 (2(k’—k)nj LT (Z(k'—k)n) sna
A 2 A '

=1 COS
M M 63—\

(3.10)
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By (3.9) and (3.10), we have
W 2—j+ 2K -W 2—j+ 2K
AN xn+1 3N xn+l

_ [Coszkn+ 8 OK+K)m Jz(k —K)n

L S R T )| A

. 2k'n ) 3
SIN==2(k' = k)= T 2(k" = K) 1\ |, _ne.
_ + o A A
2 A 6(13% —1)

Without loss of generality, we may suppose M < % thus we have

W(ﬂ+ 2klj_w(ﬂ+ Zklj
}\‘n }\’rH’ 7\‘” }\‘n+

2k'n 0 N 0 )2(k'— K)m
1

= (COS " + }Ll—ot ) }\‘2—(1 - "

sin 2K'n 2
3 A m (Z(k' - k)n) Sna
2 12037 — 1) A
sin 2K'n
Clearly, 3 On <3 % and ;n < A as - oo, by power
Y T | 1203°% —1) 2

law, we have
W ﬂ+ 2k -W ﬂ+ 2k
}\‘n 7\’n+l }\‘n }\‘rH—l

sin& 2
(cos 2k'n 0 )Z(k -k)=n B N (Z(k —k)n) 5-na

n e 1) & 2 x
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This proves (3.1). Note that for k' < k”, we have

2k'm sin 2k'n
A

sin

[/

sin& 2 3
S2kn2(k _k)+ Y (Z(k —k)j +Q(2(k —k)n).

= o= 7y 2 x 6 x

Then formula (3.2) comes immediately.

0 . .
3.c.b. Theorem 3.3. Let W(x) = Z?C"‘ sin\'nx be the Weierstrass function.
i=1
Then we have

1. There is a positive integer k;, such that

xn xn 7\‘“ +1 xn 7\‘n +1 7\‘n kn +1

. v{ﬂ N Mj . W(Mj (3.11)
Xn xn+l ?»n

2. There is a positive integer k4 such that

2j+1 2j+1 2 2j+1  2kq -1)
> W + > > +
kn 7\(“ kn+1 kn kn‘f'l

>w(2j+1+ de)<w(2j+1+ 2(Kq +1)j

7\(” kn+1 7\(” 7\(”"’1
s W(—Z(J;JT 1)), (3.12)

3. Let

2j 2k 2i 2k
h, = max A{W(—:an_fl}w(_:* nflj}
Oﬁkl, k2§§ by by A )y

and

2j+1 2k 2j+1 2k
hg = max X{W( Jn + nJrllJ—W[ Jn + nflj}.
0Sk11k2S§ A A A A
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Then

N g > 0} and

{“ 2(7»1‘ -1) 2(x1‘ ZJ
{1 Jx gy < o} (3.13)

2(xl * _1) 2(73‘ 1)?

N e > 0} and

= {“ 2(7»1 “_1) (e —1>2]

hd _ l— Tceo
20 1) 2(xl o

Proof. We consider pace d(k)= W( 2(k+1)j W(ﬂ+2_k)_
b

5 [A" 6g < o} (3.14)

xn-i-l 7\’n }\‘rH—l

2km G n . 2kn -

Lemma 3.2 (3.1), we have d(k)= (cosT + e +5-sin TJTX
2kn
_ nsin =— ” 0
Since < 0 as A —> o, by power law, we have d(k)=
}\‘ 7\/1—0. _ l
2kn B )2m,-na %
(cos o Y= _J T x"*. Obviously, function f(x) = cosnx + T _ has
two points X = L, 19—0 and x, = 3 —19—0 such that f'(x) > 0
2 ol -y 2 ol -y

for xe[0, x)U(xy,1] and f'(x)<0 for (x, xp). Let u” o xn  and

2k, + = kg w 0, 2nt
— > X Then = + YE— + - By power law, we have
.o2kym m 09
equality — =3t . This shows (3.11), formula (3.12) may be shown in
A —1

a similar way. The proof of statement 3 is simple. Clearly, if 65 > 0, then we have
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_ 7590 92 —no
=1+ Ta t Y A
2(x 1) 2(x 1)

If 65 <0, then

u M xn+1 M
. ’Eeo 62

i (1_ 20 -1 200 - 1)2}” |

Precisely, we have

2
PR FUPL L1 U L, VS
2084 —1) 208 ~1)

It follows (3.13) and (3.14) may be treated in a similar way.

We can now state the following results that will be used in the sharp estimate.

0 - -
Theorem 3.4. Let W(x) = Z?C"‘ sinA'nx be the Weierstrass function and let
i=1

Iy, be lever nsine-like curve and 6 < 2k’ < 2k;. Then we have for large %,

(a)

2k k)7 _ (ﬂj 20,

, (3.15)
k 2 7\‘1—0{ _ 1

where % <t<1and

2j =2+ (2] 2K, 2] -2k (3.16)
}\’n 7\4” +1 }\’n )\‘n +1 7\4” +1

7\4”
2k 0 1
with T S |:}\’1—(1 _1, §j|

b. If

W(2_j+ x—zklj 2W(2_j+ 2k’ ) >W(2_j+ ?L—2(k1+1)j,

}\‘n }\‘n +1 }\‘n 7\4” +1 7\4” )\‘n +1
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2K’ 0 1
here T € [m, §:| (317)

Then we have for large A,

2(k'—kj)m 210
7\‘ - }\’1—(1 _l.

(3.18)

Proof. a. Inequality (3.16) does not have solution for small 2k’. First we will
find a lower bound for 2k’ such that inequality (3.16) has a solution. Suppose

wl2i 2ko=D)_ [2i+1] _ (2] 2k )
7»“ xn+1 )Ln xn kn+l
Then we have

R
7\‘“ 7\‘n +1 kn

= M_Wz_j_rwz_j_i_ﬂ _W2_j+M .
}\‘n )\‘n }\‘n }J'H—l 7\4” 7\’n+l

Thus, by Lemma 3.2, we have

R 2k071? 2k0ﬂ:eo 2k07c9 n@o 2n o
sin Hpye P e PR [ ey R
L Y ) B Y ¢ o ) B et | A2 —1)

