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Abstract 

It is still an open problem whether or not for λ an integer greater than 1 
and ,10 <α<  the Hausdorff dimension of the graph of the Weierstrass 

function ( ) ∑
∞

=

α− πλλ=
1

sin
i

ii xxW  equals to .2 α−  This paper provides a 

partial solution of the open problem, i.e., it is shown that the Hausdorff 
dimension of the graph of Weierstrass function equals to α−2  for large 

integers λ. Moreover, our proof is based on the method, it is called power 
law combining τ−θ  technique. This method may be used to treated 
some non-linear problem. 

A. Introduction 

It is an open question that for ,1>λ  ,10 <α<  whether or not the Hausdorff 

dimension of the graph of Weierstrass function 
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 ( ) ∑
∞

=

α− ∈πλλ=
1

,sin
i

ii RxxxW  (1.1) 

equals to α−2  [3, p. 649]. There are many attempts to solve the problem stated in 
(1.1). We list some of them, Berry and Lewls [1], Kaplan et al. [5], Mauldin and 
Williams [7], Mandelbrot [6], Hu and Lau [4], Hua [2], Sun and Wen [8]. But all of 
these works do not exactly solve this problem. The goal of present paper is to show 
that the Hausdorff dimension of the graph of Weierstrass function equals to α−2  

for large integer λ. 

B. Preliminary 

B.1. Notation and terminology 

In the following, we will state the notation and terminology. 

Unless explicitly stated otherwise, throughout present paper, let λ, i, j, k, l, m, n 
be positive integers, θ and τ be real numbers with 11 ≤θ≤−  and .10 ≤τ≤  Value 

θ and τ may change at each step. Different fixed values of θ and τ will be denoted as 
...,,, θ ′′θ′θ  and ....,,, τ ′′τ′τ  Special fixed values of θ and τ will be denoted as ,iθ  

.iτ  

Notation can be adjusted by stating, fox example, 

( ) ( ) .2cossin θ=±θ′′+±θ′ dcxbax mn  

Of cause, we do not know the exact value 2θ, but we do know the exact bound of 
2θ. By using this technique, we can track the magnitude exactly and simplified 
expression. Thus, two conflicting goads, accuracy and simplicity, can be achieved by 
wisely using this technique. We call this method τ−θ  technique. 

B.2. τ−θ  technique combining power law 

We will make the following assumption on the power law. 

Let β<α<0  and let a, b be real numbers, note that 

( )( ) αβα λλ+=λ+λ aoba 1  as .∞→λ  
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This means the sum βα λ+λ ba  merges into .αλa  For simplified expression, we call 
this property power law. In the following, we will explain the method of τ−θ  
technique combining power law. 

We want to solve following complicated equation: 

( ) ( )
λ

π−′
⎟
⎠
⎞

⎜
⎝
⎛

λ
π′++

−λ

θ
+

λ
π′

α−
kkkkk 2

1
2cos 1

0  

( )
( )

( ) ,2
13

2
2

2sin 3

3

2
α−

α− λ=⎟
⎠
⎞⎜

⎝
⎛

λ
π−′

−λ
τ−⎟

⎠
⎞⎜

⎝
⎛

λ
−′λ

π′

+ kkkk
k

 

where .0 λ≤′<≤ kk  By τ−θ  technique, 

( )
( ) ( )

,
1

2
1 222 −λλ

θπ=
−λλ
π+′

α−α−
kk  

( )
( ) ( )

( )
( ) .2

13
22

13 3

23

3 λ
π−′

−λ
τ′π=⎟

⎠
⎞⎜

⎝
⎛

λ
π−′

−λ
τ

α−α−
kkkk  

We label the left hand side of above equation by I: 

( )
( )

λ
π−′

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−λλ
θπ+

−λ

θ
+

λ
π′= α−α−

kkkI 2
1

2
1

2cos 21
0  

( )
( )

( ) ( ) .2
2

2sin2
13

2 2

3

2
⎟
⎠
⎞⎜

⎝
⎛

λ
π−′λ

π′

+
λ

π−′

−λ
τ′π+ α−

kk
k

kk  

By power law, we have 

( ) ( ) .2
2

2sin2
1

2cos
2

1
0 ⎟

⎠
⎞⎜

⎝
⎛

λ
π−′λ

π′

+
λ

π−′
⎟
⎠
⎞

⎜
⎝
⎛

−λ

θ
+

λ
π′= α−

kk
k

kkkI  

Thus, original complicated equation almost equivalent to following simpler equation 
for large integer λ: 

( ) ( ) .2
2

2sin2
1

2cos
2

1
0 α−
α− λ=⎟

⎠
⎞⎜

⎝
⎛

λ
π−′λ

π′

+
λ

π−′
⎟
⎠
⎞

⎜
⎝
⎛

−λ

θ
+

λ
π′ kk

k
kkk  
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B.3. A variant of the net measure 

We now state the variant of net measure. The net measure is equate to the 
Hausdorff measure and behaves much more convenient for our purpose. It is worth 
mentioning that Theorem 5.1 of [3] continuous to hold, even though Falconer has 

.2=λ  

In the following, we now give the definition of measure ( ).~ Eμ  Let N be the 

collection of all 2-dimensional half-open λ squares S, that is, 

[ ( )] [ ( )],1,1, 2211 +λλ×+λλ= −−−− mmmmS kkkk  

where k is a non-negative integer and 21, mm  are integers. A square S is called a kth 

square if its length equals to .k−λ  Let kN  be the collection of all 2-dimensional 

half-open kth squares S. A collection A of squares is called an ( )mnn +,  set if 

.j
mn
nj NA +

=⊂ ∪  Let 2RE ⊂  and ,iAS SE i∈⊂ ∪  we will call A an ( )mnn +,  

cover of E. We now define 

( ) ( ) ,ofcover,anisand:inf~
,

⎭
⎬
⎫

⎩
⎨
⎧

+∈=μ ∑+ EmnnAASSE i
s

i
s

mnn  

where iS  denote the length of square .iS  Furthermore, we define 

 ( ) ( ).~limlim~
, EE s

mnn
mn

s
+

∞→∞→
μ=μ  (2.1) 

In the following, we will prove a proposition, that is, 

( ) ( ),~ CC ss μ=μ  C is a compact set. 

In order to prove the proposition, we need the following definition. The cover A 

of C is called a n−λ -cover of C, if A is a collection of k-squares, where :nk ≥  

( ) .wheresquares,-ofcollectionais,:inf~ 22
⎭
⎬⎫

⎩
⎨⎧ ≥∈=μ ∑ α−α−

λ−
nkkAASSC iin  

Proposition 3.1. Let C be a compact set. Then 

( ) ( ).~ CC ss μ=μ  
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Proof. We easily see that any ( )mnn +,  cover of C is a n−λ -cover of C. This 

implies 

( ) ( )CC nmnn
α−

λ
α−
+ −μ≥μ 22

,
~~  for any .0≥m  

Therefore, we obtain 

 ( ) ( ).~~lim 22
, CC nmnn

m
α−

λ
α−
+

∞→ −μ≥μ  (2.2) 

We will show ( ) ( ).~~lim 22
, CC nmnn

m
α−

λ
α−
+

∞→ −μ≤μ  Given any ,0>ε  by definition of 

( ),~2 Cn
α−

λ−
μ  there is a n−λ -cover of C such that 

( )∑
∈

α−
λ

α− ε+μ< −
AS

i

i

n CS .22  

Note that S-dimension net measure of the boundary of a square equals to 0 for 
.1>S  Hence, without loss of generality, we may suppose A is an open cover. Then, 

by Heine-borel theorem, there is a finite subset B of A which covers C, that is, 

∑ ∑
∈ ∈

α−α− ≤
BS AS

ii

i i

SS .22  

Note that B is a ( )εεε + mnn ,  cover of C, we have 

( ) ( ) .~ 22
, ε+μ≤μ α−

λ
α−

+ −εεε
CC nmnn  

Clearly, we have 

( ) ( ) .~lim 22 ε+μ≤μ α−
λ

α−

∞→ −ε
CC nnm

 

Since this is true for each ε, so that 

 ( ) ( ).~lim 22
, CC nmnm

α−
λ

α−

∞→ −ε
μ≤μ  (2.3) 

Combining (2.2) and (2.3), we have 

( ) ( ).~lim 22
, CC nmnm

α−
λ

α−

∞→ −ε
μ=μ  
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For each δ in interval ,1,0 ⎥⎦
⎤⎜

⎝
⎛

λ
 there is an uniquely δn  such that ( ) ,11

1−δδ λ
<δ≤

λ nn  

so 

( ) ( ).~limlimlim 2
,

2
0

CC mn
mn

α−

∞→∞→

α−
δ

→δ
μ=μ  

This proves our proposition. 

