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Abstract 

In this work, we propose a new estimate algorithm for the parameters 
of a GARCH(1, 1) model. This algorithm turns out to be very reliable 
in estimating the true parameter values of a given model. It combines 
quasi-maximum likelihood method, Kalman filter algorithm and the 
SPSA method (Simultaneous Perturbation Stochastic Approximation). 
Simulation results demonstrate that the algorithm is viable and 
promising. 

1. Introduction 

State-space models and Kalman filtering have become important and 
powerful tools for the statistician and the econometrician. Together they 
provide the researcher with a modeling framework and a computationally 
efficient way to compute parameter estimates over a wide range of situations. 
Problems involving stationary and nonstationary stochastic processes, 
systematically or stochastically varying parameters, and unobserved or latent 
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variables (as signal extraction problems) all have been fruitfully approached 
with these tools. In addition, smoothing problems and time series with 
missing observations have been studied with methodologies based on this 
combination. The state-space model and the Kalman filter recursions were 
first introduced in linear time series models, especially for estimation and 
prediction of autoregressive moving average (ARMA) processes (Harvey and 
Phillips [19]; Pearlman [40]; Gardner et al. [15]; Jones [22]). In each of these 
instances the state-space formulation and the Kalman filter have yielded a 
modeling and estimation methodology that is much less cumbersome than 
more traditional regression-based approaches. 

In this paper, we focus our interest for estimating parameters of 
GARCH(1, 1) models, which are mainly used in finance, speech signals, 
daily and monthly temperature measurements, wind speeds and atmospheric 
CO2 concentrations, etc. 

Autoregressive conditionally heteroscedastic (ARCH) models were 
introduced by Engle [10] and their GARCH (generalized ARCH) extension 
is due to Bollerslev [5]. In these models, the key concept is the conditional 
variance, that is, the variance conditional on the past. In the classical 
GARCH models, the conditional variance is expressed as a linear function of 
the squared past values of the series. 

For more details, see Francq and Zakoïan [13], GARCH Models - 
Structure, statistical inference and financial applications. 

Definition 1.1 (Strong GARCH(p, q) process). Let ( )tη  be sequence of 
independent and identically distributed (i.i.d.) random variables ( ( ) ,0=ηtE  

( ) ).12 =ηtE  Then the process ( )tε  is called a strong GARCH(p, q) (with 
respect to the sequence ( ))tη  if 
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where iα  and jβ  are nonnegative constants and ω is a (strictly) positive 
constant. 
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Weiss [46, 47] established the asymptotic properties of the ordinary least 
squares (OLS) estimator, in the ARMA-GARCH framework, under eighth-
order moments assumptions. For the same models, asymptotic results of the 
quasi-maximum likelihood estimator (QMLE) have been established by Ling 
and Li [28, 29], Ling and McAleer [31, 33] and Francq and Zakoïan [12]. In 
the GARCH(1, 1) case, the asymptotic properties have been established by 
Lumsdaine [34] (see also Lee and Hansen, [27]) for the local QMLE under 
the strict stationarity assumption. Berkes et al. [2] was the first paper to give 
a rigorous proof of the asymptotic properties of the QMLE in the 
GARCH(p, q) case under very weak assumptions; see also Berkes and 
Horváth [3, 4], together with Boussama [8, 9]. The assumptions given in 
Berkes et al. [2] were weakened slightly in Francq and Zakoïan [12]. 
Recently Francq and Zakoïan [14] considered the test of the strict stationarity 
of GARCH(1, 1) models and studied the asymptotic properties of the quasi-
maximum likelihood estimator without strict stationarity constraints. 

The purpose of this work, is to investigate a new approach for estimating 
the parameters of GARCH(1, 1) model. 

It deals with the quasi-maximum likelihood method, and the Kalman 
filter algorithm. Indeed, the main idea is to express the concerned model in 
state-space form, and then deduce the log-likelihood function, which can be 
computed with Kalman filter algorithm (see Kalman [23, 24]). To obtain the 
maximum of the log-likelihood function, we used the SPSA method, which 
provides a global optimum regardless of the initial values. We have used two 
examples of GARCH(1, 1) models to examine the performance of the 
proposed method. 

