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Abstract 

In this paper, we develop a comparative analysis using the method of 
slope-deflection of statically indeterminate beams. The first model is 
the neglect shear deformations (considering only the flexure 
deformation), this is the traditional method analysis for continuous 
beams and the second model is to consider shear deformations (taking 
into account flexure deformations and shear). For both the models, an 
analysis is made of three different sections of concrete. The first is a 
rectangular section, the second is type “I” with the larger web 
thickness and the third is an also “I” with the thinner web thickness. 
Each section is analyzed for three different lights, 10.00m, 5.00m and 
3.00m. This paper shows the differences between the two models of 
the problems considered. According to the results obtained, it is shown 
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that there is a greater difference in section “I” with the thinner web 
thickness and in the light of 3.00m. Therefore, the usual practice of not 
considering the shear deformations is not a recommended solution 
especially in short beams and sections “I” with the thinner web 
thickness. Then it proposes the use of taking into account shear 
deformations and also more attached to reality. 

Introduction 

Structural analysis is the study of structures such as discrete systems. The 
theory of the structures is essentially based on the fundamentals of mechanics 
with which the different structural elements are formulated. The laws or rules 
that define the balance and continuity of a structure can be expressed in 
different ways, including partial differential equations of continuous medium 
three-dimensional, ordinary differential equations that define a member or 
the various theories of beams, or simply algebraic equations for a discretized 
structure. The more one delves into the physics of the problem; they are 
developing theories that are most appropriate for solving certain types of 
structures that prove more useful for practical calculations. However, in each 
new theory, hypotheses are made about how the system behaves on member. 
Therefore, we must always be aware of these hypotheses when evaluating 
results, the result of applying or developing theories [1]. 

The analysis of structural systems has been studied by diverse 
researchers in the past. In 1826, L. M. Navier (1785-1836) published a 
treatise on the elastic behavior of structures, which is considered as the first 
textbook on the modern theory of strength of materials. The development of 
structural mechanics continued at a tremendous step for the rest of the 
nineteenth century to the mid-twentieth century when it developed most of 
the classical methods for the analysis of the structures described in this text. 
The important collaborators of this period included Benoit Paul Emile 
Clapeyron (1799-1864) who formulated the equation of three moments for 
the analysis of continuous beams; James Clerk Maxwell (1831-1879) who 
introduced the method of consistent deformations and the law of the 
deflections and Mohr circles of stress and unitary deformation; Alberto 
Castigliano (1847-1884) who formulated the theorem of minimum work; C. 
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E. Grene (1842-1903) who developed the method of moment-area; Heinrich 
Müller-Breslau (1851-1925) who presented a principle for the construction 
of influence lines; G. A. Maney (1888-1947) who developed the method of 
slope-deflection, which is considered as the precursor of the material for the 
stiffness method, and Hardy Cross (1885-1959) who developed the method 
of moment distribution in 1924. The distribution method of moments gives 
engineers a simple iterative procedure for the analysis of statically 
indeterminate structures. 

The advent of computers in the 1970s revolutionized structural analysis. 
Because the computer could solve large systems of simultaneous equations, 
the analysis that lasted and sometimes weeks in the era before the computer, 
could now be done in seconds. The development of the present methods, 
aimed at the computer can be attributed, among others, Argyris, Clough, 
Kelsey, Livesley, Martin, Turner, Wilson and Zienkiewiez [2-4]. 

Luévanos Rojas developed the theory of slope-deflection method, 
including flexure deformations and shear. 

This paper develops a comparison of the slope-deflection method of 
neglecting and considering the shear deformations for reinforced concrete 
continuous beams by analyzing three different sections, with three different 
lights to see their differences. 

Algorithm of the Slope-deflection Method 

This method can be used for the analysis of all types of statically 
indeterminate beams. It is considered that all joints are rigid, i.e., the angles 
between members on the boards do not change in value when applied load. 
Then the joints in interior supports of statically indeterminate beams can be 
considered rigid joints of 180°. When the beams are deformed, the joints 
rigid are considered rotations, i.e., the tangent remains straight before and 
after application of the load. 

Another consideration is equilibrium in the joints; the sum of the 
moments must be zero. 
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In the slope-deflection equations, the moments acting at the ends of the 
members are expressed in terms of rotations and the loads on members. 

Counter-clockwise the end moments are considered positive, and 
clockwise the end moments are considered negative. Now, with loads applied 
to the member, the end moments are considered as fixed-end moments       
[6-12]. 