Solving above equation, we get

2k0ﬂ: 14 60 _ TCOO .
7\‘ 7\‘1*(1 _ 1 7\‘1*(1 _ 1

That is for large enough A,
2ky = 922,

Since function W ﬂ+ r—2ki
7\(“ 7\‘n+1

j monotone increases for 2k; < A — 2k, inequality

(3.16) has unique solution A — 2k;. Consequently, we have

w ﬂ + 2k —-W ﬂ + 2_k1
kn }\/n+l 7\‘n kn+1
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=W ﬂ_i_}\'_—ki -W ﬂ+2_|(:l,-
kn kn#»l 7\‘” }\‘n+l

(2, 2k D)) (2] a2k
}\’n }\’n‘i’l }\’n kn#»l ’

Recall (3.16), we get

]

( ) sin—2k7c ( ) 2
2k'n I @2k’—k1'n % (2(k'—k{)m
(cos—}L + E— + 5 ) T + 5 T

12K
o Zn(E_Tjﬂszr 2n
0 e g VY

By power law, for large A, we may solve the following simplified equation:

ok'm ’ (1 2kij
’ [ Sin —— " k! 2 T
(0082kn+ 0o )2(k kl)n+ N (2(k kl)n) _ 0 2 2
1

A pl-o A 2 A o q
Note that
1 2k 1 2k
2“(5 - Tj 2"(5 - T) 20, 2K —K)n
0 —5——— = 0 —¢ + .
Y | | Y | A
We have

!,

oo 2k’ o L_ 2K
SIN== 1 2(k' —k{) )2 2k 0p 2K —k)n 2

+| cos - -0g =0.
2 }\’ 7\‘ xl—(l _1 }\, Kl—(x _1

2(k' - ki)

A > 0. Thus, we obtain

Without loss of generality, we may suppose

2(k' - k{)m
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From (3.19), we have

105

2k - kj)n
X

Arsin 2k'n 1 2k'n
1 2k'n ) A2 A
=— || cos5—=- 1+
2k'n

_( os&_e_OJ
. A l-a 2 A 1-a
sin=—= ATl I-a 2kt 69 -l
A (x —1)(cos W —}Ll_(x )
12K C2Km (1 2k .2
_ {55 ) 2sn 57 (5 -55) 6} L
2k'TE 60 j Zk/ 0 3 '
COS——— — T _ 0 l-a _4\2
( by o g (cos 7 s —lj (x 1)
By power law, we have
2(k' — k) 2 20o
A - co 2kt 6p e _q
7\/ 7\(1—(1 1
n 2k'm
_ 2 A 269
/ 1—
sm(—_ZK_TC)_ 190 -1
2 h) gl
n 2k'm
By calculus, the term 22k’ A 5 monotone decreases from % to1l
sin(E - —n) -0
2 7\‘ }\‘l—a _ 1

on interval [0, %} This proves (3.15) and (3.16).

Now we consider the case % € E %} By (3.17), without loss of

generality, we may suppose W(Z—g + h 2k1j = W(ﬂ + 2k
A

. Thus, we have
7\/”"'1 kn 7\/”+1

wl2E L 2= 2K (20, 2k ) 20, 2K) (20, A2k )
}\’n }\’n +1 7\‘n }\’n +1 }\’n }\‘n +1 }\‘n }\’n +1
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By Lemma 3.2 and 2k . O , we have
A 2 }\4170. -1
w ﬂ + i —-W ﬂ + ﬂ
}\’n 7\’”4’1 xn xn‘i’l

_ oS E + 90 + 90 2('(’ - ku)TC
2 7\/1—0( _ l )\‘1—0. _ 1 7\‘

e —1) Z(k'_ku)n 2 )~ na
2 A

in| 2420
Sm(Z e —1) 2(k' —ky) ), —no
2 n !

W ﬂ+}\'_2kl -W ﬂ+ﬂ
}\‘n }Ln+1 xn }\n+1

_ cos E 4 90 n 90 7\, - 2k1 - 2ku n
2 }\’1*0. _ 1 7\’1*(1 _ 1 7\,

sin £+6—0
2 jlo g ((%—ZKi—Zku)ﬂj2 -~

+

u

2 A

+

Nl a

0o
2 1) (=2 — 2k g
2 A '

Thus,

_ 2Km | 2k'm

PR
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2k'n

n 2k,m 2kt w 6o . 2km _m
NotethatTe{? 5 }andT_§+7}a_l,wemaywrlteT_E
+ 1160 . Therefore, we have 2Mr o _Km om0 Equality (3.17)

a1 A A2 le g
follows.

We are now ready to characterize the distribution of intersection number. Recall
the intersection set A may divide into four subsets A, Ay, Ag and A4. In typical

case, four subsets are approximately equal; however, the situation may change as
horizontal line y = h closes to the top or the bottom of the sine-like curve L, -

Theorem 3.5. Let W(x) = Z?Ci“ sinA'nx be the Weierstrass function and let
i=1
T, be lever n sine-like curve. Then the intersection set A is in typical case for
horizontal line y = h with integer phase 2k’, where 2k, < 2k’ < 2K. Moreover, we
have

Sy e
'”+1(TJ:E” 2 (3.20)

2k ) . . . : Lo
and In+1(7 is the maximum intersection number of lever n sine-like curve Iy, .

Proof. We want to show in some case, the horizontal line y = h will intersect

with lever (n + 1) sine-like curves Ly, ,,- Consider the following inequalities:

2j  2K) 2j 2k, 2j , 2
W(T“F >WITR o) M 2 2 W T g ] (320

Thus, by Lemma 3.2 and Theorem 3.4 (3.14), we have

+ 60 " 27'Ce j 2(ku — k )TE
1

sin K™ ) )2
A [2(ku - k)nj . (COS 2k,m

2 A A }\’1—(1 -1 7\‘2—(1 _ A
2k, 2 2k,m
Tt COS % Cos % —a o o
=1+ - + [ 2 A + T T + 17— .
2007 —1) 208 —1) A —1)
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Note that cos 2™ — __ % , we have
}\, }\’17(1 _ 1
1( 20k, — k) 0 0
—(”—“j e e A .
2 A 207 —1) 2017 —1)

2nt 2nt’ 270"