B.4. Three geometry properties 

In the following, we specify three geometry properties: 

B.4.a. Skelton of the graph of function ( )xW  

We note that .1 =⎟
⎠
⎞

⎜
⎝
⎛
λ

=⎟
⎠
⎞

⎜
⎝
⎛
λ

+ nnnn
jWjW  Consequently, we deduce 

.⎟
⎠
⎞

⎜
⎝
⎛
λ

=⎟
⎠
⎞

⎜
⎝
⎛
λ nnn

jWjW  

In other words, the partial sum ⎟
⎠
⎞

⎜
⎝
⎛
λnn
jW  is exact value of ( ).xW  Let us call      

the point ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛
λλ nnn
jWj ,  a fixed point. The collection of all fixed points 

1...,,2,1,0...;,2,1
,

−λ==
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛
λλ njn

nnn
jWj  forms a skeleton of the graph of function 

( ),xW  since the function ( )xW  is continuous and the length of period 02 →
λn  as 

.∞→n  Moreover, the collection of fixed points has regular configuration. 

The collection of abscissa of fixed points forms a net in interval [ ].2,0  First, 

we divide the interval [ ]2,0  into λ equal subintervals 

( ) .12,2

1...,,2,1,0
22

−λ=
⎥⎦
⎤

λ

+
⎢⎣
⎡ +

λλ
+

λ k

kjkj  

By repeating above partition, we get a net ( ) .12,2
1...,,2,1,0...;,2,1 ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡

λ
+

λ
μ

−λ== njn
nn

jj  
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B.4.b. The sine-like curve 

Below we present the shape of the graph of function ( )xWn  based on 

( ) .12,2
⎥⎦
⎤

⎢⎣
⎡

λ
+

λ nn
jj  We easily shift the graph of ( )xWn  based on ( )

⎥⎦
⎤

⎢⎣
⎡

λ
+

λ nn
jj 12,2  onto 

the graph of ( )xWn  based on .2,0 ⎥⎦
⎤

⎢⎣
⎡

λn  Consequently, we get recent function ( ):xgn  

( ) .sin22
11 xjWxjWxg nn

nnnnn πλλ+⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛
λ

−⎟
⎠
⎞

⎜
⎝
⎛ +
λ

= α−
−−  

We label first term of ( )xgn  by I: 

∑
−

=

α− ⎟
⎠
⎞

⎜
⎝
⎛

λ
πλ−⎟

⎠
⎞

⎜
⎝
⎛ +
λ

πλλ=
1

1

2sin2sin
n

i
n

i
n

ii jxjI  

∑
−

=

α− ⎟
⎠
⎞

⎜
⎝
⎛ +
λ

πλπλλ=
1

1

.2
2cos2sin2

n

i
n

i
i

i xjx  

Next, we note ,20 nx
λ

≤≤  we see 

( ) .
1

1

1
1

1∑
−

=
α−

α−
α−

−λ
λλπ≤λπ≤

n

i

nn
i xxI  

Therefore, we can write 

( ) .sin
11

α−α−
α− λλπ+λ
−λ
λθπ= nnn

n
n xxxg  

Since ,20 nx
λ

≤≤  we obtain 

( ) ,sin
11

α−α−
α−

λ+λ
−λ

θ= nn
n xxxg  where .20 π≤≤ x  

Thus, the second term is much larger than first term for large λ. Since the second 
term dominates function ( )xgn  and shift does not change the shape of graph of 

function ( ) ,xWn  so all graphs of ( )xWn  based on ( )
⎥⎦
⎤

⎢⎣
⎡

λ
+

λ nn
jj 12,2  are more or less 
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slightly deviation from the position of graph of ⎟
⎠
⎞

⎜
⎝
⎛
λ

+πλλ −
α−

nn
nn jWx 2sin 1  on each 

interval ( ) .12,2
⎥⎦
⎤

⎢⎣
⎡

λ
+

λ nn
jj  In this sense, we call the graph of ( )xWn  based on 

( )
⎥⎦
⎤

⎢⎣
⎡

λ
+

λ nn
jj 12,2  lever n sine-like curve. 

Next, we want to show that different lever sine-like curves are quasi-similar. We 

consider the sequence of function ,sin xnn πλλ α−  ....,2,1=n  The ratio 
n
n

n l
hr =  

decides the shape of function ,sin xnn πλλ α−  where ( )nn lh  is the height (reps; 

length) of function .sin xnn πλλ α−  We note that ( )

( )

( ),1

1

11

α−−

+−

α+−

−

α−

+
λ=

λ
λ
λ
λ

=

n

n

n

n

n
n

r
r  =n  

....,2,1  Thus, we conclude that different lever sine-like curves are quasi-similar. 

B.4.c. Quasi-self similar property 

Below we present the construction of the graph of ( )xWn 1+  based on 

( )
⎥⎦
⎤

⎢⎣
⎡

λ
+

λ nn
jj 12,2  from the graph of ( )xWn  based on ( ) .12,2

⎥⎦
⎤

⎢⎣
⎡

λ
+

λ nn
jj  

The graph of ( )xWn  based on ( )
⎥⎦
⎤

⎢⎣
⎡

λ

+

λ nn
jj 12,2  is a lever n sine-like             

curve (see, e.g., B.4b) and the graph of ( )xWn 1+  on each subinterval 

( )

2...,,2,1,0
11
122,22

λ=
++ ⎥⎦

⎤
⎢⎣
⎡

λ
++

λλ
+

λ k
nnnn

kjkj  is a lever 1+n  sine-like curve. Thus, the 

graph of ( )xWn 1+  based on ( )
⎥⎦
⎤

⎢⎣
⎡

λ
+

λ nn
jj 12,2  is to replace lever ( )1+n  sine-like 

curve on the, respectively, arc of a lever n sine-like curve. This yields the 
construction of the graph of ( )xW  is to repeat above proceed again and again. 

Therefore, the graph of ( )xW  builds up by pieces quasi-similar to the entire set but 

on a smaller scale. Here, we note that same lever sine-like curves have almost same 
shape and differential lever sine-like curves are quasi-similar but in different scales. 
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In this way, we describe the shape of ( )xW  not only in macro-scale, but also in 

micro-scale, we call this property quasi-self similar. 

The construction of lever ( )1+n  sine-like curve based on ( )
⎥⎦
⎤

⎢⎣
⎡

λ
+

λ nn
jj 12,2  may 

view as a movement of lever ( )1+n  sine-like curve; that is, the lever ( )1+n  sine-

like curve moves on the fixed points .22,22

...,,1,0
11

λ=
++ ⎭

⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

λ
+

λλ
+

λ k
nnnnn
kjWkj  A 

vertical change of ( )
⎟
⎠
⎞

⎜
⎝
⎛

λ
+

λ
−⎟

⎠
⎞

⎜
⎝
⎛

λ
++

λ
= ++ 11,

22122
nnnnnnkj
kjWkjWd  units corresponds 

to a horizontal change of 1
2
+λ

= ndx  units as lever ( )1+n  sine-like curve moving 

from left to right along x-axis. We call kjd ,  kth pace in jth lever n sine-like curve. 

The kth pace kjd ,  measures the vertical increment in kth moving. Note that 

( ) ,22cos
1

1
1

0
,

α+−α−
α− λλ

λ
π

⎟
⎠
⎞

⎜
⎝
⎛

λ
π′+

−λ

θ
= nn

kj
kd  which will be shown in 

Lemma 3.2. An immediate consequence is that hy =  (horizontal line) intersects in 

nearly mid-point of knS ,1+  and height knS ,1+  almost equals to ( ) .2 1 α+−λ n  This 

yields the lever ( )1+n  sine-like curves which move up and down not too far from 

knS ,1+  position will intersect with hy =  either. In the following, we introduce the 

concept of intersection number for quantitative description of distribution of lever 
( )1+n  sine-like curves in a lever n sine-like curve. 

Remark. In some scene, the shape of the graph of ( )xWn 1+  based on 

( )
⎥⎦
⎤

⎢⎣
⎡

λ

+

λ nn
jj 12,2  looks like a saw-toothed sine curve. 

