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Abstract 

In this paper, in topological ordered spaces, by the generalized Fan- 
Browder fixed theorem, we obtain some new section theorems in 
different spaces. 

1. Preliminaries 

A semilattice is a partially ordered set X, with the partial ordering 
denoted by ≤, for which any pair ( )xx ′,  of elements has a least upper bound, 

denoted by .xx ′∨  It is easy to see that any nonempty finite subset A of X 
has a least upper bound, denoted by sup A. In a partially ordered set ( ),, ≤X  

two arbitrary elements x and x′  do not have to be comparable but, in the case 
where ,xx ′≤  the set [ ] { }xyxXyxx ′≤≤∈=′ :,  is called an order 

interval. Now assume that ( )≤,X  is a semilattice and XA ⊆  is a nonempty 

finite subset, then the set ( ) [ ]∪ Aa AaA ∈=Δ sup,  is well defined and it has 
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the following properties: 

(a) ( ),AA Δ⊆  

(b) if ,AA ′⊆  then ( ) ( ).AA ′Δ⊆Δ  

We shall say that a subset XE ⊆  is Δ-convex if, for any nonempty 

finite subset ,EA ⊆  we have ( ) EA ⊆Δ  (see [1]). 

Example 1.1 [2]. Let 

( ){ } ( ){ } ,1,1,10:,10:1, 2RxyxyyxxxX ⊂−≥≥≤≤<≤= ∪  

the partial ordering of 2R  be defined by 

( ) ( ) ,,,, 2Rdcba ∈  

( ) ( ) 0,0,, ≥−≥−⇔≤ bdacdcba  and .acbd −≤−  

Then X is Δ-convex. 

For any ,XD ⊂  ( )DF  denotes the family of all finite subsets of D, 

( ) ( )( )∪ DA AD F∈ Δ=Δ .  

Lemma 1.1 (Order KKM lemma [1]). Let X be a topological semilattice 
with path-connected intervals and { }niRi ...,,2,1,0: =  be a family of 

closed (open) subsets of X. If there exist points nxxx ...,,, 10  of X such that, 

for any family { }kii ...,,0  of indices ({ }) ∪k
j iii jk Rxx 0 ,...,,0 =⊆Δ  then the 

set ∩n
i iR0=  is not empty. 

Definition 1.1. Let X be a nonempty set, M be a topological semilattice 

with path-connected intervals. A set-valued mapping { }∅→ \2: MXG  is 

said to be a generalized order KKM mapping (GOKKM) if for any finite 
subset { } ,...,,, 21 Xxxx n ⊂  there exist points nyy ...,,1  of M, such that for 
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each subset { }kii yy ...,,1  of { },...,,1 nyy  we have 

({ }) ( )....,,,
1

21 ∪
k

j
iiii jk

xGyyy
=

⊂Δ  

Remark 1.1. If { }∅→ \2: MXG  is GOKKM, then G has the finite 

intersection property. 

Example 1.2. The partial ordering of 2R  is defined by 

( ) ( ) ( ) ( ) cadcbaRdcba ≤⇔≤∈ ,,,,,, 2  and .db ≤  

Then ( ){ } ( ){ } 210:,110:1, RyyxxM ⊂≤≤≤≤= ∪  is Δ-convex. Take 

[ ],1,0=X  { },\2: ∅→ MXG  ( ) ( ){ } .0:1, MxzMzxG ⊂≤≤∈=  For 

any finite subset { } ,...,,, 21 Xxxx n ⊂  one takes { ( ) ( ) ...,,1,,1, 2211 xMxM  

( )} ,1, MxM nn ⊂  for each subset { } { ( ) ( ),1,,1,...,, 22111
xMxMMM

kii ⊂  

( )},1,..., nn xM  we have 

({ }) [( { } ) ( { } )]1,...,,max,1,...,,min...,, 111 kkk iiiiii xxxxMM =Δ  

( ) {( ) { }}∪
k

j
iii kj

xxzzxG
1

....,,max0:1,
1

=
≤≤=⊂  

Then G is GOKKM. 

Definition 1.2 [3]. Let X, Y be two topological spaces. Then YXT 2: →  
is said to have the local intersection property if for each Xx ∈  with 
( ) ,∅≠xT  there exists an open neighborhood ( )xN  of x such that 

( )( )∩ xNz zT∈ ∅≠ .  