+ .
L N ) B G |

By power law, we have

12k, - )Y g
o] e

Thus, we have

A
so that
kn _m, 6 V2 (3.22)
}\‘ 2 7\‘1—(1 _ 1 2
kz

Let 2k’ < 2k. Then distance between the horizontal line y=W 2] + 2k
an }\‘n+1

and the top of the lever n sine-like curve L, is large or equals to the height of lever
(n +1) sine-like curve. Therefore, we can find a lever (n +1) sine-like curve with
integer phase 2k’ such that

w 2_j+ 2K’ —W 2_j+ 2k — (Do
xn }\‘n+1 )Mn kn+1

Now we show in some case, the horizontal line y = h will intersect lever

(n +1) sine-like curve. It is easy to estimate that if % > ia then the distance

between line y =W 2] + 2K and the bottom of lever n sine-like curve T, is
}\’n 7\‘”4—1 n
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large or equals to the height of lever (n +1) sine-like curve, so that we can find a

lever (n + 1) sine-like curve with integer phase 2k such that

W 2—j+ 2K\ _w 2_j+2_k _ (4D
xn )\‘n-f-l )\‘n }\‘I'H-l ’

By Theorem 3.4, if 2K'n > i, then the line y =W 2l + 2K intersects with
A )\,(l )\‘n )\‘n+l

right hand side graph of W(x). This fact combines with above two equalities, we

conclude that there is a number 2|(_075, it is about max % , 1 such that
7\/ 7\‘1*(1 _ 1 7\‘(1

the intersection set A is in typical case for the horizontal line y = h with integer

phase 2K’, 2k, < 2k’ < 2k.

We claim that I”“[%j is the maximum intersection number of lever n sine-

like curve T, . Since the value of function W(ﬂ+ 2K j monotonously
n AN kn+1
increases for k =0,1, 2, ..., k; thus we may view the pace d; \ as speed, % as

time variable and 20" (" as distance. Since dj v as 2k T, 2k < 2K, so that

intersection number In+1(%j (the time needs to go through the distance

2 (D) increases. Thus,

|n+1(%) < Iml[%} 2k’ < 2.

For the case 2k < 2k’ < 2k,, the lever (n +1) sine-like curves intersect with

2k’

)\‘n +1

horizontal line y :W(% + ) which will intersect with horizontal line y =

W£ﬂ+ 2k J Therefore, we have
7\‘n }\’n#’l

|n+1(%] < |n+1(%), 2k < 2k’ < 2K,.
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W(2—j+ le J—W[Z—j+ 2k j
}Ln }\‘n+1 )Mn }Ln+1

=W ﬂ+i+m —-W ﬂ_{_i
kn 7\‘n +1 xn +2 kn kn +1

_T[W(Z_uz_k}Mj_W[Z_g 2k 1), 2, (K —1))}

xn 7\‘” +1 7\‘n +2 7\‘” 7\‘n +1 }\’n +2
This vi 2k ) . . 2k’ )
is yields that 1,4 | i the maximum value of the 1,4 - ) 0 < 2k" < 2k.

For computing I””(%j' we consider the following inequalities:

w2, 260 2k -0\ (20, 2K )_ (20 2k 2
kn kn‘f'l kn+2 7\‘n xn+1 7\‘n kn+1 kn+2

By Lemma 3.2 and Theorem 3.3, we have

~ - Sin& = 2
(COSan+ 0y JZ(k—k)n+ % (2(k;k)n} —

A o q A 2
2
=1+ 11t61 +— 0 5 (e _ o 5 + 2m9 nne
20 —1) 20 —1) 0* -1 A

By power law, we have

sin KT = o 2 " c i
L [2k —k)m + [ cos 2KT 0o 2(k —k)n_k_q 0.
2 A A 7\‘1—(1 -1 A

Therefore, we have

2k 0o - 2kn . 2kn 0o
~ _ COS—— + ———F— |+ 2siIn——A -1 COS—— + —
2(k —k)m \/[ A Hl-o _1) A ( A o _q

A . 2|z75
sin —=
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2kn %+ % \/E,weget

Note that 5 = o] a
22
2 2
V2 M EY S N V2
i} o 2| e 1 || [ e
2(k —k)m 12 A2 12
s 2
1| 6 V2
1-15]| 0 --=
2|ple_1 ¢
22
2
_2-42 |1 6 V2 || 2-42
N o | 2|51 _ T a o
a2 Y A2

By power law, we have

Combining the fact 2kym =X, % and 2kn _ 1 + % —2, it follows
A 2 plra_q A 2 Hla_q 2
22

1-&
that the left hand side intersection number equals to %x 2,

We are now ready to estimate right hand side intersection number. Similarly, we

have
wl2i x—z(Eo—1)+2ku(x—2(E—1))
kn 7\‘n+1 7\‘n+2
W Q+X—2k0 SWQ+}L—2k0+2ku(k—2ko).
}\’n 7\‘”4’1 xn }\’n‘i’l }\’n+2

Thus, same arguments as above, we see that

2j -2k f20, 22
7\/” kn‘f'l kn 7\‘n+1

d
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_wl2i =2k 2k(ko)) 20, =2k
xn xn+l xn+2 }\‘n }Ln+1
_dw 2_j+k—2k0 N 2ku(7\.—2k0) VY 2_j+k—2(k0)+K—2(ko—l) .
}\‘n }\‘rH—l }\‘n+2 }\‘n 7\’n+l 7\’n+2
That is,
i ~ S~ sint Kt o)l
- (A -2k)m 6o 2(kg — k)7 N A 2(kg — k)7 s-na
A 7\/1—(1 -1 s 2 A
=1+ nel + 6% 7\,7(”{") -1 L + ﬁ .
2(7\‘1*(1) 2(7\11—0. _ 1)2 7\’(1 (7\‘1*(1 _ 1) )\‘
Thus,

" c ok sin 2% = = 2
coS 2k7'|: _ 90 2(kl - ko)TC i A 2(k1 - ko)TC _ 7\._(" -o.
A 7\‘1—(1. -1 A 2 A

Solving above equality, this yields
dkn 0, 2k okt 0
- - AL +2sin 2180 | cps LT 0
2(k1 - ko)T[ _ A }\‘1_0( -1 A A )\‘1—(1 -1
* sin 2K4™ |
A
From Theorem 3.4 and (3.21), we obtain that
Zm _m 0 N2
e

Same arguments as above Yield

Z(IZ K )m —

AR oy 2
0y (2-~2)n 2.