B.4.d. Intersection number 

We now give the definition of intersection number. Let hy =  be a horizontal 

line which intersects with the lever n sine-like curve, the intersection number 
( )hIn 1+  is defined as the number of lever ( )1+n  sine-like curves which intersect 

with the line .hy =  In addition, let hy =  be a horizontal line with 
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.2222
11 ⎟
⎠
⎞

⎜
⎝
⎛

λ
π′+

λ
<≤⎟

⎠
⎞

⎜
⎝
⎛

λ
π′+

λ ++ nnnnnn
kjWhkjW  

We call 2k′ integer phase of horizontal line .hy =  In above case, the intersection 

number ( )hIn 1+  will be denoted by .2
1 ⎟

⎠
⎞⎜

⎝
⎛
λ
′

+
kIn  In the following, we will characterize 

the intersection number ⎟
⎠
⎞⎜

⎝
⎛

λ
π′

+
kIn

2
1  in two cases. 

The graph of ( )xWn  based on ⎥⎦
⎤

⎢⎣
⎡

λ

+

λ nn
jj 12,2  is approximately symmetric with 

respect to the vertical line .2
12

n

j
x

λ

+
=  In the right hand side, the situation is 

similar by symmetry of the graph. Therefore, in general case, collection of lever 
( )1+n  sine-like curves which intersect horizontal line hy =  forms two groups of 

four parts. Two graphs of lever ( )1+n  sine-like curves can be visualized as two 

stairs. First, we roughly estimate the intersection number. We consider left hand side 
stair first. By projecting the fixed points 

...,1,,1...,
11

22,22

+′′−′=
++ ⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

λ
+

λλ
+

λ kkkk
nnnnn
kjWkj  

on a vertical line, it is not hard to verify that the sequence { } ...,1,,1...,, +′′−′= kkkkkjd  is 

an approximately arithmetic sequence and kjd ,  is average value of this sequence. 

The situation in right hand side is similar. Thus, we conclude that estimate of 

( )hIn 1+  is two time of ratio 
( )

,2
,

1

kj

n

d

α+−λ  i.e., 
( )

.4
,

1

kj

n

d

α+−λ  By Lemma 3.2, we have 

( )
.

1
2cos

24

1
0

1

,

1

⎟
⎠
⎞

⎜
⎝
⎛

−λ

θ
+

λ
π′π

λ=λ

α−

α−α+−

kd kj

n
 

In bottom, hy =  may not intersect with lever ( )1+n  sine-like curves fully, the 

intersection number is less than in general case, so the estimate keeps true in weakly 
mean. The situation will roughly change as the line hy =  moves up to top. We see 
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that two stairs become closer as h increases. When line 0hy =  in position below the 

top in a distance, then two stairs meet together. We claim that ( )01 hIn+  is the 

maximum intersection number. First, we consider the case ,0hh ≤  by 

monotonously, we have ( ) ( ).011 hIhI nn ++ ≤  Then for the case hh <0  and hy =  

below the top, in the case lever ( )1+n  sine-like curves which interest with hy =  

will intersect 0hy =  so that ( ) ( ).011 hIhI nn ++ ≤  This observation is a key for 

solving the open problem. 

We now explain how to precisely estimate the intersection number. In above 

estimate, we use symmetry of the graph of ( )xWn  based on .12,2
⎥⎦
⎤

⎢⎣
⎡

λ
+

λ nn
jj  In fact, 

( ) ( ) xxWxW nn
nn πλλ+= α−
− sin1  is not symmetry with line .2

12
n

j
x

λ

+
=  We see 

⎟
⎠
⎞

⎜
⎝
⎛

λ

′−λ+
λ

−⎟
⎠
⎞

⎜
⎝
⎛

λ

′
+

λ ++ 11
2222

nnnnnn
kjwkjw  

.2222
1111 ⎟

⎠
⎞

⎜
⎝
⎛

λ

′−λ+
λ

−⎟
⎠
⎞

⎜
⎝
⎛

λ

′−λ+
λ

= +−+− nnnnnn
kjwkjw  

In general, we have .02222
1111 ≠⎟

⎠
⎞

⎜
⎝
⎛

λ

′−λ+
λ

−⎟
⎠
⎞

⎜
⎝
⎛

λ

′
+

λ +−+− nnnnnn
kjwkjw  By property 

two, xnn πλλ α− sin  is main term and ( )xwn 1−  is small term which may view as an 

impact to a symmetric function. The impact makes a deviation from normal position. 

Now we suppose that .222
1
1

1 ⎟
⎠
⎞

⎜
⎝
⎛

λ

′−λ
+

λ
=⎟

⎠
⎞

⎜
⎝
⎛

λ

′
+

λ ++ nnnnnn
kjwkjw  Then ( )

λ
′−′ 12 kk  measures 

the deviation. For precisely estimating intersection number, we have to compute the 

deviation number ( )
λ

′−′ 12 kk  precisely. 

C. Main Results 

C.1. The statement of the main results 

We now present Lemma 3.2 which provides base formula for following results. 
In the following, we will also characterize of the shape of ( )xWn  based on 
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.12,2
⎥⎦
⎤

⎢⎣
⎡

λ

+

λ nn
jj  Let us present a theorem about deviation number which may be 

sharp remainder estimates. The concept of intersection number is the key to solve 
this open problem. We also obtain following theorem which describes the 
distribution of intersection number. Let us state our main results about intersection 
number. 

We now give some lemmas which give to compute the minimum cover of the 
graph .nw R∩Γ  Above formulas on form and content are alike. Since each n-square 

S in some sine-like curve, we may view first form formula as a global property and 
second formulas as a local property. This means that the global property and local 
property are comparable. This result may be extended, but first we have to show a 
proposition. 

We begin by setting .2112arccos2 2
1 ⎟

⎠
⎞⎜

⎝
⎛
π

−−+
ππ

=r  Assume that 1−nr  is 

constructed, we define ,2112arccos2 2
111 ⎟
⎠
⎞

⎜
⎝
⎛

π
−−+

ππ
= −−− nnn

n
rrrr  ...,,3,2=n  

we call nr  contraction coefficient. It is easy to show .0lim =
∞→

n
n

r  

We now can state the extension in the general setting. Finely, Theorem 3.13 
solves the open problem. 

C.2. Proofs of main results 

C.2.a. Lemma 3.2. Let ( ) ∑
∞

=

α− πλλ=
1

sin
i

ii xxW  be the Weierstrass function 

and let .0 λ≤′′<′<≤ kkk  Then for large λ, we have 

(a) 

⎟
⎠
⎞

⎜
⎝
⎛

λ
+

λ
−⎟

⎠
⎞

⎜
⎝
⎛

λ

′
+

λ ++ 11
2222
nnnn
kjwkjw  

 ( ) ( ) ,2
2

2sin2
1

2cos
2

1
0 α−
α− λ

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞⎜

⎝
⎛

λ
π−′π

λ
′

−
λ

π−′
⎟
⎠
⎞

⎜
⎝
⎛

−λ

θ
+

λ
π′= nkk

k
kkk  (3.1) 
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(b) 

⎟
⎠
⎞

⎜
⎝
⎛

λ
+

λ
−⎟

⎠
⎞

⎜
⎝
⎛

λ

′
+

λ ++ 11
2222
nnnn
kjWkjW  

∑
∞

=
++

α−
⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛

λ
π+

λ
πλ−⎟

⎠
⎞

⎜
⎝
⎛

λ
π′+

λ
πλλ=

1
11

22sin22sin
i

nn
i

nn
ii kjkj  

.2sin2sin ⎟
⎠
⎞⎜

⎝
⎛

λ
π−

λ
π′λ+ α− kkn  (3.2) 

Proof. We may write 

⎟
⎠
⎞

⎜
⎝
⎛

λ
+

λ
−⎟

⎠
⎞

⎜
⎝
⎛

λ

′
+

λ ++ 11
2222
nnnn
kjWkjW  

∑
∞

=
++

α−
⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛

λ
π+

λ
πλ−⎟

⎠
⎞

⎜
⎝
⎛

λ
π′+

λ
πλλ=

1
11

22sin22sin
i

nn
i

nn
ii kjkj  

⎟
⎠
⎞⎜

⎝
⎛

λ
π−

λ
π′λ+ α− kkn 2sin2sin  

.,, kkkk BA ′′ +=  (3.3) 

First, we estimate ,, kkA ′  

∑
∞

=
++

α−
′ ⎥⎦

⎤
⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛

λ
π+

λ
πλ−⎟

⎠
⎞

⎜
⎝
⎛

λ
π′+

λ
πλλ=

1
11,

22sin22sin
i

nn
i

nn
ii

kk
kjkjA  

( )∑
−

=
+−+

α− ⎟
⎠
⎞

⎜
⎝
⎛

λ
+′+

λ
πλ

λ

π−′λ=
1

1
11

2cossin2
n

i
nn

i
in

i kkjkk  

( )∑
−

=
−+−+

α−

λ

π

λ

π−′λ=
1

1
11

2cossin2
n

i
inin

i jkk  

( ) ( )∑
−

=
+−+−+

α− ⎟
⎠
⎞

⎜
⎝
⎛

λ
+′+

λ
πλ

λ

π+′

λ

π−′λ−
1

1
111 .