The slope-deflection equations, neglecting shear deformations (Model 1) 
are: 

[ ],24 BAFABAB L
EIMM θ−θ−+=  (1) 

[ ],24 ABFBABA L
EIMM θ−θ−+=  (2) 

where 

=ABM  end moments in the joint A, 

=FABM  fixed-end moments at the ends of the beams in the joint A, 

E = elasticity modulus, 

I = moment of inertia of the section, 

=θA  rotation in the joint A, 

L = length of beam. 

The slope-deflection equations, considering the shear deformations 
(Model 2) are [5] and [13]: 
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where 

=φ  form factor, 

=G  shear modulus, 

=cA  shear area of the cross-section. 

G is obtained as follows: 

 ( ) ,12 ν+
= EG  (6) 

where =ν  Poisson’s ratio. 

The procedure of analysis for statically indeterminate beams by the 
slope-deflection method is as follows (see Figure 1): 

 

Figure 1. Typical continuous beam. 

1. Determine the fixed-end moments at the ends of each span, using the 
formulas as shown in Figure 2. 

2. Express all end moments in terms of the fixed-end moments and the joints 
rotations by using the slope-deflection equations. 

3. Establish simultaneous equations with the rotations at the supports as 
unknowns by applying the conditions that the sum of the end moments 
acting on the ends of the two members meeting at the support should be 
zero. 

4. Solve for the rotations at all supports. 

5. Substitute the rotations back into the slope-deflection equations, and 
compute the end moments. 

6. Determine all reactions, draw shear and moment diagrams, and sketch the 
elastic curve. 
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Figure 2. Fixed-end moments: (a) Uniformly distributed load, (b) 
Concentrated load and (c) Triangular distributed load. 
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Application 

Developing the following structural analysis of concrete beam for three 
different sections each for three different lights, as shown in Figure 3, 
neglecting and considering the shear deformations, based on the following 
data: 

General information: 

mkg3500=w  

2cmkg210=′cF  

2cmkg4200=yF  

( ) 2115000 cFE ′=  

17.0=ν  

where 

=′cF  concrete strength in 28 days 

=yF  yield strength of steel. 

 

Figure 3. Continuous beam on four equal lengths with uniformly distributed 
load. 

Type 1. Rectangular cross-section 

Specific data: 

m.00.3;m00.5;m00.10=L  

Beam properties 6025 ×  
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2cm1500=A  

2cm127585.0 == AAc  

.cm450000 4=I  

Unknowns: DCBA θθθθ ,,,  and .Eθ  

The shear modulus is obtained by equation (6) as follows: 

( ) .cmkg44.9289317.012
65.217370 2=

+
=G  

Once the shear modulus is obtained, the form factor is found by equation (5). 

For :m00.10=L  

( ) ( )
( ) ( ) ( )

.540099105882.0
1000127544.92893

45000065.21737012
2 ==φ=φ=φ=φ DECDBCAB  

For :m00.5=L  

( ) ( )
( ) ( ) ( )

.10396423530.0
500127544.92893

45000065.21737012
2 ==φ=φ=φ=φ DECDBCAB  

For :m00.3=L  

( ) ( )
( ) ( ) ( )

.1101176473.0
300127544.92893

45000065.21737012
2 ==φ=φ=φ=φ DECDBCAB  

The fixed-end moments for beams with uniformly distributed load, are 
found by the equation that appears in Figure 2(a): 

For :m00.10=L  

12

2wLMMMM FDEFCDFBCFAB ====  

( ) ( ) m,-kg67.2916612
00.103500 2

+=+=  
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12

2wLMMMM FEDFDCFCBFBA −====  

( ) ( ) m.-kg67.2916612
00.103500 2

−=−=  

For :m00.5=L  

12

2wLMMMM FDEFCDFBCFAB ====  

( ) ( ) m,-kg67.729112
00.53500 2

+=+=  

12

2wLMMMM FEDFDCFCBFBA −====  

( ) ( ) m.-kg67.729112
00.53500 2

−=−=  

For :m00.3=L  

12

2wLMMMM FDEFCDFBCFAB ====  

( ) ( ) m,-kg262512
00.33500 2

+=+=  

12

2wLMMMM FEDFDCFCBFBA −====  

( ) ( ) m.-kg262512
00.33500 2

−=−=  

Calculating “EI” for all beams as: 

( ) ( ) 2cm-kg0978167925045000065.217370 ==EI  

.m-kg25.9781679 2=  
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Substituting these values for each beam: Model 1 in equations (1) and (2), 
while for Model 2 in equations (3) and (4). 