1-&
Thus, the right hand side intersection number also equals to %k 2. which proves

(3.20).
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Theorem 3.6. Let W(x) = Z?fi“ sin\'nx be the Weierstrass function and let
i=1
Iy, bea lever n sine-like curve. Then

2k" k), 2(k'~ k)

A A
~ 20 .\ 2.1.1.3.2% 7%
B 2k'TC 60 ) 2k! 0 5
m| COS—— + ——— 4. T 0
( VeI n2 -4 6(005 T o _1)

5~ -5a
N 2.1.1.3.5.7.25% - 62
72-4-6-8-10 cos 2K™ , %0
}\’ }\‘1—(1_1

2k ~K) , 20K - kp)
A A

20 . 2.1.1-3.2%)73%

2ki“ e0 j 2k{m 0 5
| COS 4. % Y0
( P 7»1_(1 1 12 G(COS A kl_ lj

- 2km\ s s
2-1-1-3-5-7 SmT 2°A

2kin 6 )
}\‘ 7\(1—(1. _ 1

+

T (3.24)

n2~4-6~8-10(cos

Here y = h is a horizontal line with integer phase 2k’, 2kq < 2k’ < 2K.

Moreover,

~, ~ ~ ~ ~ -~ - _E
2(k'—k) 2k —k) _ 2(kp —ky)  2(ky —ko) _ 2,75
A A A A T

Proof. We compute the intersection number in first quarter, by solving the
following inequalities:

wl2i, 2K ) (20, 2k | 2kg(K)) (2], 2K +1))
xn )Mn+1 xn )Mn+1 )Mn+2 }\‘n )Mn+l
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Same arguments as in proof of Theorem 3.5 yield

2(k' - k)m
A
2
_ 1 2k'n 0o L2k, o 2k'n 0
= | ok \/(cos T o _1] + 25|n—x A (cos—x + Nl
sin ==
A
(3.25)
A slight modification of above proof shows that
2(k" -k )m
A
!, !, 2 )
-1 . cos K™, %0 ) [fps2Km B _2sin KT ya |
. 2k'm A Ao _q A Ao _q A
sin ——
A
(3.26)
2(kj — k)
A
’ 2 ’ ’
L feos 2% +2sin 2Ky o _[cos2Kim B0 3|
. 2k{m A - q A A - q
sin——
A
(3.27)
2(ky —ki)m
A
I ! 2 ’
-1 — || cos 2kr 9 —,]| cos 2kr 9 - 2sin@k‘OL .
. 2kim A - _q A al-a g A
sin ——
A
(3.28)

Thus, in view of (3.25), (3.26), we have

2(k" - k")m N 2(k"—k)m
A A
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1) 2 1)

-1 cos 2K 8o _osin KTy (o 2K, B0

2k A e _q A A o _q
sin =~

, ) 2
+fcos2Km Y ), [oos 2K, Y — 2sin —2k Ty
}\’ 7\/1—(1 _ l 7\‘ Kl—(x _ 1

2k'n I
cos—=— +—>&*°‘ 1 2sin 2;“% 2sin Zink
= — 1+ - 1-
S|n& ( 2k'n eo jz ( 2k'n 90 jz
X COS—— + —— COS——+——
Aooade g O |

- 2.1.1-3. 23(S|n 2"“) A3

2kn 0 5
R T, 24 6(0052k—n+ % )

7\, 7\‘1—(1. _ 1

Note (3.27) and (3.28), copying above arguments, we obtain

2k ~ k) , 20~ ko)
A A

3 2k17£
23 2-1-1-.3. 2(sm 5 )
2kiTC 90

2kim 0 >
cos - KT 0
N N 2-4. 6(cos A o 1)

Before we are going to prove (3.23), we need some formulas. Using the power series
of functions v1 =+ x, we have

f5_q,l 11 113 1135 11357
Y27 24246 2468 246810
1 1.1 1.1.3 1.1.3.5 1.1.3.5.7
Wl -6 7468 24680

where x = +1. Clearly, this yields

2 2.1.1.3 2.1.1.3.5.7
*/5_‘/_‘7’ 2. 4.6  2.4-6-8-10 "
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Putting 2kn _n,_Y% V2 in (3.28), we have
A 2 7\’1—(1_1 o
22
2(|Z—|Zo)n+2(|2'—12)n
A A
_ 23
T 90 x/E 90
cos| 5 + —- -== -
2 plre g e e g
22
2.1.1.3.28sin2[ E % 2 A3
2 1-a o
A -1 =
+ A2 +-
5
2.4.6 cog &+ —0 V2 -
2 Kl_a—l o }\‘1—(1
22
2-1-1-31-sin gw—lj? —ig
0% 2.1.1.3)7% Tt o2
= —+ 3+
el o o
v232 2.4.{\[2;?} 2-4. 6[«/5 2]
2-1-1-31-sin {% «/3
o =
-2 2-1-1-3 22
_ 2| 2 S
NEYN 2+ 5. 4.6 +

We estimate the following term:

0o
7\‘1—(1.

2.1-1-31-sinq X4

i3
2

-1

V2

o

22

246
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6 V2

2:1-1-3-5-7|1-sin?| 2+ -0 _
2 1-a o

-1 2

22 ),

* 2.4.6-8-10

% 2
1-a o
-1 A2

2.1-1-3 1—sin? g+

- 2-4-6
V2

. opl ™ 0
2-1-1-3--(4n-1)|1-sin“" - + —0 =
2 1-a o
=1 =
22

ot 2-4-6--(4n+2)

. 2(n+l)| T 0 V2

2-1-1---(4n + 3)| 1—sin (n+1) Ty 0 e
2 1-a a

X% -1 =

A2 "

" 2.4.--(4n+6)

V2 2-1.-(4n +3)27'
——||(2+4+--+2n)+ 2 (4n+6) +

V2 2-1---(4n + 3)27
-—— | n(n-1)t+ 2@ +6) +

Taking n = , using the known expansion of +/2, we have

A A
o o
N ete S B 2wl
2 246 o g kg
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b G V2

Putting 2';175 =5" N— - in (3.30) repeating above arguments, we have
a2

2(ky — k) . 2(ky — ko)

_a
=21 2,
A A

Ultimately, we obtain the value of intersection number

o
2

I[%j = [(E" - E') + (IZ' - IZ) + (IZZ - |'<"1) + (|Z1 - IZO)] = %;Llf_

This result coincides with Theorem 3.5 (3.21), but two proofs come from total
different points of view.