The remainder of the paper proceeds as follows. Section 2 lays out the 
GARCH(1, 1) models and its main properties. Section 3 deals with the 
estimation algorithm of the parameters of the model of interest. In this 
section, we state the definition of the state-space form of the GARCH(1, 1) 
models, and the expression of the log-likelihood function obtained by 
applying the Kalman filter to the state space, and then maximize the 
likelihood using SPSA method. In Section 4, we use two numerical examples 
to illustrate the estimation technique discussed in Section 3. The conclusion 
is provided in Section 5. 
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2. Stationarity Study and Moment Properties 

This section is concerned with the existence of stationary solutions (in 
the strict and second-order senses) and some moment properties. 

When ,1== qp  model (1) has the form 
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with ,0≥ω  ,0>α  .0>β  Let ( ) β+α= 2zza  and { }.0,logmaxlog xx =+  

The strict stationarity of the GARCH(1, 1) model was first studied by 

Nelson [39] under the assumption .log 2 ∞<η+
tE  His results were extended 

by Klüppelberg et al. [26] to the case of .log 2 +∞=η+
tE  For GARCH(p, q) 

models, the strict stationarity conditions were established by Bougerol and 
Picard [7]. The second-order stationarity condition for the GARCH(p, q) 
model was obtained by Bollerslev [5]. 

The fourth-order moment structure and the autocovariances of the 
squares of GARCH processes were analyzed by Milhøj [38], Karanasos [25] 
and He and Teräsvirta [20]. The necessary and sufficient condition for the 
existence of even-order moments was established by Ling and McAleer [30], 
the sufficient part having been obtained by Chen and An [11]. Ling and 
McAleer [32] derived an existence condition for the moment of order s, with 

.0>s  

Theorem 2.1 (Strict stationarity of the strong GARCH(1, 1) process, 
Bougerol and Picard [7]). If 

 { } ,0log 2 <β+αη=γ≤∞− tE  (3) 

then the infinite sum 
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converges almost surely (a.s.) and the process ( )tε  defined by 
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is the unique strictly stationary solution of model (2). This solution is 
nonanticipative and ergodic. If 0≥γ  and ,0>ω  then there exists no 

strictly stationary solution. 

Remark 2.1. A nonanticipative solution is a process ( )tε  such that tε  is 

a measurable function of the variables .0, ≥η − sst  For such processes, tσ  

is independent of the σ-field generated by { }0, ≥η + hht  and tε  is 

independent of the σ-field generated by { }.0, >η + hht  

Condition (3) implies .1<β  Now, if ,1<β+α  then (3) is satisfied. 

Theorem 2.2 (Second-order stationarity of the GARCH(1, 1) process, 
Bollerslev [5]). Let .0>ω  If ,1≥β+α  then a nonanticipative and second-

order stationary solution to the GARCH(1, 1) model does not exist. If 
,1<β+α  then the process ( )tε  defined by (5) is second-order stationary. 

More precisely, ( )tε  is a weak white noise. Moreover, there exists no other 

second-order stationary and nonanticipative solution. 

Theorem 2.3. We suppose that ,1<β+α  then 
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( ) ,
1

2
β−α−

ω
=εtE  (7) 

( ) ( )
( ) ( )

( ),;
211

1 4
4422

4

2
4

tt EE η=μμ
αβ−β−αμ−β−α−

β+α+ω
=ε  (8) 

( ) ( ) .
4

4
4

μ
ε

=σ t
t

EE  (9) 



Jelloul Allal and Mohammed Benmoumen 120 

If 22
ttt σ−ε=ν  is a martingale difference, then 

( ) ,0=νtE  (10) 

( ) ( ) ( )
( ) ( )αβ−β−αμ−β−α−
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and the process ( )tν  is weak white noise. 

3. Estimating Algorithm of Parameters of the GARCH(1, 1) Model 

Let ( )tε  be a GARCH(1, 1) model defined by (2). 

We suppose that .1<β+α  

Remark 3.1. Denote by ( )′βαω=θ ,,  the GARCH(1, 1) parameter and 

define the QMLE by minimizing: 
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With initial values for 2
0ε  and ( )θσ2

0
~  (in practice the choice of the initial 

values may be important in QMLE method). 

Our aim is to generate ( ( ))θσ2~
t  without any assumptions about initial 

values ( ( ))θσε 2
0

2
0

~and  witch are not known in practice. 