Once the moments are obtained in each beam as a function of rotations, 
the condition equilibrium is applied for moments at the joints, which are: 

Joint A: 

 .0=ABM  (I) 

Joint B: 

 .0=+ BCBA MM  (II) 

Joint C: 

 .0=+ CDCB MM  (III) 

Joint D: 

 .0=+ DEDC MM  (IV) 

Joint E: 

 .0=EDM  (V) 

These equations are presented in terms of rotations, and in this case, there are 
5 equations and 5 rotations (unknowns), these are developed to find their 
values. Subsequently, they are substituted into the slope-deflection equations 
to localize the final moments at the ends of the beams. Now, by static 
equilibrium, the shear forces are obtained for each beam. Then the diagrams 
of shear forces and moments are obtained. 

Below there are Tables 1, 2 and 3 with the results. 
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Table 1. The rotations in each one of the joints in radians 

 
=θi  the angle that forms the tangent due to the deformation in the joint i 

NSD = neglecting the shear deformations 
CSD = considering the shear deformations 

Table 2. The shear forces in kg 

 
=ijV  shear forces of the beam ij in end i 

=jiV  shear forces of the beam ji in end j 

Table 3. The moments in kg-m 

 
=ijM  negative moment of the beam ij in end i 

=ABLCM  positive moment of the beam ij 

=BAM  Negative moment of the beam ji in end j 
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Type 2. Cross-section “I” with the larger web thickness (see Figure 4) 

 

Figure 4. Cross-section type “I”. 

Specific data: 

m00.3;m00.5;m00.10=L  

cm30=b  

cm60=h  

cm15=ft  

cm20=wt  

2cm1500=A  

( ) ( )[ ] 2cm60015260202 =−=−= fwc thtA  

( ) ( )
12

2
12

33 fw thtbbhI
−−

−=  

( ) ( ) ( ) ( )[ ] .cm51750012
152602030

12
6030 4

33
=

−−
−=  

Unknowns: DCBA θθθθ ,,,  and .Eθ  
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The shear modulus is equal to the type 1: 

.cmKg44.92893 2=G  

Once the shear modulus is obtained, the form factor is found by equation 
(5): 

For :m00.10=L  

( ) ( )
( ) ( ) ( )

.40242190000.0
100060044.92893

51750065.21737012
2 ==φ=φ=φ=φ DECDBCAB  

For :m00.5=L  

( ) ( )
( ) ( ) ( )

.80968760001.0
50060044.92893

51750065.21737012
2 ==φ=φ=φ=φ DECDBCAB  

For :m00.3=L  

( ) ( )
( ) ( ) ( )

.2691000005.0
30060044.92893

51750065.21737012
2 ==φ=φ=φ=φ DECDBCAB  

The fixed-end moments for beams with uniformly distributed load are 
equal to the type 1. 

Calculating “EI” for all beams as: 

( ) ( ) 2cm-kg00112489311451750065.217370 ==EI  

.m-kg14.11248931 2=  

Substituting these values for each beam: Model 1 in equations (1) and (2), 
while for Model 2 in equations (3) and (4). 

Once the moments are obtained in each beam as a function of rotations, 
the condition equilibrium is applied for moments at the joints, the condition 
equilibrium of moments at the joints is equal to the type 1. 

These equations are presented in terms of rotations, and in this case, 
there are 5 equations and 5 rotations (unknowns), these are developed to find 
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their values. Subsequently, they are substituted into the slope-deflection 
equations to localize the final moments at the ends of the beams. Now, by 
static equilibrium, the shear forces are obtained for each beam. Then the 
diagrams of shear forces and moments are obtained. 

Below are Tables 4, 5 and 6 with the results. 

Table 4. The rotations in each one of the joints in radians 

 

Table 5. The shear forces in kg 

 

Table 6. The moments in kg-m 

 

Type 3. Cross-section “I” with the thinner web thickness (see Figure 4) 

Specific data: 

m00.3;m00.5;m00.10=L  
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cm30=b  

cm60=h  

cm15=ft  

cm15=wt  

2cm1350=A  

( ) ( )[ ] 2cm45015260152 =−=−= fwc thtA  

( ) ( ) ( ) ( ) ( ) ( )[ ]
12

152601530
12

6030
12

2
12

3333 −−
−=

−−
−= fw thtbbhI  

.cm506250 4=  

Unknowns: DCBA θθθθ ,,,  and .Eθ  

The shear modulus is equal to the type 1: 

.cmkg44.92893 2=G  

Once the shear modulus is obtained, the form factor is found by equation 
(5): 

For :m00.10=L  

( ) ( )
( ) ( ) ( )

.60315900000.0
100045044.92893

50625065.21737012
2 ==φ=φ=φ=φ DECDBCAB  

For :m00.5=L  

( ) ( )
( ) ( ) ( )

.1263600002.0
50045044.92893

50625065.21737012
2 ==φ=φ=φ=φ DECDBCAB  

For :m00.3=L  

( ) ( )
( ) ( ) ( )

.3510000006.0
30045044.92893

50625065.21737012
2 ==φ=φ=φ=φ DECDBCAB  
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The fixed-end moments for beams with uniformly distributed load are 
equal to the type 1. 