0 . -
Lemma 3.7. Let W(x) = 27('0‘ sin M'nx be the Weierstrass function and let
i=1

[y, beany lever n sine-like curve. Then we have

2-¢ (1, ) =|2arccos 2 +1- 1—(%2 A (3.31)
Mo netltw, ) = - - - : :

Proof. Let S be a n-square with integer phase 2k’ in the lever n sine-like curve

27 2k'n 09
Ly, - Note that the pace T(COST + V=

j)f”“ is much larger than the
1

length A" for 2k’ < 2k. Therefore, a lever (n+1) sine-like curve intersects with

the bottom (top) going through top(bottom) except at most four. By Theorem 3.6,

the number of lever (n +1) sine-like curves which intersects with S is In+1(%j

~ 0L ror 2 [ 2o 2k
B ( 2k'n 0, j A PR
M COS—— + ——

Aoople g

}. Thus for large enough A, we have

l-a
REE Ty, NS) = i Sh ol (2-e)

kw6
m| COS——— +
A )\‘1—06 -1
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- 2 pN(2-a),
2k’TC 90
T COS—— +
7\‘ Xl—(l _ 1
Let | be an integer such that COS&-F % > 2 > C0S 21+ )z % ,
R |
0<l< &. Without loss of generality, we may suppose cos&+ % _ 3.
2 Aople_gom
So we obtain that
B Ty, N'S) = pa~*(r, N'S) if 2k’ > 2I,
e Ty, NS) < B3 (T, NS) if 2k < 2.
Therefore,
(T, ) ="Aoo gy (m) @), (3:32)
where

#A=1{S:S isn-square with integer phase 2k’ in Ty, and 2k’ > 21},

#B ={S:S isa (n+1)-square below the horizontal line y, =W 21, 2
N xn+1
in Ty, and SAOL, *#J.

By Theorem 3.3, we have

w ﬂ_f_ﬁ -W ﬂ+ 2
}\’n }\’n+1 }\’n }\’n+1
1 1

=W ﬂ_;_ﬂ -W ﬂ+i +W ﬂ+§_}‘ -W 2_j+ 2
- }\’n 7\‘” +1 7\‘“ 7\‘“ +1 7\‘” 7\‘“ +1

1]
l_\
|
[y
|
7N\
EREN)
N
N
7\
N
0
F1]
H
N~
VR
o
Q|
|
[EEN
N—
N
=
>3
Q
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Thus,

By power law, we have

A = [1 1o (%)2 jx”(l—a). (3.33)

We are now ready to compute #B. Let B; = {S:S e B, and Ly, NTy, =3}

and B, = B — B;. Clearly, we have B = B; U B,. Intuitively, We see that

B, ={S:S isa (n+1)-squareand S c I, J.(j <2kj) or S =Ty, ,(i=2k)}

that is, B, includes entire lever (n+1) sine-like curve. We can make the B;
includes entire lever (n+1) sine-like curves too. Since we can exchange the part of
intercepts which are above line y =y, and the part of intercepts which are below
the y = y,. Because the sequences of intercepts of up(down) lever (n+1) sine-like
curve divided by the line y =y, are approximately arithmetic sequences and the

number k{'—Kkq | almost equal to I —k;, the number k; | —k; | almost equal to

ki1 —Kp 1. Indeed, according to Theorem 3.6, for large 2, we have

2kf —m 21—k )m
IX + }\’I

2
—ofcosAm B0 )| [cosdm, % +2sin 2Ty«
7\‘ 7\/1—(1 _ 1 7\‘ }\‘1—0( _ 1 }\,
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2
+\/(cos&+ % j—zsin&kaJ:ZdZ“,

A e g A

2ko,1 —k ) 2Ky — Ko 1)

A A
2k 2ky 2 2k
=2 COSLI - 90 — COSL _ 90 1 2sin 1,1 A
Aooogle g hooole g A
2k1 1T 0 2 A 2k1 1T 2
+ 4| cos——— - ——0 —2sin——— "% | = 2t %,
A o q A
Thus, noting Theorem 3.4, we show that
#B = (21 + 2k )AMDE0) | ppi-2ay(nD)(-a)
= (E arccos 2 1190 + Zrkzo‘jm(””)(la).
m L |
Again, by power law, we already show
"B = %arccos%kk(””)(l‘“). (3.39)

Finally, by replacing (3.33), (3.34) into (3.32), we obtain

2
ﬁ%ir%—l(rwn) = (1 - m}ﬂla) o) N(2-a)

+ % arccos % D (A-a) § 5 ~(n+1)(2-)

2
= (Earccongrl— 1- (3) ]7(”.
T T T

We obtain (3.32). We may call 2I turning integer phase.

We have solved the problem: find a minimum cover of a lever n sine-like curve
I, by n-squares and (n +1)-squares. It seems natural to consider the problem, find
n
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a minimum cover of the graph ST, by (n+1)-squares and (n -+ 2)-squares.

Since the intercept sequences of lever (n +1) sine-like curves divided by line y = h

are approximately arithmetic sequences; therefore Lemma 3.8 provides a similar
result with Lemma 3.7 for n-square Sy, in the lever n sine-like curve I, .

0 - -
Lemma 3.8. Let W(x)= > A"'*sini'nx be the Weierstrass function. Let
i=1

S, be a n-square with integer phase 2k’ in a lever n sine-like curve L,

2kg < 2k’ < 2K. Then

~2_ 2 2 2 2 2k—n(2—a)
Hnstne2(Dw, NSy) = {E arccos — + 1-41- (;) ]W
mCoS ——

— | Zarccos 2 41— ,J1- 22 nzem, NS,). (3.35)
o T T Hni1 U, nl: :

Proof. By Theorem 3.5, the intersection set A is in typical case. We consider

first quarter Ay, other cases can be treated in the same way. Without loss of

. 2j 2k
generality, we may suppose that h=W| —+

kn }\‘rH—l

between the bottom of the square S and the X-axis. Since it now allows to cover the

graph by (n+ 2)-squares, we have to know the integer phase of the horizontal line

j, where h is the distance

y = h in the lever (n+1) sine-like curve T, . Let 2S; be the integer phase

n,2(k'-1)
. . 2j 2k . L
of the horizontal line y=W|—+ in the lever (n+1) sine-like curve
AN kn+1
FWn,Z(k’—I)' Then
Wﬂ+2(k—l)+28| <W ﬂ+ 2k W ﬂ+2(k—l)+2(8|+1) .
an xn+1 kn+2 AN kn+1 AN )Mn+l xn+2
Thus, by Lemma 3.2 and Theorem 3.6, we have
1, k'
Em’@ 25 | 2m cos Py 210, (2nl)?