Definition 1.3. Let Y be a nonempty set, X be a Δ-convex subset in a 
topological semilattice with path-connected intervals M and ( )., ∞+∞−∈γ  

Suppose ( )∞+∞−→× ,: YXf  is a function. Then f is said to be γ−Δ  
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generalized quasi-convex (resp., concave) in Y if for each non-empty finite 
subset { } ,...,,, 21 Yyyy n ⊂  there exists a sequence nxxx ...,,, 21  in X such 

that for each subsequence kiii xxx ...,,, 21  and any ({ }),...,,, 210 kiii xxxx Δ∈  

we have 

( ) ( ( )).,min.,resp,max 0101 jj ikjikj yxfyxf ≤≤≤≤ ≥γ≤γ  

Lemma 1.2 (Generalized Fan-Browder Fixed Theorem [2]). Let X be a 
nonempty compact Δ-convex subset of a topological semilattice with path-

connected intervals M and XXF 2: →  have the local intersection property 
with nonempty Δ-convex valued. Then F has a fixed point, i.e., there exists 

Xx ∈∗  such that ( ).∗∗ ∈ xFx  

Lemma 1.3. Let X be a nonempty set of a topological semilattice with 

path-connected intervals H, and { }n
iiA 1=  be a finite family of n closed (open) 

subsets of X such that ∪n
i i XA1 .= =  Then for any n points nxx ...,,1  of X, 

there exist k indices kii <<1  such that 

({ }) ....,,
1

1 ∅≠
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
Δ

=
∩∩
k

j
iii jk Axx  

Proof. Let { } ....,,10 XxxX n ⊂=  Define a set-valued mapping 0: XF  
X2→  by ( ) ,\ ii AXxF =  for each ....,,2,1 ni =  

Suppose that the conclusion is false. Then for any mii <<1  between 

1 and n, 

({ }) ,...,,
1

1
∅=⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
Δ

=
∩∩
m

j
iii jm

Axx  

i.e., 

({ }) ( ) ( )∪ ∪∩
m

j

m

j
ii

m

j
iii jjjm

xFAXAXxx
1 11

.\\...,,
1

= ==
==⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
⊂Δ  
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By Lemma 1.1, ( )∩n
i ixF1 ,= ∅≠  then ∪n

i i XA1 ,= ≠  which contradicts 

our hypothesis and this contradiction completes the proof. 

2. Main Results 

Theorem 2.1. Let X be a nonempty Δ-convex subset of a topological 
semilattice with path-connected intervals M, Y be a nonempty set, 

,YXA ×⊂  for any ,Yy ∈  the mapping ( ){ }AyxXxy ∈∈→ ,:  

nonempty closed and GOKKM, and there exists a Yy ∈0  such that 

( ){ }AyxXx ∈∈ 0,:  be compact. Then there exists Xx ∈0  such that 

{ } .0 AYx ⊂×  

Proof. Let ,2: XYG →  where ( ) ( ){ },,: AyxXxyG ∈∈=  for any 

.Yy ∈  

Suppose that there exist Yyy n ∈...,,1  such that ( )∩n
i iyG1 .= ∅=  Then 

( )∩n
i i XyGX 1 ,\ = =  take ( ).\ ii yGXA =  Since ( )iyG  closed, iA  open and 

∪n
i i XA1 ,= =  by Lemma 1.3, for any n points nxx ...,,1  of X, there exist k 

indices kii <<1  such that 

({ }) ....,,
1

1 ∅≠
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
Δ

=
∩∩
k

j
iii jk Axx  

Take ({ }) ,...,, 11 ⎟
⎠
⎞

⎜
⎝
⎛Δ∈ =

∗ ∩∩ k
j iii jk Axxx  then for each ,...,,2,1 kj =  

( ) ( ),,\ jjj iii yGxyGXAx ∉=∈ ∗∗  then ({ }) ( )∪k
j iii jk yGxx 1 ,...,,1 =⊄Δ  

G is not GOKKM, which contradicts the hypothesis, hence G has the finite 
intersection property, and ( )0yG  is compact, ( )∩ Yy yG∈ ∅≠ .  Take ∈0x  

( )∩ Yy yG∈ ,  then { } .0 AYx ⊂×  
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Corollary 2.1. Let X be a nonempty compact Δ-convex subset of a 
topological semilattice with path-connected intervals M, Y be a nonempty 
Hausdorff topological space and ( ) ( )∞+∞−→×∞+∞−∈γ ,:,,, YXgf  

be two functions. Suppose that: 

(1) g is γ−Δ  generalized quasi-concave in Y; 

(2) XYs →:  is continuous such that ( )( ) γ≤yysg ,  for any ;Yy ∈  

(3) For any ( ) ( )∞+∞−→⋅∈ ,:,, XyfYy  is lower semi-continuous; 

(4) For any ( ) ( ).,,,, yxgyxfYyXx ≤∈∈  

Then there exists Xx ∈0  such that 

( ) γ≤yxf ,0  for any .Yy ∈  

Proof. We define two mappings F, XYG 2: →  by 

( ) ( ){ } ( ) ( ){ }γ≤∈=γ≤∈= yxgXxyGyxfXxyF ,:,,:  

for each .Yy ∈  By (2) and (4), ( )yG  is nonempty and ( ) ( )yFyG ⊂  for 

any ,Yy ∈  and hence ( )yF  is nonempty. By (3), ( )yF  is closed and hence 

compact for any .Yy ∈  By (1), G is GOKKM and hence F is so, then 

( )∩ Yy yF∈ ∅≠ .  Take ( )∩ Yy yFx ∈∈ ,0  we have that 

( ) γ≤yxf ,0  for any .Yy ∈  

Theorem 2.2. Let X and Y be two nonempty compact Δ-convex subsets of 
two topological semilattice with path-connected intervals M and E, ⊂A  

.YX ×  

(1) For any ,Yy ∈  the mapping ( ) ( ){ }AyxXxyG ∈∈= ,:  nonempty 

closed and ({ }) ( )∪n
i in yGxx 11 ,...,, =⊂Δ  for any nonempty finite subset 

{ } Xxx n ⊂...,,1  with ( ) ( );...,,...,,1, 1 YyyniyGx nii ∈=∈  
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(2) For any ( ){ }AyxYyXx ∉∈∈ ,:,  is empty or Δ-convex. 