Calculate “EI” for all beams as: 

( ) ( ) 2cm-kg00110043891650625065.217370 ==EI  

.m-kg16.11004389 2=  

Substituting these values for each beam: Model 1 in equations (1) and (2), 
while for Model 2 in equations (3) and (4). 

Once the moments are obtained in each beam as a function of rotations, 
the condition equilibrium is applied for moments at the joints, the condition 
equilibrium of moments at the joints is equal to the type 1. 

These equations are presented in terms of rotations, and in this case, 
there are 5 equations and 5 rotations (unknowns), these are developed to find 
their values. Subsequently, they are substituted into the slope-deflection 
equations to localize the final moments at the ends of the beams. Now, by 
static equilibrium, the shear forces are obtained for each beam. Then the 
diagrams of shear forces and moments are obtained. 

Below there are Tables 7, 8 and 9 with the results: 

Table 7. The rotations in each one of the joints in radians 

 

 

 

 

 



Study of Two Models for a Continuous Beam Reinforced Concrete … 147 

Table 8. The shear forces in kg 

 

Table 9. The moments in kg-m 

 

Results and Discussions 

Tables 10, 11 and 12 show the differences between the two models of the 
3 types of sections, for cases 3, as are the cases where the differences are 
major. 

According to Table 10, which presents the rotations in each of the 
supports, it is observed that the difference is greater in Model 2, with respect 
to Model 1, in the type 3 and case 3. For example, differences exist in the 
support “A” of 17.16% are greater in Model 2 and in the support B are 
greater in Model 1 of 13.33%. 
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Table 10. The rotations in each one of the joints in the 3 types of cross-
sections and case 3 in radians 

 

With regard to Table 11, the shear forces are shown at the ends of the 
bars, the difference being greater in Model 2, with respect to Model 1, in the 
type 3 and case 3. For example, major differences are in shear forces, BCV  

of 2.35% in Model 1 and CBV  is greater in Model 2 of 2.65%. 

Table 11. The shear forces in each one of the joints in the 3 types of cross-
sections and case 3 in kg 

 

In Table 12, illustrating the moments in bars, both negative and positive, 
the difference is greater in Model 2, with respect to Model 1 in the type 3 and 
case 3. For example, greater differences are in the moment, CBM  in 7.60% is 

greater in Model 2 and BAM  is greater in Model 1 of 6.77%. 
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Table 12. The moments in each one of the joints in the 3 types of cross-
sections and case 3 in kg-m 

 

Conclusions 

According to Table 10, which presents the rotations in each of the 
supports, it is observed that the difference in the slope-deflection method, 
neglecting and considering the shear deformations, is quite considerable 
when the light is reduced between supports of beams in cross-section “I” 
with the thinner web thickness, and all are not within the safety in the 
traditional method (Model 1). This implies that the deformations permitted 
by the rules of construction should be taken into account, because in some 
situations, it could be the case, that does not comply. 

Table 11 shows the shear forces at the ends of the beams between the 
two models, the differences being larger, when the length between supports 
is reduced and considering cross-section “I” with the thinner web thickness. 

With regard to Table 12, illustrating the moments, both negative and 
positive, there are big differences when we reduce the length between the 
two models with cross-section “I” with the thinner web thickness, and not all 
are on the side of safety. 

As for Tables 11 and 12, where shear forces and moments are presented, 
acting on the beams, these elements are those governing the design of a 
structure, studied by Models 1 and 2. The results showed the differences 
between the two models, when members tend to be shorter and considering 
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cross-section “I” with the thinner web thickness, the differences are 
increased, as in the conservative side as the unsafe side. 

This means that this is poorly designed; on one hand, some members are 
bigger in their transverse dimension, according to what are needed, and in 
another situation, does not meet the minimal conditions for that a beam is 
well designed. 

Therefore, the usual practice of using the slope-deflection method 
(neglecting shear deformations) is not a recommended solution when having 
short length between supports and considering cross-section “I” with web 
thickness. 

So taking into account the numerical approximation, the slope-deflection 
method (considering shear deformations) happens to be the more appropriate 
method for structural analysis of continuous beams and also more attached to 
the real conditions. 
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