2
2sinsinsin4

n

i
nn

i
inin

i kkjkkkk  (3.4) 
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Note that 

( )∑
−

=
−−+

α−

λ

π

λ

π−′λ
1

1
1

2cossin
n

i
inin

i jkk  

 ( ) ( ) ( ) ,
16

2cos
1

1
13

3
1

1 ∑
−

=
−

α−

−
α−

+ −λ
λ

⎟
⎠
⎞⎜

⎝
⎛

λ
π−′θ+

λ
πλ

λ

π−′=
n

i

n

in
i

n
kkjkk  (3.5) 

( ) ( )∑
−

=
+−+−+

α− ⎟
⎠
⎞

⎜
⎝
⎛

λ
−′+

λ
πλ

λ

π+′

λ

π−′λ
1

1
111 2

2sin
2

sinsin
n

i
nn

i
inin

i kkjkkkk  

( ) ( )
( )

.
122

2
α−

α− λ
−λλ

π+′−′
θ= nkkkk  (3.6) 

Set 

 ( )
( )

∑
−

=
α−

α−

−
α−

−λ

λθ
=

λ

πλ
1

1

1
01 .

1
2cos

n

i
i

n

in
i j  (3.7) 

Substituting to (3.5), we have 

( )∑
−

=
−−+

α−

λ

π

λ

π−′λ
1

1
1

2cossin
n

i
inin

n jkk  

 ( )
( )

( ) .
131 31

0 α−
α−α− λ⎟

⎠
⎞

⎜
⎝
⎛

λ
π−′

−λ
θ+

λ
π−′

−λ

θ
= nkkkk  (3.8) 

Combining (3.4), (3.6) and (3.8), we get 

( )
( )

( ) ( )
( )

.
1

2
112

2
1 22

3

31
0

,
α−

α−α−α−′ λ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−λλ

π−′θ′
+⎟

⎠
⎞⎜

⎝
⎛

λ
−′

−λ
θ+

λ
π−′

−λ

θ
= n

kk
kkkkkkA  (3.9) 

By elementary calculus, we have 

α−
′ λ⎟

⎠
⎞⎜

⎝
⎛

λ
π−

λ
π′= n

kk
kkB 2sin2sin,  

( ) ( )
( )

( ) .2
16

2
2

2sin22cos
3

3

2
α−

α− λ
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞⎜

⎝
⎛

λ
π−′

−λ
τ+⎟

⎠
⎞⎜

⎝
⎛

λ
π−′λ

π′

−
λ

π−′
λ
π′= nkkkk

k
kkk  

 (3.10) 
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By (3.9) and (3.10), we have 

⎟
⎠
⎞

⎜
⎝
⎛

λ
+

λ
−⎟

⎠
⎞

⎜
⎝
⎛

λ

′
+

λ ++ 11
2222
nnnn
kjWkjW  

( )
( )

( )

⎢
⎢
⎢

⎣

⎡

λ
π−′

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−λλ

π+′θ
+

−λ

θ
+

λ
π′=

α−α−
kkkkk 2

11
2cos 221

0  

( )
( )

( ) .2
16

2
2

2sin 3

3

2
α−

α− λ
⎥
⎥
⎥

⎦

⎤

⎟
⎠
⎞⎜

⎝
⎛

λ
π−′

−λ
τ+⎟

⎠
⎞⎜

⎝
⎛

λ
π−′λ

π′

− nkkkk
k

 

Without loss of generality, we may suppose ( ) ,2
12 <

λ
−′ kk  thus we have 

⎟
⎠
⎞

⎜
⎝
⎛

λ
+

λ
−⎟

⎠
⎞

⎜
⎝
⎛

λ

′
+

λ ++ 11
2222
nnnn
kjWkjW  

( )

⎢
⎢
⎢

⎣

⎡

λ
π−′

⎟
⎠
⎞

⎜
⎝
⎛

−λ
θ+

−λ

θ
+

λ
π′= α−α−

kkk 2
11

2cos 21
0  

( )
( ) .2

1122

2sin 2

3
α−

α− λ
⎥
⎥
⎥

⎦

⎤

⎟
⎠
⎞⎜

⎝
⎛

λ
π−′

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−λ
τπ+λ

π′

− nkk
k

 

Clearly, 
11 1

0
2 −λ

θ

−λ
θπ

α−α−  and 
( ) 2

2sin

112 3
λ
π′

−λ
τπ
α−

k
 as ,∞→λ  by power 

law, we have 

⎟
⎠
⎞

⎜
⎝
⎛

λ
+

λ
−⎟

⎠
⎞

⎜
⎝
⎛

λ

′
+

λ ++ 11
2222
nnnn
kjWkjW  

( ) ( ) .2
2

2sin2
1

2cos
2

1
0 α−
α− λ

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞⎜

⎝
⎛

λ
π−′λ

π′

−
λ

π−′
⎟
⎠
⎞

⎜
⎝
⎛

−λ

θ
+

λ
π′= nkk

k
kkk  
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This proves (3.1). Note that for ,kk ′′<′  we have 

λ
π′−

λ
π′′ kk 2sin2sin  

( ) ( ) ( ) .2
6

2
2

2sin22cos
32
⎟
⎠
⎞⎜

⎝
⎛

λ
π′−′′θ+⎟

⎠
⎞⎜

⎝
⎛

λ
′−′′λ

π′

+
λ

′−′′
λ
π′= kkkk

k
kkk  

Then formula (3.2) comes immediately. 

3.c.b. Theorem 3.3. Let ( ) ∑
∞

=

α− πλλ=
1

sin
i

ii xxW  be the Weierstrass function. 

Then we have 

1. There is a positive integer uk  such that 

( )
⎟
⎠
⎞

⎜
⎝
⎛

λ
+

λ
<⎟

⎠
⎞

⎜
⎝
⎛

λ

−
+

λ
<<⎟

⎠
⎞

⎜
⎝
⎛

λ
+

λ
<⎟

⎠
⎞

⎜
⎝
⎛
λ +++ 111

22122222
n

u
nn

u
nnnn

kjwkjwjwjw  

( ) .12122
1 ⎟

⎠
⎞

⎜
⎝
⎛

λ
+>>⎟

⎠
⎞

⎜
⎝
⎛

λ

+
+

λ
> + nn

u
n

jwkjw  (3.11) 

2. There is a positive integer dk  such that 

( )
⎟
⎠
⎞

⎜
⎝
⎛

λ

−
+

λ
+>>⎟

⎠
⎞

⎜
⎝
⎛

λ
+

λ
+>⎟

⎠
⎞

⎜
⎝
⎛

λ
+

++ 11
121221212

n
d

nnnn
kjwjwjw  

( )
⎟
⎠
⎞

⎜
⎝
⎛

λ

+
+

λ
+<⎟

⎠
⎞

⎜
⎝
⎛

λ
+

λ
+> ++ 11

1212212
n
d

nn
d

n
kjwkjw  

( ) .12
⎟
⎠
⎞

⎜
⎝
⎛

λ
+<< n

jw  (3.12) 

3. Let 

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛

λ
+

λ
−⎟

⎠
⎞

⎜
⎝
⎛

λ
+

λ
= ++λ≤≤ 1

2
1

1

2,0

2222max
21 nnnnkku

kjWkjWh  

and 

.212212max 1
2

1
1

2,0 21 ⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛

λ
+

λ
+−⎟

⎠
⎞

⎜
⎝
⎛

λ
+

λ
+= ++λ≤≤ nnnnkkd

kjWkjWh  



On the Hausdorff Dimension of the Graph of the Weierstrass Function 101 

Then 

( ) ( ) ⎭
⎬
⎫

⎩
⎨
⎧

≥θλ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−λ
θ+

−λ

πθ
+= α−

α−α− 0,
1212

1 021

2

1
0 n

uh  and 

( ) ( )
,0,

1212
1 021

2

1
0

⎭
⎬
⎫

⎩
⎨
⎧

<θλ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−λ
θ−

−λ

πθ
−= α−

α−α−
n

uh  (3.13) 