Let ( ),,, 321 θθθ=θ  where ,,, 321 β=θα=θω=θ  denote the vector 

of unknown parameters, ( )nεεε ...,,, 21  the observed data, and =tF  

( )tεε ...,,1  be the set of observations available at time ....,,1 nt =  In this 

study, we propose estimating θ by using quasi-maximum likelihood, given 
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by minimizing: 
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where the 2
1ˆ −|σ tt  are defined recursively, for ,1≥t  by the Kalman Filter, 

without any assumptions about initial values which is essential in other 
methods of estimating the likelihood function. 

The key step of our algorithm is to construct a convenient state-space 
representation of our model. 

This representation is given by: 
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Here the state vector is 22, tttt XZ ε=σ=  and .22
ttt σ−ε=ν   

β=A  and .α=G  

The Kalman filter recursively generates an optimal forecast =|+ ttZ 1ˆ  

[ ] 2
11 ˆ tttt FZE |++ σ=|  of the state vector ,1+tZ  with associated mean square 

error [ ] ....,,1,ˆ 111 ntZZVP ttttt =−= |++|+  

Given starting values 01ˆ |Z  and 01|P  of Kalman filter which are derived 

from Theorem 2.3, the next step in Kalman filter algorithm is to calculate 

12ˆ
|Z  and .12 |P  

The calculations for nt ...,,3,2=  all have the same basic form, so we 

will describe them in general terms for step t. 

 (i) Updating the state vector .ˆ ttZ |  Compute ttP |  the MSE of this 

updated projection. 

(ii) Calculate the forecast ,ˆ 1 ttZ |+  and the MSE ttP |+1  of this forecast. 
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Using the Kalman filter we have constructed the log-likelihood function 
(see Hamilton [18]). It is laborious to calculate the partial derivatives of 
( ),;...,,1 θεε nL  so there is a definite need for minimization procedures 

which do not require them. Therefore, we used the SPSA method, which is a 
stochastic optimization algorithm that does not depend on direct gradient 
information or measurements, rather this method is based on an 
approximation to the gradient formed from measurements of the loss function 
(see Spall [42, 45]). It ensures convergence in a finite number of steps. Also, 
SPSA has recently attracted considerable international attention in areas such 
as statistical parameter estimation, feedback control, simulation-based 
optimization, signal and image processing, and experimental design. 

Before describing our algorithm MLKF (quasi-maximum likelihood and 
Kalman filter estimation), it is worthwhile to provide a sub algorithm which 
tests if parameters fulfill the conditions of stationarity, we will denote it by 
Test. 

The second sub algorithm, which we must provide, concerns the 
computation of ( )θεε ;...,,1 nL  by Kalman filter, we will denote it by KF. 

These two sub algorithms will be implemented in our global estimating 
algorithm. 

Sub algorithm Test ( )θ  

Step 1: If ( )132 <θ+θ  Then go to next. 

Step 2: Else return to the previous step and take the previous point as starting 
point 

End Sub 

Sub algorithm KF ( )θ  

Step 1: Given the starting condition 01ˆ |Z  and 01|P  

Step 2: For 1=t  to n Do 

compute ttttttttt PZPZK |+|+|| 11 ,ˆ,,ˆ,  

End For 
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Step 3: 0=som  

For 1=t  to n Do 

1
1

2
ˆlog1

ˆ
1

−|
−|

+
ε

+= tt
tt

t ZnZnsomsom  

End For 

( ) .;...,,1 somL n =θεε  

End Sub. 

Now, we propose the global algorithm for parameter estimation, where 
we integrate all the sub algorithms described above. 

MLKF Algorithm 

Step 1: Initialization and coefficient selection. 

Select counter index ;0=k  

Let 0θ  be an initial point(check the test of stationarity) and let a, C, 

A, λ and γ non-negative coefficients and p a number of parameters. 

Step 2: Compute: 

( )λ++
=

1kA
aak  and 

( )
;

1 γ+
=

k
Cck  

Step 3: Generation of the simultaneous perturbation vector. 

Generate a p-dimensional random perturbation vector .kΔ  

A simple (and theoretically valid) choice for each component of kΔ  is to 

use a Bernoulli ±1 distribution with probability of ;2
1  

Step 4: Loss function evaluations. 