Then there exists Xx ∈∗  such that { } .AYx ⊂×∗  

Proof. Suppose that the conclusion is false, i.e., for any ,Xx ∈  there 

exists Yy ∈  such that ( ) ,, Ayx ∉  then ( ) ( ){ }AyxYyxF ∉∈= ,:  is 

nonempty Δ-convex. 

Defined ,2: XXFGM →=  where ( ) ( )( ),xFGxM =  then ( )xM  

is nonempty. 

Suppose that there exists Xx ∈  such that ( )xM  is not Δ-convex. Then 

there exist ( )xMxx n ∈...,,1  such that { }( ) ( )....,,1 xMxx n ⊄Δ  Take ∈0x  

{ }( )nxx ...,,1Δ  and ( ) ( )( ) ( )( )∪ xFy yGxFGxMx ∈==∉ .0  Since ∈ix  

( ),xF  there exists ( )xFyi ∈  such that ( ) ....,,1, niyGx ii =∈  By ( )xF  is 

Δ-convex, { }( ) ( ),...,,1 xFyy n ⊂Δ  then 

{ }( ) ( ) { }( )( ) ( )( ) ( )∪
n

i
nin xMxFGyyGyGxx

1
11 ...,,...,,

=

=⊂Δ⊂⊂Δ  

and hence ( ),0 xMx ∈  which is a contradiction. Hence, ( )xM  is nonempty 

Δ-convex for any .Xx ∈  

For any Xz ∈  and 

( ) ( ) ( )( ) ( )
( )∪

0
,, 00

1
0 xFy

yGxFGxMzzMx
∈

− ==∈∈  

there exists ( )00 xFy ∈  such that ( ),0yGz ∈  then ( ).0
1

0 yFx −∈  Since 

( ) ( )00
1 \ yGXyF =−  is open, there exists an open neighborhood ( )0xN  of 

0x  such that ( ) ( ),0
1

0 yFxN −⊂  i.e., for any ( ) ( ),, 00 xFyxNx ∈∈  then 

( ) ( ) ( ),0 xMxGFyGz =⊂∈  ( ),1 zMx −∈  hence ( )zM 1−  is open. By 

Lemma 1.2, there exists Xx ∈∗  such that ( ) ( ),∗∗∗ =∈ xGFxMx  hence 
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there exists ( )∗∗ ∈ xFy  such that ( ),∗∗ ∈ yGx  hence ( ) Ayx ∉∗∗,  and 

( ) ,, Ayx ∈∗∗  which is a contradiction. Then there exists Xx ∈∗  such that 

{ } .AYx ⊂×∗  

Theorem 2.3. Let X and Y be two nonempty compact Δ-convex subsets of 
two topological semilattice with path-connected intervals M and E, ⊂A  

.YX ×  

(1) The mapping XYG 2: →  is transfer closed valued with nonempty 
Δ-convex values and has the local intersection property, where ( ) =yG  

( ){ },,: AyxXx ∈∈  for any ;Yy ∈  

(2) For any  ( ){ }AyxYyXx ∉∈∈ ,:,  is empty or Δ-convex. 

Then there exists Xx ∈∗  such that { } .AYx ⊂×∗  

Proof. Suppose that the conclusion is false, i.e., for any ,Xx ∈  there 

exists Yy ∈  such that ( ) ,, Ayx ∉  then ( ) ( ){ }AyxYyxF ∉∈= ,:  is 

nonempty Δ-convex. And ( ) ( ) ( ) ( ).\,\ 11 yGXyFxFYxG == −−  Since G be 

transfer closed valued, F has the local intersection property. 

Define ,2: YXYXFGK ×→××=  where ( ) ( ) ( ),, xFyGyxK ×=  

then ( )yxK ,  is nonempty Δ-convex of ,YX ×  for any ( ) ,, YXyx ×∈  and 

K has local intersection property. By Lemma 1.2, there exists ( ) ∈∗∗ yx ,  

YX ×  such that ( ) ( ) ( ) ( ),,, ∗∗∗∗∗∗ ×=∈ xFyGyxKyx  hence ( )∗∗ ∈ xFy  

and ( ),∗∗ ∈ yGx  which is a contradiction. Then there exists Xx ∈∗  such 

that { } .AYx ⊂×∗  
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