( ) ( ) ⎭
⎬
⎫

⎩
⎨
⎧

≥θλ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−λ
θ−

−λ

πθ
+= α−

α−α− 0,
1212

1 021

2

1
0 n

dh  and 

( ) ( )
.0,

1212
1 021

2

1
0

⎭
⎬
⎫

⎩
⎨
⎧

<θλ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−λ
θ+

−λ

πθ
−= α−

α−α−
n

dh  (3.14) 

Proof. We consider pace ( ) ( ) .22122
11 ⎟
⎠
⎞

⎜
⎝
⎛

λ
+

λ
−⎟

⎠
⎞

⎜
⎝
⎛

λ
++

λ
= ++ nnnn

kjWkjWkd  By 

Lemma 3.2 (3.1), we have ( ) .22sin
1

2cos 1
0 α−
α− λ

λ
π

⎟
⎠
⎞

⎜
⎝
⎛

λ
π

λ
π+

−λ

θ
+

λ
π= nkkkd  

Since 
1

2sin
1

0

−λ

θ
λ
λ
ππ

α−

k
 as ,∞→λ  by power law, we have ( ) =kd  

.2
1

2cos 1
0 α−
α− λ

λ
π

⎟
⎠
⎞

⎜
⎝
⎛

−λ

θ
+

λ
π nk  Obviously, function ( )

1
cos 1

0

−λ

θ
+π= α−xxf  has 

two points 
( )12

1
1

0
1

−λπ

θ
+= α−x  and 

( )12
3

1
0

2
−λπ

θ
−= α−x  such that ( ) 0>′ xf  

for [ ) ( ]1,,0 21 xxx ∪∈  and ( ) 0<′ xf  for ( )., 21 xx  Let π≤
λ
π

1
2 xku  and 

( ) .12
1π>

λ
π+ xku  Then .2

12
2

1 λ
πτ+

−λ

θ
+π=

λ
π

α−
ouk  By power law, we have 

equality .
12

2
1

0

−λ

θ
+π=

λ
π

α−
uk  This shows (3.11), formula (3.12) may be shown in 

a similar way. The proof of statement 3 is simple. Clearly, if ,00 ≥θ  then we have 

( )
α−

α− λ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−λλ

πθ
+

λ
nuu kk

1
22sin 1

0  
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( ) ( )
.

1212
1 21

2

1
0 α−

α−α− λ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−λ

θ+
−λ

πθ
+= n  

If ,00 <θ  then 

⎟
⎠
⎞

⎜
⎝
⎛

λ

+−⎟
⎠
⎞

⎜
⎝
⎛

λ
+

λ
= + nn

u
nu

jWkjWh 1222
1  

( ) ( )
.

1212
1 21

2

1
0 α−

α−α− λ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−λ

θ−
−λ

πθ
−= n  

Precisely, we have 

( ) ( )
.

1212
1 21

2

1
0 α−

α−α− λ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−λ

θ+
−λ

θπ
+= n

uh  

It follows (3.13) and (3.14) may be treated in a similar way. 

We can now state the following results that will be used in the sharp estimate. 

Theorem 3.4. Let ( ) ∑
∞

=

α− πλλ=
1

sin
i

ii xxW  be the Weierstrass function and let 

nwΓ  be lever n sine-like curve and .220 ukk <′≤θ  Then we have for large λ, 

(a) 

 ( ) ,
1

2
2

2
1

01

−λ

θ
⎟
⎠
⎞⎜

⎝
⎛ τπ=

λ
π′−′

α−
kk  (3.15) 

where 12 ≤τ≤
π

 and 

 ( )
⎟
⎠
⎞

⎜
⎝
⎛

λ

′−λ
+

λ
≥⎟

⎠
⎞

⎜
⎝
⎛

λ

′
+

λ
>⎟

⎠
⎞

⎜
⎝
⎛

λ

+−λ
+

λ +++ 1
1

11
1 2222122

nnnnnn
kjwkjwkjw  (3.16) 

with ⎥⎦
⎤

⎢⎣
⎡

−λ

θ
∈

λ
′

α− 2
1,

1
2

1
0k  

b. If 

( ) ,1222222
1
1

11
1 ⎟

⎠
⎞

⎜
⎝
⎛

λ

+′−λ
+

λ
>⎟

⎠
⎞

⎜
⎝
⎛

λ

′
+

λ
≥⎟

⎠
⎞

⎜
⎝
⎛

λ

′−λ
+

λ +++ nnnnnn
kjWkjWkjW  
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here .2
1,

1
2

1
0

⎥⎦
⎤

⎢⎣
⎡

−λ

θ
∈

λ
′

α−
k  (3.17) 

Then we have for large λ, 

 ( ) .
1

22
1

01
−λ

τθ
=

λ
π′−′

α−
kk  (3.18) 

Proof. a. Inequality (3.16) does not have solution for small 2k′. First we will 
find a lower bound for 2k′ such that inequality (3.16) has a solution. Suppose 

( ) .2212122
1

0
1

0 ⎟
⎠
⎞

⎜
⎝
⎛

λ
+

λ
<

⎭
⎬
⎫

⎩
⎨
⎧

λ
+≤⎟

⎠
⎞

⎜
⎝
⎛

λ

−
+

λ ++ nnnnn
kjwjwkjW  

Then we have 

⎟
⎠
⎞

⎜
⎝
⎛
λ

−⎟
⎠
⎞

⎜
⎝
⎛

λ
+

λ + nnn
jWkjW 222

1
0  

( ) .12222212
1

0
1

0
⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛

λ

−
+

λ
−⎟

⎠
⎞

⎜
⎝
⎛

λ
+

λ
τ−⎟

⎠
⎞

⎜
⎝
⎛
λ

−⎟
⎠
⎞

⎜
⎝
⎛

λ

+= ++ nnnnnn
kjWkjwjWjW  

Thus, by Lemma 3.2, we have 

( ) ( ) ( )
.

1
2

11
2

1
22sin 21

0
2

0
1

000
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−λλ
πθ−

λ
πτ−

−λ

πθ
=

−λλ

πθ
+

−λλ

πθ
+

λ
π

α−α−α−α−
kkk  

Solving above equation, we get 

.
11

12
1

0
1

00

−λ

πθ
=⎟

⎠
⎞

⎜
⎝
⎛

−λ

θ
+

λ
π

α−α−
k  

That is for large enough λ, 

.2 00
ak λθ=  

Since function ⎟
⎠
⎞

⎜
⎝
⎛

λ

′−λ
+

λ +1
122

nn
kjW  monotone increases for ,22 1 ukk −λ≤′  inequality 

(3.16) has unique solution .2 1k ′−λ  Consequently, we have 

⎟
⎠
⎞

⎜
⎝
⎛

λ

′
+

λ
−⎟

⎠
⎞

⎜
⎝
⎛

λ
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+
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1
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kjWkjW  



Shusheng Fu 104 

⎟
⎠
⎞

⎜
⎝
⎛

λ

′
+

λ
−⎟

⎠
⎞

⎜
⎝
⎛

λ
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+

λ
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1
1
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1

1
1
1

⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
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⎜
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λ
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+
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−⎟

⎠
⎞

⎜
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⎛
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+

λ
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Recall (3.16), we get 

( ) ( ) 2
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1
0 2

2

2sin22
1
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⎠
⎞

⎜
⎝
⎛

λ
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⎟
⎠
⎞

⎜
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⎛
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+
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⎟
⎠
⎞

⎜
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⎛
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By power law, for large λ, we may solve the following simplified equation: 
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2
2
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2
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1
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1
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2
11

1
0

−λ

⎟
⎠
⎞

⎜
⎝
⎛
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⎜
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⎟
⎠
⎞

⎜
⎝
⎛
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+

λ
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k
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Note that 
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1

2
1

2
2
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1

2
2
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1
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0
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1
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+
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⎟
⎠
⎞⎜

⎝
⎛
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⎟
⎠
⎞
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⎛
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θ
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We have 
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1

2
2
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1
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1
1

0
2

1 =
−λ

⎟
⎠
⎞⎜
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⎠
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⎜
⎝
⎛
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Without loss of generality, we may suppose ( ) .02 1 >
λ

π′−′ kk  Thus, we obtain 
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λ

π′−′ 12 kk  
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1
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0
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⎥
⎥
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⎢
⎢
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⎡

⎟
⎠
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⎜
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⎠
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λ
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k
k
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From (3.19), we have 

( )
λ

π′−′ 12 kk  

( )
⎥
⎥
⎥
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By power law, we have 
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By calculus, the term 

1
2
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2
2

1
0
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θ
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⎠
⎞⎜

⎝
⎛

λ
π′−π

λ
π′−π

α−
k

k
 monotone decreases from 2

π  to 1 

on interval .2,0 0
⎥⎦
⎤

⎢⎣
⎡

λ
πk  This proves (3.15) and (3.16). 