Call sub algorithm KF; 

Set ( ) ( );kkkkkk cKFcy Δ+θ←Δ+θ  

Set ( ) ( );kkkkkk cKFcy Δ−θ←Δ−θ  
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Step 5: Gradient approximation. 

Generate the simultaneous perturbation approximation to the 
unknown gradient ( ):kg θ  
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where kiΔ  is the ith component of kΔ  vector. 

Step 6: Updating θ estimate. 

Call sub algorithm Test ( )( );kkkk ga θ−θ  

Set ( );1 kkkkk ga θ−θ←θ +  

Step 7: Iteration or termination. 

Return to Step 3; 

Set ;1+← kk  

Terminate the algorithm if there is little change in several successive 
iterates or the maximum allowable number of iterations has been 
reached. 

End Algorithm 

Remark 3.2. 

• A possible choice of λ and γ is: .101.0,602.0 =γ=λ  

• The parameter A is equal to 10% (or less) of the number of iterations. 

4. Simulation Study 

To assess the performance of our estimate algorithm, we have conducted 
series of simulation experiments. 
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In this study, we are interested to verify that our method improves                  
the estimations obtained by quasi-maximum likelihood method (QMLE) 
considered in the literature see for example Francq and Zakoïan [12]. 

Consider two examples of model GARCH(1, 1): 

1. 
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For the models above, we generated 1000 replications of sample sizes 
,50=n  100 and 150. 

The results of this experiment are displayed in Tables 1-2 where for each 
estimator we give the mean and MSE, where we used notation QMLE for the 
quasi-maximum likelihood estimators, MLKF for the estimation by our 
algorithm. 

Note that the method we use to obtain the quasi-maximum likelihood 
estimator (QMLE) is the SPSA method. 

Table 1. Mean and MSE of estimated parameters 

   MLKF QMLE 
  True Mean MSE Mean MSE 
50=n  ω 1 1.0033 0.0044 0.9425 0.0109 

 α 0.2 0.1970 0.0135 0.1837 0.0139 
 β 0.6 0.5953 0.0037 0.5995 0.0042 
100=n  ω 1 1.0022 0.0036 0.9554 0.0098 
 α 0.2 0.1975 0.0130 0.2110 0.0130 
 β 0.6 0.6003 0.0033 0.6035 0.0034 
150=n  ω 1 0.9934 0.0034 0.9934 0.0033 
 α 0.2 0.1998 0.0127 0.2049 0.0126 
 β 0.6 0.6002 0.0028 0.5995 0.0032 
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Table 2. Mean and MSE of estimated parameters 
   MLKF QMLE 
  True Mean MSE Mean MSE 
50=n  ω 1 0.9817 0.0056 0.9662 0.0117 

 α 0.7 0.6687 0.0191 0.6360 0.0178 
 β 0.2 0.1758 0.0100 0.1726 0.0260 
100=n  ω 1 1.0036 0.0036 0.9988 0.0076 
 α 0.7 0.6838 0.0058 0.6777 0.0054 
 β 0.2 0.1775 0.0088 0.1705 0.0247 
150=n  ω 1 1.0016 0.0029 1.0044 0.0036 
 α 0.7 0.7027 0.0036 0.6890 0.0111 
 β 0.2 0.1816 0.0086 0.1819 0.0110 

The numerical results presented in the table above, showed that our 
algorithm succeeds, as is seen from the fact that the sample mean square 
errors are generally smaller than for the quasi-maximum likelihood 
estimators (QMLE). Hence, we can conclude that the performance of our 
estimation procedure is promising. 

5. Conclusion 

In this paper, we consider the quasi-maximum likelihood estimation          
of the parameters of GARCH(1, 1) model. The log-likelihood function 
constructed using the Kalman filter and is numerically maximized applying 
the SPSA method. The results of our simulation study show that our 
estimation approach succeeds and it performs better than the competitor. 

The quasi-likelihood procedure (QMLE) in the nonstationary case has 
recently been studied by Francq and Zakoïan [14]. 

In the work that follows, we will see if our estimate algorithm based on 
Kalman filter also continue to hold irrespective of the stationarity of the 
underlying process. We first generate the Kalman filter in this case, then to 
assess the performance of our estimate algorithm we will use examples like 
those in the paper cited above. 
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