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Abstract

In this paper, in topological ordered spaces, by the generalized Fan-
Browder fixed theorem, we obtain some new section theorems in
different spaces.

1. Preliminaries

A semilattice is a partially ordered set X, with the partial ordering

denoted by <, for which any pair (X, X") of elements has a least upper bound,

denoted by X v X'. It is easy to see that any nonempty finite subset A of X
has a least upper bound, denoted by sup A. In a partially ordered set (X, <),

two arbitrary elements X and X' do not have to be comparable but, in the case
where X < X/, the set [x, X']={y e X :x<y<X} is called an order

interval. Now assume that (X, <) is a semilattice and A < X is a nonempty

finite subset, then the set A(A) = Uae A[a, sup A] is well defined and it has
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the following properties:
(@ Ac A(A),
(b)if A< A, then A(A) < A(A).

We shall say that a subset E < X is A-convex if, for any nonempty
finite subset A < E, we have A(A) < E (see [1]).

Example 1.1 [2]. Let
X={x1):0<x<BU{(x y):0<y<lLx>1y>x—-1}cR?
the partial ordering of R? be defined by
(a, b), (c, d) e R?,
(a,b)<(c,d)<=c-a>0,d-b>0andd-b<c-a.
Then X is A-convex.
For any D < X, F(D) denotes the family of all finite subsets of D,

A(D) = UAEHD)A(A).

Lemma 1.1 (Order KKM lemma [1]). Let X be a topological semilattice
with path-connected intervals and {R; :i=0,1,2,..,n} be a family of

closed (open) subsets of X. If there exist points Xy, X;, ..., X, 0f X such that,

for any family {iy, ..., ig} of indices A({x;, ..., X }) < Uk

i=0 Rij , then the

set ﬂin:() R; is not empty.

Definition 1.1. Let X be a nonempty set, M be a topological semilattice

with path-connected intervals. A set-valued mapping G : X — oM (D} is
said to be a generalized order KKM mapping (GOKKM) if for any finite
subset {X|, X5, ..., X} = X, there exist points Vi, ..., Y, of M, such that for
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each subset {Y;, ..., ¥j, } of {¥], ..., Yo}, we have
k
A({Yis Vi s Vi) © _Ule<xi,.).
J:

Remark 1.1. If G: X — 2M\{&} is GOKKM, then G has the finite

intersection property.
Example 1.2. The partial ordering of R? is defined by
(a,b), (c,d)eR?, (a,b)<(c,d)<a<candb<d.

Then M = {(x,1): 0 < x <1}U{(1, y): 0 < y <1} = R? is A-convex. Take
X =[0,1], G: X > 2M\{@}, 6(x)={(z.1)e M :0< z < x} = M. For
any finite subset {X;, Xy, ..., Xy} < X, one takes {M(x;, 1), M5(Xy, 1), ...,
My (X, )} € M, for each subset {Mj, ..., Mj } < {M;(x, 1), Ma(xz, 1),

ey Mp(Xp, 1)}, we have
A({Mil, . Mik }) = [(min{xil, . Xik }, 1), (max{xil, . Xik }, 1)]

k
c G(xij )={(z,1):0 <z < max{x, ..., X, }}.
=1

Then G is GOKKM.

Definition 1.2 [3]. Let X, Y be two topological spaces. Then T : X — 2y
is said to have the local intersection property if for each X € X with
T(X) = &, there exists an open neighborhood N(x) of X such that

ﬂZGN(X)T(z) % .

Definition 1.3. Let Y be a nonempty set, X be a A-convex subset in a

topological semilattice with path-connected intervals M and y € (—o0, +o).

Suppose f : X xY — (—o0, +0) is a function. Then f is said to be A —y
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generalized quasi-convex (resp., concave) in Y if for each non-empty finite
subset {yi, Y2, ..., Yn} < Y, there exists a sequence Xj, Xy, ..., X, in X such

that for each subsequence X, X;, , ..., X, and any Xo € A({Xj, Xiy» s Xi }),
we have
Y=< maxlSjSk f(XO: yll) (resp., Y2 minlSjSk f(XOa yll ))

Lemma 1.2 (Generalized Fan-Browder Fixed Theorem [2]). Let X be a
nonempty compact A-convex subset of a topological semilattice with path-

connected intervals M and F : X — 2% have the local intersection property
with nonempty A-convex valued. Then F has a fixed point, i.e., there exists

x“ e X suchthat x* e F(x").

Lemma 1.3. Let X be a nonempty set of a topological semilattice with

path-connected intervals H, and {A,-}i”:1 be a finite family of n closed (open)

subsets of X such that Uin:1 A = X. Then for any n points x, ..., X, of X,

there exist k indices i; < --- < i such that

k
A({Xi; 5 - X DO ﬂ A,-j = .
j=1
Proof. Let Xg = {X, ..., X4} © X. Define a set-valued mapping F : X,
— 2% by F(x) = X\A, foreachi =12, ..,n

Suppose that the conclusion is false. Then for any i; < --- < i, between

1 and n,

Ds

A6 - %, D) m( A,} -2,

1

j

1.€.,

A({Xijs s i }) © X\[ﬂ A,J} = U(X\Aij )= F(x;).
j=1 j=1

j=1
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By Lemma 1.1, ﬂinzl F(xj) # G, then Uin:1 A # X, which contradicts

our hypothesis and this contradiction completes the proof.
2. Main Results

Theorem 2.1. Let X be a nonempty A-convex subset of a topological
semilattice with path-connected intervals M, Y be a nonempty set,
Ac X xY, for any yeY, the mapping y— {xe X :(X, y)e A}

nonempty closed and GOKKM, and there exists a y, €Y such that
{x e X :(x, yg) € A} be compact. Then there exists x; € X such that
{X}xY c A

Proof. Let G :Y — 2%, where G(y)={xe X : (X, y) € A}, for any
yeY.