Now we consider the case .2,2
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⎥⎦
⎤

⎢⎣
⎡

λ
∈

λ
′ ukk  By (3.17), without loss of 

generality, we may suppose .22
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⎠
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⎜
⎝
⎛

λ
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By Lemma 3.2 and ,
12

2
1

0

−λ

θ
+π=

λ α−
uk  we have 
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⎢
⎢
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⎠
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⎜
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⎛
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0
1
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⎥
⎥
⎥
⎥

⎦

⎤

⎟
⎠
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2
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0

α−α−
λ⎟

⎠
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⎜
⎝
⎛
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⎜
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⎠
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⎜
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λ
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⎢
⎢
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π
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⎠
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θ
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⎠
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⎝
⎛
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1
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⎥
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⎠
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⎛
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0
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( ) .22
2
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0
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λ⎟
⎠
⎞

⎜
⎝
⎛

λ
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⎠
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⎜
⎝
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θ
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Thus, 

.22 1
λ
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λ
π′

=π kk  
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Note that ⎥⎦
⎤

⎢⎣
⎡

λ
ππ∈

λ
π′ ukk 2,2

2  and ,
12

2
1

0

−λ

θ
+π=

λ
π

α−
uk  we may write 2

2 π=
λ
π′k  

.
11

0

−λ

τθ
+ α−

 Therefore, we have .
12

22
1

01

−λ

τθ
−π=

λ
π′−π=

λ
π′

α−
kk  Equality (3.17) 

follows. 

We are now ready to characterize the distribution of intersection number. Recall 
the intersection set A may divide into four subsets ,1A  ,2A  3A  and .4A  In typical 

case, four subsets are approximately equal; however, the situation may change as 
horizontal line hy =  closes to the top or the bottom of the sine-like curve .nwΓ  

Theorem 3.5. Let ( ) ∑
∞

=

α− πλλ=
1

sin
i

ii xxW  be the Weierstrass function and let 

nwΓ  be lever n sine-like curve. Then the intersection set A is in typical case for 

horizontal line hy =  with integer phase 2k′, where .
~

222 0 kkk ≤′≤  Moreover, we 

have 

 21
1

2
~

2
α−

+ λ
π

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
λ
kIn  (3.20) 

and ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
λ+
kIn

~
2

1  is the maximum intersection number of lever n sine-like curve .nwΓ  

Proof. We want to show in some case, the horizontal line hy =  will intersect 

with lever ( )1+n  sine-like curves .1+Γ nw  Consider the following inequalities: 

( ) .
~

2222
~

22
12,...,,,,11 21 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

λ
+

λ
≥−⎟

⎠
⎞

⎜
⎝
⎛

λ
+

λ
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⎠

⎞
⎜⎜
⎝

⎛

λ
+
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u
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kjWhkjWkjW un  (3.21) 

Thus, by Lemma 3.2 and Theorem 3.4 (3.14), we have 
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λ
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⎟
⎠
⎞

⎜
⎝
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+

λ
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1
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2
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⎠

⎞
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⎝

⎛
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⎜
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⎛
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Note that ,
1

2cos 1
0

−λ

θ
−=

λ
π

α−
uk  we have 

( )
( ) ( )411

2

1212

~
2

2
1

−λ
θ′λ+

−λ
πθλ+λ=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
λ

π−
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α−
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( )
.

1
2

1
22

21 −λ
θ′′π+

−λλ
τ′π+

λ
πτ+ α−α−  

By power law, we have 

( ) .
~

2
2
1

2
α−λ=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
λ

π− kku  

Thus, we have 

( ) 22
~

2 α−
λ=

λ
π− kku  

so that 

 .2
12

~
2

2
1

0
αα−

λ

−
−λ

θ
+π=

λ
πk  (3.22) 

Let .
~

22 kk ≤′  Then distance between the horizontal line ⎟
⎠
⎞

⎜
⎝
⎛

λ

′
+

λ
= +1

22
nn
kjWy  

and the top of the lever n sine-like curve nwΓ  is large or equals to the height of lever 

( )1+n  sine-like curve. Therefore, we can find a lever ( )1+n  sine-like curve with 

integer phase 2k′ such that 

( ) .2222 1
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⎜
⎝
⎛

λ
+
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⎠
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⎜
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λ
n
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Now we show in some case, the horizontal line hy =  will intersect lever 

( )1+n  sine-like curve. It is easy to estimate that if ,12
αλ

≥
λ
π′k  then the distance 

between line ⎟
⎠
⎞

⎜
⎝
⎛

λ

′
+

λ
= +1

22
nn
kjWy  and the bottom of lever n sine-like curve nwΓ  is 
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large or equals to the height of lever ( )1+n  sine-like curve, so that we can find a 

lever ( )1+n  sine-like curve with integer phase 2k such that 

( ) .2222 1
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By Theorem 3.4, if ,12
αλ

≥
λ
π′k  then the line ⎟

⎠
⎞

⎜
⎝
⎛

λ

′
+

λ
= +1

22
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kjWy  intersects with 

right hand side graph of ( ).xW  This fact combines with above two equalities, we 

conclude that there is a number ,2 0
λ
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⎭
⎬
⎫

⎩
⎨
⎧

λ−λ

θ
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1
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0  such that 

the intersection set A is in typical case for the horizontal line hy =  with integer 

phase 2k′, .
~
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⎞
⎜⎜
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⎠
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λ
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2
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⎠
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This yields that ⎟⎟
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By Lemma 3.2 and Theorem 3.3, we have 
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By power law, we have 
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Thus, same arguments as above, we see that 
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Solving above equality, this yields 
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From Theorem 3.4 and (3.21), we obtain that 
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Thus, the right hand side intersection number also equals to ,2 21 α−
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(3.20). 
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Theorem 3.6. Let ( ) ∑
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Here hy =  is a horizontal line with integer phase 2k′, .
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Proof. We compute the intersection number in first quarter, by solving the 
following inequalities: 
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Same arguments as in proof of Theorem 3.5 yield 
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A slight modification of above proof shows that 
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 (3.28) 
Thus, in view of (3.25), (3.26), we have 

( ) ( )
λ

π−′+
λ

π′−′′ kkkk 22  



On the Hausdorff Dimension of the Graph of the Weierstrass Function 115 

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

−λ

θ
+

λ
π′−λ

λ
π′−⎟

⎠
⎞

⎜
⎝
⎛

−λ

θ
+

λ
π′

λ
π′

=
α−

α−
α− 1

2cos2sin2
1

2cos2sin

1
1

0
2

1
0 kkk

k  

⎥
⎥
⎦

⎤
λ

λ
π′−⎟

⎠
⎞

⎜
⎝
⎛

−λ

θ
+

λ
π′+⎟

⎠
⎞

⎜
⎝
⎛

−λ

θ
+

λ
π′+ α−

α−α−
kkk 2sin2

1
2cos

1
2cos

2

1
0

1
0  

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞

⎜
⎝
⎛

−λ

θ
+

λ
π′

λ
λ
π′

−−

⎟
⎠
⎞

⎜
⎝
⎛

−λ

θ
+

λ
π′

λ
λ
π′

+

λ
π′

−λ

θ
+

λ
π′

=

α−

α−

α−

α−
α−

2

1
0

2

1
0

1
0

1
2cos

2sin2
1

1
2cos

2sin2
1

2sin

1
2cos

k

k

k

k

k

k

 

.