. T
x].—ot _1 sin 7\/ 7\‘1—(7, 7\’1—(1(}\‘1—(1 _1) + E }\‘2—(1 ’
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Consequently,

[}

27cc052k—7T 2 Loy
in 25 | L, 210, +£(2n|) 1.2

S 7\/ 7\‘1—(1 7\‘1—0.(7\‘1—0. _1) 2 7\(2—(1 7\‘1—(1. ’

By power law, we reduce to

21 C0S 2Kn 2
sin 2T _ | Ao, 2 |, (@) (3.36)
7\/ 7\‘1*(1 }\4170.(7\‘17(1 _1) 2 7\‘2*(1
Next, we consider the measure of the graph of function W(x) in the T, 2k1) NSy,
1=0,1 2, ..., k"~ k. Let jiy(ny) be the measure of the graph W(x) in T, 2(1)
using (n +1)-squares ((n+ 2)-squares). Clearly, we have
iy = A e (ND)(2m), (3.37)
In view of Theorem 3.6 and (3.36), we have
AN 2
2 ) o cos 2K
. T oS —— 270, t (2nl)?
wcosarcsin | I + T + 5
- Aeple—q) 2 )2
This implies
1-
i, - 2 ¢ 02 ¢ )-(n+2)(2-0)
2k'n
2m CoS A 2n0 t (2nl)?
ncosarcsin | 1 + 0 + X
}\‘ —0o )\‘l—(X(}\‘l—(l _ 1) 2 )\‘2—(1
(3.38)
By comparing (3.37) and (3.38), we conclude that
. 2 -~
if e <1, then py < py;
21 C0S —— 2
ncosarcsin| A 2 )

7\‘1—(1. 7\‘1—(1(7\‘1—0. _1) 2 7\‘2—0.
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otherwise,
if - >1, then py > py.

2 2k'n )
Teos— 270, T (2nl)
+ + =
7\‘1*(1, 7\’1*(1,(7\‘1*(1 _1) 2 7\‘2*0.

mcos arcsin |

Let l; be an integer such that
2 2k'n )
TeoS—— 270, | "2n(l - 1))

cosarcsin(l; —1) +
7\‘1—(1 7\(1—0. (7\‘1—(1. _ 1) 27\(2—(1

)

2 2k'n )
T oS — 276, ©(27ly)
}\‘l—(x + 7\/1—(1()\‘1—(1 _ 1) + 2}\‘2—(X '

2 .
> > cosarcsin ly

Without loss of generality, we may suppose

’ 2k'n 2
] T Cos n 210 ’C(27’E|1) 2
cosarcsin |y To @ ol e | T
by T (x -1) 2N n

In other words, we may write

2k'n

| 2m c0s —— . 210 . 1(2mly ) _ b ( 3)2 (3.39)
1ok Tabepleony e o |
Thus, we have
Rt nio(Ty N'S) = A pr(MDEe) 4 #p pr(msh)@me) - (3.40)

where

A1 =1{Shi2 :Shyzisa (n+2)-square S,,, TW 2001y and

Sn+2 ﬂFW * @, | =1, 2, vy |1}
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and
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A o =1{Sps1 i Spyp isa (n+1)-square S,y < FWn,Z(k’—I)

and Sp 1 NT, =9, = +1 .., k'—k}.

We want to use the definite integral method to compute #A&,l- From Theorem 3.6,

we have

Fag = 7»22

27\.1_0(

mcosarcsin |

27 C0S ——

K (3.41)
27[90

x , 3(2nl)’

7\(1—(1

+
7\‘1—(1. (7\‘1—& _ 1) 27\‘2—(1.

We rewrite the right hand side of above formula as a special sum, which can be
treated as Riemann sum

:}“ZZ

271 COS & 2
27}_(1 | s 27[90 n ‘C(ZTtl)
7\’1*0, 7\‘1*0.(7\’1*(! _ 1) 7\’2*(!
2rmcos 27 210 2n(l ~1))°
|y ) o, w(2n(l-1)
}\‘1—()( )\‘1—(1(}\‘1—0( _ 1) )\‘2—(1
| 2mcos —Zlin 216, 1(2nl)?
m cos arcsin | I I I +—
A k’“(k’a—l) AcTe
27 COS —ZR’E 2
ot T 2\ 210, N 7(2nl)
}\‘1—(1 }\‘1—()( (}\‘1—(1 _ 1) )\‘2—(1
27 COS % 2
“la-1 210 N 7[2n(l - 1)]
7\’1*0, 7\‘170. (7\‘1*(! _ 1) }\(2*(!
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)

2 2k'nt
) 210 ‘E(?_TC|)
_(x }\‘ OL(}\‘ —Qa 1) }\‘ —o
2n cos— 2704 T(Zn(l 1))2
2x3_°‘ egie g re
T o 2|( 1
-~ 20 ’E(2TC| )2
cos arcsin | + - u
e (X -0 _ 1) 2)2-¢
2n COS_ 210 N (27.:)2[1”2 _ ‘E’(' _1)2]
}\‘1*0. }\’1 (l(}\‘lfa _ 1) }\’27(1
Note that
1 1 e
A+e A AA+g)’
2 2k'n ,
| TR 2mbg o(2nl)
}\.1_“ * 7\’1—(1(}\‘1—& _1) + }\‘2_&
27 cosﬁ )
~(1-1) A, 210y , 12l -1)
o, 3 e oleple_p 2
A= T 2 2k'n
1=1 ncosT 220,
+
)\dl—OL xl—(xo\dl—a B 1)
2k'n
271 C0S ——
. cos arcsin | " A 2mbg ‘c(2n| )?
}\’17(1 }\‘1*0.(7\’1*(1 _1) 2}\’2 o
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ZrccosM 2720 2721)2
| L, 2mbp  (2nl)
}\‘1—0( }\‘1—(1(}\‘1—(1 _ 1) 27\/2—(1
27 COS & 2
(-1 Py 270, . 7(2n(l - 1))
7\‘1*0. }\’1*(1, (7\‘1*0. _ 1) 27\‘2*(1
o e - (-1
1 }\‘2—(1
1=1 271 cos& 210
A T

+
}\‘1—(7, 7\’1—(1 (}Ll—OL _ 1)

5 k'
. Teos— 276, 1(2nl)?
cos arcsin | +
7\(1—(1. 7\/1—(1. (7\‘1—0. _ 1) 27\(2—(1
2 2k'n 5
' T C0Ss — 2710, . t(2nl)

+
7\’1—(1 }Ll—OL(}\‘l—(X _ 1) 2}\’2—(1

For large enough A, we can consider the following sum as Riemann sum. Then
we have