Suppose that there exist Yy, ..., ¥, € Y such that ﬂin:lG(yi) = . Then
X\ﬂin:lG(yi) = X, take A = X\G(y;). Since G(y;) closed, A open and

Uin:1 A = X, by Lemma 1.3, for any n points X, ..., X, of X, there exist k

indices ij < -+ < iy such that

A% - 5 DN A | = 2.

J
j=1
Take Xx* e A({xil, oo Xy BIA (m|;=1 Aij j, then for each j=1,2,..,Kk,
* * k
X € AIJ = X\G(yIJ )a X & G(yIJ )a then A({Xil, e Xik }) Z UJ:IG(yIJ )’

G is not GOKKM, which contradicts the hypothesis, hence G has the finite
intersection property, and G(yg) is compact, ﬂer G(y) # &. Take X €

ﬂer G(y), then {Xp} xY < A
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Corollary 2.1. Let X be a nonempty compact A-convex subset of a
topological semilattice with path-connected intervals M, Y be a nonempty
Hausdorff topological space and y € (-, +©), f, g: X xY — (—o0, +0)
be two functions. Suppose that:

(1) gis A — vy generalized quasi-concave in Y;
(2) s:Y — X iscontinuous such that g(s(y), y) <y forany y € Y;
(3)Forany y eY, f(,, y): X — (—o0, +o0) is lower semi-continuous;
(4)Forany xe X, yeV, f(x,y)<g(x, y).

Then there exists Xy € X such that

f(Xg, y)<vyforany y eV.

Proof. We define two mappingsF, G: Y — 2% by
Fly)={xeX:f(x y)<yh G(y)={xeX:g(x y)<vj

for each y e Y. By (2) and (4), G(y) is nonempty and G(y) < F(y) for
any y €Y, and hence F(y) is nonempty. By (3), F(y) is closed and hence
compact for any y eY. By (1), G is GOKKM and hence F is so, then

ﬂer F(y) = @. Take Xy € ﬂer F(y), we have that

f(Xg, y) <y forany y €.

Theorem 2.2. Let X and Y be two nonempty compact A-convex subsets of
two topological semilattice with path-connected intervals M and E, A c
X xY.

(1) Forany y €Y, the mapping G(y) = {x € X : (X, y) € A} nonempty

closed and A({x, ..., X3 }) < Uin:lG(yi), for any nonempty finite subset

{X, 0y Xn} < X with X; € G(y;), i =1, ..., n(yg, ..., Yh € Y);
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(2)Forany x e X, {y eY :(x, y) & A} is empty or A-convex.

Then there exists x* € X such that {x"}xY < A

Proof. Suppose that the conclusion is false, i.e., for any X € X, there
exists yeY such that (X, y)g A, then F(X)={yeY :(Xx,y)¢ A} is

nonempty A-convex.

Defined M =G o F : X — 2%, where M(x) = G(F(x)), then M(X)
is nonempty.

Suppose that there exists X € X such that M(X) is not A-convex. Then
there exist X, ..., X, € M(X) such that A({X, ..., X5 }) € M(X). Take X, €
A({X{, -..s Xn}) and Xy € M(X) = G(F(X)) = UyeF(X)G(y)' Since Xj €
F(X), there exists y; € F(X) such that X; € G(y;), i =1, ..., n. By F(X) is
A-convex, A({y;, ..., Yn}) © F(X), then

A, - %) < [ JB() = GAWY, - Yn}) < G(F(X) = M(X)
i=1

and hence Xy € M(X), which is a contradiction. Hence, M(x) is nonempty

A-convex for any X € X.

Forany z € X and

Xo € M7 (2), z € M(x9) = G(F(xo)) = (¥).

G
yeF(xg)

there exists Yy € F(Xy) such that z € G(y,), then Xy € F(yp). Since
F!(yo) = X\G(y,) is open, there exists an open neighborhood N(Xq) of
Xo such that N(xy) = F7(yp), i.e., for any X € N(Xy), Yo € F(X), then
z e G(yy) = GF(x) = M(x), xe M7 (z), hence M~(z) is open. By

Lemma 1.2, there exists X" € X such that x* € M(x") = GF(x"), hence
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there exists y* € F(x") such that x* € G(y"), hence (x*,y")¢ A and
(x*, y*) € A, which is a contradiction. Then there exists x* € X such that

X*IxY c A

Theorem 2.3. Let X and Y be two nonempty compact A-convex subsets of
two topological semilattice with path-connected intervals M and E, A c
X xY.

(1) The mapping G:Y — 2% is transfer closed valued with nonempty
A-convex values and has the local intersection property, where G(y) =

{xe X:(x,y)e A}, forany y e Y;

(2)Forany x e X, {y eY :(x, y) & A} isempty or A-convex.

Then there exists x* € X suchthat {x*}xY c A

Proof. Suppose that the conclusion is false, i.e., for any X € X, there
exists yeY such that (X, y)g A then F(X)={yeY :(x,y)¢ A} is
nonempty A-convex. And G~ (x) = Y\F(x), F~!(y) = X\G(y). Since G be
transfer closed valued, F has the local intersection property.

Define K =GxF: X xY - 25 where K(x, y) = G(y)x F(x),
then K(x, y) is nonempty A-convex of X xY, forany (X, y) e X xY, and
K has local intersection property. By Lemma 1.2, there exists (X", y*) e
X x Y such that (x*, y*) e K(x*, y*) = G(y*) x F(x"), hence y* € F(x")
and x* € G(y"), which is a contradiction. Then there exists x* € X such

that {x*} xY < A
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