1
2cos642

2sin23112

1
2cos

2
5

1
0

3
2

3

1
0

+

⎟
⎠
⎞

⎜
⎝
⎛

−λ

θ
+

λ
π′⋅⋅

λ⎟
⎠
⎞⎜

⎝
⎛

λ
π′⋅⋅⋅⋅

+

−λ

θ
+

λ
π′
λ=

α−

α−

α−

α−

k

k

k
 (3.29) 

Note (3.27) and (3.28), copying above arguments, we obtain 
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Before we are going to prove (3.23), we need some formulas. Using the power series 

of functions ,1 x±  we have 
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Putting 
2

1
01 2

12

~
2

αα−

λ

−
−λ

θ
−π=

λ
πk  in (3.30) repeating above arguments, we have 
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2 20112
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Ultimately, we obtain the value of intersection number 
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This result coincides with Theorem 3.5 (3.21), but two proofs come from total 
different points of view. 

Lemma 3.7. Let ( ) ∑
∞

=

α− πλλ=
1

sin
i

ii xxW  be the Weierstrass function and let 

nwΓ  be any lever n sine-like curve. Then we have 

 ( ) .2112arccos2~ 2
2
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⎟
⎟

⎠
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⎜
⎜

⎝

⎛
⎟
⎠
⎞⎜

⎝
⎛
π

−−+
ππ
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Proof. Let S be a n-square with integer phase 2k′ in the lever n sine-like curve 

.nwΓ  Note that the pace α−
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⎠
⎞

⎜
⎝
⎛
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θ
+

λ
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λ
π nk

1
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1
0  is much larger than the 

length n−λ  for .
~

22 kk ≤′  Therefore, a lever ( )1+n  sine-like curve intersects with 

the bottom (top) going through top(bottom) except at most four. By Theorem 3.6, 

the number of lever ( )1+n  sine-like curves which intersects with S is ⎟
⎠
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⎝
⎛
λ
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⎠
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⎜
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′ kkk  Thus for large enough λ, we have 
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( ).

1
2cos

2 2

1
0
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λ
⎟
⎠
⎞

⎜
⎝
⎛

−λ

θ
+

λ
π′π

= n
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Let l be an integer such that ( ) ,
1

12cos2
1

2cos 1
0

1
0

−λ

θ
+

λ
π+

>
π

≥
−λ

θ
+

λ
π

α−α−
ll  

.20 λ<< l  Without loss of generality, we may suppose .2
1

2cos 1
0

π
=

−λ

θ
+

λ
π

α−
l  

So we obtain that 

( ) ( )SS nn wnwn ∩∩ Γμ≥Γμ α−α−
+

22
1

~~  if ,22 lk ≥′  

( ) ( )SS nn wnwn ∩∩ Γμ<Γμ α−α−
+

22
1

~~  if .22 lk <′  

Therefore, 

 ( ) ( ) ( ) ( ),~ 21#2#2
1,

α−+−α−−α−
+ λ+λ=Γμ nn

wnn BAn  (3.32) 

where 

{ SSA :# =  is n-square with integer phase k ′2  in nwΓ  and },22 lk ≥′  
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Thus, 
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⎥
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By power law, we have 

 ( ).211 1
2

# α−λ
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎠
⎞⎜

⎝
⎛
π

−−= nA  (3.33) 

We are now ready to compute .# B  Let { ,:1 BSSB ∈=  and }∅≠ΓΓ 0ywn ∩  

and .12 BBB −=  Clearly, we have .21 BBB ∪=  Intuitively, We see that 

{ SSB :2 =  is a ( )1+n -square and ( )lw kjS jn 2, ≤Γ⊂  or ( )};21, lw kjS n ≥Γ⊂
−λ

 

that is, 2B  includes entire lever ( )1+n  sine-like curve. We can make the 1B  

includes entire lever ( )1+n  sine-like curves too. Since we can exchange the part of 

intercepts which are above line 0yy =  and the part of intercepts which are below 

the .0yy =  Because the sequences of intercepts of up(down) lever ( )1+n  sine-like 

curve divided by the line 0yy =  are approximately arithmetic sequences and the 

number ll kk ,0−′′  almost equal to ,lkl −  the number ll kk ,1,2 −  almost equal to 

.,0,1 ll kk −  Indeed, according to Theorem 3.6, for large λ, we have 
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Thus, noting Theorem 3.4, we show that 
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Again, by power law, we already show 

 ( ) ( ).2arccos2 11# α−+λλ
ππ

= nB  (3.34) 

Finally, by replacing (3.33), (3.34) into (3.32), we obtain 
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=  

We obtain (3.32). We may call 2l turning integer phase. 

We have solved the problem: find a minimum cover of a lever n sine-like curve 

nwΓ  by n-squares and ( )1+n -squares. It seems natural to consider the problem, find 
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a minimum cover of the graph nwS Γ∩  by ( )1+n -squares and ( )2+n -squares. 

Since the intercept sequences of lever ( )1+n  sine-like curves divided by line hy =  

are approximately arithmetic sequences; therefore Lemma 3.8 provides a similar 
result with Lemma 3.7 for n-square nS  in the lever n sine-like curve .nwΓ  

Lemma 3.8. Let ( ) ∑
∞

=

α− πλλ=
1

sin
i

ii xxW  be the Weierstrass function. Let     

nS  be a n-square with integer phase 2k′ in a lever n sine-like curve ,nwΓ  

.
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Proof. By Theorem 3.5, the intersection set A is in typical case. We consider 
first quarter ,1A  other cases can be treated in the same way. Without loss of 

generality, we may suppose that ,22
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⎜
⎝
⎛

λ

′
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λ
= +nn

kjWh  where h is the distance 

between the bottom of the square S and the X-axis. Since it now allows to cover the 
graph by ( )2+n -squares, we have to know the integer phase of the horizontal line 

hy =  in the lever ( )1+n  sine-like curve ( ) .2, lknw −′
Γ  Let lS2  be the integer phase 
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⎜
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Thus, by Lemma 3.2 and Theorem 3.6, we have 
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Consequently, 
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By power law, we reduce to 
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Next, we consider the measure of the graph of function ( )xW  in the ( ) ,2, nw Slkn ∩
−′

Γ  

....,,2,1,0 kkl −′=  Let ( )21
~~ μμ  be the measure of the graph ( )xW  in ( )lknw −′

Γ 2,  

using ( )1+n -squares ( )( ).squares-2+n  Clearly, we have 
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In view of Theorem 3.6 and (3.36), we have 
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This implies 
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 (3.38) 
By comparing (3.37) and (3.38), we conclude that 

if 
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otherwise, 
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Without loss of generality, we may suppose 
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In other words, we may write 
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Thus, we have 

 ( ) ( ) ( ) ( ) ( ),~ 21
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1,1
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++ λ+λ=Γμ nn

Wnn AAS∩  (3.40) 

where 

{ 221,1 : ++= nn SSA  is a ( )2+n -square ( )lknWnS
−′

Γ⊂+ 2,2  and 

,2 ∅≠Γ+ WnS ∩  }1...,,2,1l l=  
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and 

{ 112,1 : ++= nn SSA  is a ( )1+n -square ( )lknWnS
−′

Γ⊂+ 2,1  

and ,1 ∅≠Γ+ wnS ∩  }....,,11 kkll −′+=  

We want to use the definite integral method to compute .1,1
# A  From Theorem 3.6, 

we have 
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We rewrite the right hand side of above formula as a special sum, which can be 
treated as Riemann sum 
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For large enough λ, we can consider the following sum as Riemann sum. Then 
we have 
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It is routine to check 
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Combining (3.43) and (3.44), we have 
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Noting Theorem 3.6 and (3.39), we have 
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For large λ, we can express (3.43), (3.44) at least for most of ,
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Same results hold for ,2A  ,3A  .4A  By replacing (3.43), (3.44) to (3.40), we obtain 
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The desire follows. 

Remark 3.9. Each n-square S has a minimum ( )2,1 ++ nn  cover, all the 

minimum cover ( )2,1 ++ nn  cover of n-squares S are similar. Rephrase the 

formulas of Lemma 3.7, Lemma 3.8, 
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Above formulas on form and content are alike. Since each n-square is included in 
some rectangle, we may view first formula as a global property and second formula 
as a local property. This means that the global property and local property are 
comparable. 

From Lemma 3.8, we know that 
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for the n-square S with integer phase 2k′. This gives us a way to find integer phase 
for the minimum cover of graph nWΓ  by n-squares, ( )1+n -squares and ( )2+n -

squares. 

Lemma 3.10. Let ( ) ∑
∞

=

α− πλλ=
1

sin
i

ii xxW  be the Weierstrass function. Let 

nWΓ  be any lever n sine-like curve. Then we have 
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Proof. Let integer phase 12l  be defined in Lemma 3.7, by Lemma 3.8, we have 
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It will be shown in the following proposition .10 1 << r  This implies that the 

measure of 12lW S∩Γ  covered by ( )1+n -squares and ( )2+n -squares will be less 

than the measure of 12lW S∩Γ  covered by n-square. 