2k'n

| 2m cos Py 210 1(2nl)>?
}\‘1—(1 + 7\/1—(1 ()\‘1—0( _ 1) + 7\/2—(1
i 2k'n 1
2m cos = 210, 1(2nl)?
B (I B l) 1-a + l-aq1-a + 2—a
h X At -1y ok
] 2k'n }
-1 [ 2mc0s—— 210, 1(2nl)?
cosarcsin | I —— +
e PV Ve -1) 2 o
K
n chosz—}f[ : 2n0Q : 1:(27[I)2
}Ll—(x xl—a(xl—a 1) ZKZ—OL

_ J‘ dx
0 cosarcsin
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2 2k'n 2
) TCOS— 270g t(27ly)
arcsin Iy t t
xlfoc }Ll—a(kl—a -1) 2}L2—0c

= J‘ dy (y = arcsin x)
0

2 2k'n )
TCoS— 276, 1(2nly)
7\/1—(1 }\‘1—(1 (}\‘1—(1 _ l) + 2}\‘2—(1

= arcsin ly

= arccos%. (3.42)
It is routine to check

(2n)[t? - (1 -1)°]
%?—a
7 — 0 as A > oo

2 2k'n )
Ly 270, t(2nl)
+ +
}Ll—OL }\’1—(7, (}\‘l—(l _ 1) }\’Z—OL

Combining (3.43) and (3.44), we have

]} 22 %kz(l‘“) arccos%
A1= 2k'n 210y (343)

2n Cos——+ Ta_,

Noting Theorem 3.6 and (3.39), we have

K'—k
#
A2=2)1
1=k
)\‘ ° )\‘1—0( 2 2
L - (1_ - (2) ] @0
2mCo0s— +

}\‘ kl—(l _ 1

For large A, we can express (3.43), (3.44) at least for most of {% %}

32 2520-0) grecos 2
# A= 1 e
1 2k'n '
21 Cos 5
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A :%[1— 1—(%)2 J

27 cosT

Same results hold for Ay, As, A,. By replacing (3.43), (3.44) to (3.40), we obtain

2k'n | & i

TCOS———
2 2
1o e (_) 52-0 ¢ 3~(n+1)(2-)
T

Hast 2Ty N'S) = #F arccos 222 o 320-a) ¢ 3~(n+2)(2-a)
A
2
= ;/ EarCCOSg +1-.1- (E) )\—H(Z—(x).
2k T| T T T

T COS ——
A

The desire follows.

Remark 3.9. Each n-square S has a minimum (n+1, n+2) cover, all the
minimum cover (n+1, n+2) cover of n-squares S are similar. Rephrase the
formulas of Lemma 3.7, Lemma 3.8,

~2—q F _ 2 2 1 1 2 2 ~2—a F
[Tren wn)— L ACCos—HLl=qt= ] [Hn (Tw, ):

~o- 2 2 22 |~oo
l’ln+%n+2(rwﬂs):[;amcos;"‘l_ 1‘(;) JH%JE(FWDS)-

Above formulas on form and content are alike. Since each n-square is included in
some rectangle, we may view first formula as a global property and second formula
as a local property. This means that the global property and local property are
comparable.

From Lemma 3.8, we know that

T arccos —
I

ﬁn;fn+2(rw N S) =
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for the n-square S with integer phase 2k’. This gives us a way to find integer phase
for the minimum cover of graph Iy, by n-squares, (n+1)-squares and (n+2)-

squares.

0 - -
Lemma 3.10. Let W(x) = > A™'*sinA'nx be the Weierstrass function. Let
i=1
T, beany lever n sine-like curve. Then we have

2
~ 2r. 2r. 2r, _
ih 2Ty, ) = (Tlarccos?l +1-,[1- (71) ]x " (3.45)
2
where n = %arccos% +1-41- (%) .

Proof. Let integer phase 2l; be defined in Lemma 3.7, by Lemma 3.8, we have

2
[garccosg +1-—,/1- (gj ]2
T T T
H-N(2-a)

Pnetne2(Tw, NSay) =

= rlk_n(z_n).

It will be shown in the following proposition 0 < r; < 1. This implies that the

measure of Tyy (1S, covered by (n +1)-squares and (n + 2)-squares will be less

than the measure of Iy (1 Sy, covered by n-square.

Thus, we can move up integer phase to include more n-squares covered by

(n+1)-squares and (n+ 2)-squares. Clearly, there is 2I, such that cos—z(lzk_l)Tc >
2n > cos%. Without loss of generality, we may suppose that cos —2;3% = %;

that is M = arccosﬁ Let
A o



On the Hausdorff Dimension of the Graph of the Weierstrass Function 131
A ={S : S are n-squares with integer phase 2k’, 2k’ > 2l,},
A, = {A(S): A(S) isaminimum (n +1, n+ 2) cover of an-square S
with integer phase 2k’, 2k’ < 2l-<~}

and A=A UA, clearly, Aisa (n+1 n+2) cover of I3y . Note that in the

proof of Lemma 3.7, the graph I}y S’s which is below integer phase 2l, is covered

by (n +1)-squares and (n + 2)-squares. By Lemma 3.8, we may write

2
3arccosE +1-,41- (gj ]
T T I
o3 —(2-a)

ncos&
A

2[
Ra 2Ty NS) =

ncos&
by
. ~2_ 2r; —(2— . ~_
Using ur21+fn+2(rw ns)= —12k’7c. %27 instead of [FZ¥(Gy NS) =
7 C0S——
by
22k' ¢ 7% jn Lemma 3.7, we may copy the proof of Lemma 3.7. Thus,
ncos ot
A
we get

Z S 2% = (21 + 2k, )Y = Z—T?arccos%x o )7 (0+)
SehMy

2r. 2n . _
=21 arccos =L AN
T T

2
and z |s|2‘°‘ :[1_ 1—(2—;1) J?C”. Let p be the measure of cover A.
SehAy

Finally, we have

2
o= (ﬁarccosﬁ+l— 1—(ﬂj Jx‘”.
T T T
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Clearly, the cover A is the minimum cover of the graph L, - As above, we call the

integer phase 2l;, 2l, turning integer phase. The proof completes.

Remark. Each lever n sine-like curve I, has a minimum (n, n + 2) cover, all

(n, n+2) minimum covers A’s are quasi-similar. This result may be extended, but

first we show a proposition.

2
We begin by setting r = %arccos%+1— 1—(%) . Assume that r,_; is

. 2r, 2r, 2
constructed. We define r, = ;‘E‘l arccos ;‘1 +1—41- (—j , Nn=23 .,1
is called contraction coefficient.

Proposition 3.11. Let r, be a contraction coefficient. Then the sequence

{rn -y is astrictly decreasing sequence. Moreover, we have

limr, =0.
n—o

2 2 2x\2
Proof. Let f(x)= - Xarccos— X+ 1-41- (7) , itis routine to show

f'(x) = 2 arccosg X.
T T

By mean value theorem, we have

2
2 xarccos X +1— 41— (ﬁj = (g arccos 2 &) X, (3.46)
s T T T

where 0 < & < x. Therefore, we have

2
gxarccos£+1— 1—(3)
T T T

X

<1 (3.47)

Let X = r,_1. Then

2 21, _
Zr,_jarccos ==L 41 J1-| =L
s T

= <1
M-1 -1
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This shows the sequence {rn};f:l is strictly decreasing. This implies that

limr, =ry, rp=0. We claim that ry =0, otherwise ry > 0. Taking limit in
n—o0

(3.46), we have

2
1) :Ziarccoszi+l— 1—(2ij .
T T T

That is

2
2% arccos2i +1—,41- (Zij
s T T 1

fo

This contradicts to (3.47). The desire follows.

Lemma 3.12. Let W(x) = Z?Ci“ sin A'mx be Weierstrass function and let Sh
i=1

be a n-square with integer phase 2k’ in lever n sine-like curve Tw, » 2kg <2k’ < 2K.

Then

~2-q ~2

Hn+1, n+1+m(rW Ns,)= rm“n+%(rw NSy), (3.48)
where 2l < 2K.

Proof. We prove statement (3.46) by induction. By Lemma 3.10, the statement
holds for m = 1. Now suppose statement (3.46) holds for m = p. Using induction

suppose to the graph Ty N Sp.1, We have
~2 ~9
“an n+1)+p(FW N Sni1) = rpinst (T M Spaa).

Using l’pun My N Spsq) instead of un T(Gy N Spip) in Lemma 3.8, the

intersection number |, +1( 2; ) becomes
| 25 2rpk1’°‘
”+1(Tj ) 2n cos&
ncosarcsin A 28 T(znl)

+
7\‘1*(1 7\’1*0. (7\‘1*(1 _ 1) 27\/2*(1



134 Shusheng Fu
By copying the minimum proceed in the proof of Lemma 3.8, we get

2k'n T

2
= 2r 2r 2r
B vim Ty N'Sy) = — 2 5P arccos P 11— 1 (_pj s N(2-a)
mC0s = T T

= rp+ll~l§;ix(rw N Sn)-

This proves the lemma.

Theorem 3.13. Let W(x) = i?fi“ sin A'nx be the Weierstrass function. Then

i=1
we have
DhTw)=2-«a (3.49)

with large A.

Proof. By Theorem 3.6, the intersection number is defined in

2%, 1 0o 1
=+ - :
A s I

2

First, we will show there is a minimum cover for each lever n sine-like curve T, .

Moreover, we have estimation ﬁ%f,{ﬁm(rwn) =1, for m < ng. Second, we will
extend above estimation for any integer m. Finally, we prove the graph [, is a
(2 - a)-set.

In view of Lemma 3.12, the sequence {2l;} of turning integer phases is a
monotone increasing sequence. Therefore, there is an integer phase 2Iy such that

VAINIRIRS 2k < 2ly. In other words, after the procedure runs N step, the minimum
cover of the graph of Tw, decays to (n+1, n+1+ N) cover of the graph of T, -

We claim that

ﬁr%,_r&m(rwn) = k" (3.50)
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We prove the statement (3.50) by induction. By Lemma 3.7, the statement
(3.50) holds for m =1, assume statement (3.50) holds for m < p.

That is,

o
~9_ T~ 5a—(n+l
Mn+fn+1+p(rwn+1 z 57‘ 2y,

Clearly, never n sine-like curve can convert as disjoint union of A never n +1 sine-
like curves. Therefore, we have

o
Ao paa(Ti,) 2 2 e 52 227,

This proves (3.50).

In the following, in order to make the contraction process more clear, we need

the following arguments. Let cos% = ﬁ, the point ﬂ+2—Ii,W ﬂ+2—|i
A Lo a0 P!

is called a dividing point in L, We claim that there is a large integer My such
that n-squares S, in a lever n sine-like curve Tw, distinguish dividing points

(ﬂ+2—|' W(Q+Z—I'D i=12 .. N(a A); for n > Mg. This means that
Aot n e

each n-square S,, in the graph T, contains at most one dividing point. Why is this
possible! Note that contraction coefficients r; are self-defined, it is independent of
any parameter and the largest length of minimum bundle N, depends on parameters

A and o but it is independent of n. Keep this in mind, we compute the vertical
distance of dividing points

D: =W ﬂ+h W ﬂ+2_ll
! N )Mn+l M )Mn+l

_oginlisn =l i+l ona

Now we consider the ratio i'n
"
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- No o ) - 1No
Min Pl — Min{Zsin livs =i 7.COS by + n} AN-) 5 o as A — oo,
A ia A A i1

Consequently, there is an integer M such that for n > M, we have
Mini<y,Dj > 27",
The desire follows.

Finally, let Y be any (n, n + m) cover of the graph of function T}y defined on

[0, 2]. Let P be the vertical projection mapping defined by P(x, y) = x. Let ¥ =

{1 :P(S)=1, for SeY}. Then ¥ is a cover of [0, 2]. An interval | =
LI), J(I).+1 of W is said to be a structure interval if J (1 =0, | € ¥, then
Ak 75 k()

J < I. Let ¥, be the collection of all the structure intervals I. Then ¥, is a net of

[0, 2] and D" |I]=2. Clearly, we have

le¥y
Y =Ujew, User, ps)ct S- (3.51)

(3.51) means that Y decomposes into a union of finite subsets, and each subset

covers a graph Iy . Take a structure interval | = [ ;k((ll)) , nglk)(lt 1}, ;\Jk((ll)) = %

,
. 'f((('l)), the set {S:S e Y, P(S)c I} covers Ty NR
2

covers the entire graph of function W(x). By (3.50), we have

Z |S |2—0c _ Z |S |2—(x > Z %X_%X_k(l)

SeY 1e¥y P(S)cl, SeY 1e¥y

B, 020 Th(1) since Y

This proves that Ty isa (2 — o) -set.
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