Thus, we can move up integer phase to include more n-squares covered by 

( )1+n -squares and ( )2+n -squares. Clearly, there is 22l  such that ( )
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{ SSA :1 =  are n-squares with integer phase ,2k ′  },22 2lk ≥′  

{ ( ) ( )SASAA :2 =  is a minimum ( )2,1 ++ nn  cover of a n-square S 

with integer phase }kkk
~

22,2 ≤′′  

and ,21 AAA ∪=  clearly, A is a ( )2,1 ++ nn  cover of .nWΓ  Note that in the 

proof of Lemma 3.7, the graph sSW ′Γ  which is below integer phase 22l  is covered 
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Clearly, the cover A is the minimum cover of the graph .nWΓ  As above, we call the 

integer phase ,2 1l  22l  turning integer phase. The proof completes. 

Remark. Each lever n sine-like curve nwΓ  has a minimum ( )2, +nn  cover, all 

( )2, +nn  minimum covers A’s are quasi-similar. This result may be extended, but 

first we show a proposition. 
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is called contraction coefficient. 

Proposition 3.11. Let nr  be a contraction coefficient. Then the sequence 
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where .0 x<ξ<  Therefore, we have 
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This shows the sequence { }∞=1nnr  is strictly decreasing. This implies that 
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This contradicts to (3.47). The desire follows. 

Lemma 3.12. Let ( ) ∑
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be a n-square with integer phase 2k′ in lever n sine-like curve ,nWΓ  .
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Proof. We prove statement (3.46) by induction. By Lemma 3.10, the statement 
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suppose to the graph ,1+Γ nW S∩  we have 

( ) ( ) ( ).~~
1

2
11

2
1,1 +

α−
++

α−
+++ Γμ=Γμ nWnpnWpnn SrS ∩∩  

Using ( )1
2

1
~

+
α−

+ Γμ nWnp Sr ∩  instead of ( )1
2

1
~

+
α−

+ Γμ nWn S∩  in Lemma 3.8, the 

intersection number ⎟
⎠
⎞

⎜
⎝
⎛
λ+

l
n

SI 2
1  becomes 

( )
( )

.

2
2

1
2

2cos2
arcsincos

22

2

2

11
0

1

1

1

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

λ
πτ+

−λλ

πθ
+

λ
λ
π′π

π

λ
=⎟

⎠
⎞

⎜
⎝
⎛
λ

α−α−α−α−

α−

+

l
k

l

rSI pl
n  
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By copying the minimum proceed in the proof of Lemma 3.8, we get 

( ) ( )α−−α−
+ λ

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
π

−−+
ππ

λ
π′π

=Γμ 2
2

2
,

2
11

2
arccos

2
2cos

2~ nppp
nWmnn

rrr
kS∩  

( ).~2
11 nWnp Sr ∩Γμ= α−
++  

This proves the lemma. 

Theorem 3.13. Let ( ) ∑
∞

=

α− πλλ=
1

sin
i

ii xxW  be the Weierstrass function. Then 

we have 

 ( ) α−=Γ 2WHD  (3.49) 

with large λ. 

Proof. By Theorem 3.6, the intersection number is defined in 

( )
.1

12
1,2

2
1

00

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

πλ

−
−λπ

θ
+

λ αα−
k  

First, we will show there is a minimum cover for each lever n sine-like curve .nwΓ  

Moreover, we have estimation ( )nwmnn Γμ α−
+

2
,

~  n
mr

−λ=  for .0nm ≤  Second, we will 

extend above estimation for any integer m. Finally, we prove the graph wΓ  is a 

( )α−2 -set. 

In view of Lemma 3.12, the sequence { }il2  of turning integer phases is a 

monotone increasing sequence. Therefore, there is an integer phase Nl2  such that 

.2
~

22 1 NN lkl ≤<−  In other words, after the procedure runs N step, the minimum 

cover of the graph of nWΓ  decays to ( )Nnn +++ 1,1  cover of the graph of .nWΓ  

We claim that 

 ( ) .~2
,

n
mWmnn rn

−α−
+ λ=Γμ  (3.50) 
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We prove the statement (3.50) by induction. By Lemma 3.7, the statement 
(3.50) holds for ,1=m  assume statement (3.50) holds for .pm ≤  

That is, 

( ) ( ).2
~ 122

1,1 1
+−

α−α−
+++ λλπ≥Γμ

+
n

Wpnn n  

Clearly, never n sine-like curve can convert as disjoint union of λ never 1+n  sine-
like curves. Therefore, we have 

( ) ( ).2
~ 122

1,
+−

α−α−
++ λλπ•λ≥Γμ n

Wpnn n  

This proves (3.50). 

In the following, in order to make the contraction process more clear, we need 

the following arguments. Let ,22cos
π

=
λ
π ii rl  the point ⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

λ
+

λλ
+

λ ++ 11
22,22
n

i
nn

i
n

ljWlj  

is called a dividing point in .nWΓ  We claim that there is a large integer 0M  such 

that n-squares nS  in a lever n sine-like curve nWΓ  distinguish dividing points 

,22,22
11 ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

λ
+

λλ
+

λ ++ n
i

nn
i

n
ljWlj  ( );,...,,2,1 λα= Ni  for .0Mn ≥  This means that 

each n-square nS  in the graph nWΓ  contains at most one dividing point. Why is this 

possible! Note that contraction coefficients ir  are self-defined, it is independent of 

any parameter and the largest length of minimum bundle 0N  depends on parameters 

λ and α but it is independent of n. Keep this in mind, we compute the vertical 
distance of dividing points 

⎟
⎠
⎞

⎜
⎝
⎛

λ
+

λ
−⎟

⎠
⎞

⎜
⎝
⎛

λ
+

λ
= ++

+
11

1 2222
n

i
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i
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ljWljWD  

.cossin2 11 α−++ λ
λ
+

λ
−

= niiii llll  

Now we consider the ratio ,n
iD

−λ
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( ) ∞→λ
⎭
⎬
⎫

⎩
⎨
⎧ π

λ
+

π
λ
−

=
⎭
⎬
⎫

⎩
⎨
⎧
λ

α−

=

++

=
−

1

1

11

1

00
cossin2 n

N

i

iiii
N

i
n
i llllMinDMin  as .∞→λ  

Consequently, there is an integer 0M  such that for ,0Mn ≥  we have 

.0
n

iNi DMin −
≤ λ>  

The desire follows. 

Finally, let ϒ  be any ( )mnn +,  cover of the graph of function WΓ  defined on 

[ ].2,0  Let P be the vertical projection mapping defined by ( ) ., xyxP =  Let =Ψ  

{ ( ) ,: ISPI =  for }.ϒ∈S  Then Ψ is a cover of [ ].2,0  An interval =I  

( )
( )

( )
( ) ⎥⎦

⎤
⎢⎣
⎡

λ
+

λ ikIk
IjIj 1,  of Ψ is said to be a structure interval if ,0≠IJ ∩  ,Ψ∈I  then 

.IJ ⊆  Let 0Ψ  be the collection of all the structure intervals I. Then 0Ψ  is a net of 

[ ]2,0  and ∑
Ψ∈

=
0

.2
I

I  Clearly, we have 

 ( ) .,0 SISPSI ⊆ϒ∈Ψ∈=ϒ ∪∪  (3.51) 

(3.51) means that ϒ  decomposes into a union of finite subsets, and each subset 

covers a graph .sWΓ  Take a structure interval ( )
( )

( )
( ) ,1, ⎥⎦

⎤
⎢⎣
⎡

λ
+

λ
= IkIk

IjIjI  ( )
( ) λ

=
λ

1rIj
Ik  

( )
( ) ,Ik
Ikr

λ
++  the set ( ){ }ISPSS ⊆ϒ∈ ,:  covers ( ) ,...,,, 21 IkrrrW R∩Γ  since ϒ  

covers the entire graph of function ( ).xW  By (3.50), we have 

( )

( )
∑ ∑ ∑ ∑

ϒ∈ Ψ∈ ϒ∈⊆ Ψ∈

−
α−α−α− λλπ≥=

S I SISP I

IkSS
0 0,

222
2  

∑
Ψ∈

α−α−
πλ=λπ=

0

.2
22

I

I  

This proves that WΓ  is a ( )α−2 -set. 
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