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Abstract

A right R-module M is called P@Q-injective if every right
R-homomorphism from a cyclic module A into M extends from M to M. It
is shown that M 1is IP-quasi-injective (i.e., if every right
R-homomorphism f from a module A into M with cyclic image f(A) in M
extends from M to M, where A is a submodule of M) if and only if M is
PQ-injective and GIN-module (i.e., Ig(A N B) =Ig(A)+1lg(B) for any
submodules A and B of M). We prove that M is quasi HN-injective (i.e., if
every right R-homomorphism f from A to M with finitely generated
image f(A) in M extends from M to M) if and only if M is PQ-injective
and Ig(N N K) = Ig(N) + lg(K) for any finitely generated submodule N
and submodule K. We also show that, for a right R-module M; the
idempotents of End(M) are central if and only if every direct summand
of M is fully invariant. Two examples are given to show that a
commutative IN-ring R need not be CSSES-ring and the idempotents of
End(M) are central for a right R-module M is not necessarily M is duo

respectively.
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1. Introduction

Throughout the paper all rings have unity and all modules are
unitary. The right (resp. left) annihilator of a subset N of a module is
denoted by (V) (resp. I(IN)). If M is an R-module, then we write Soc(M)

for the socle of M. If R is a ring, then we denote by Soc(Rp), Soc(pR) and
J(R), for the right socle, the left socle, and the Jacobson radical of R,
respectively.

The module M is called CS-module if for any submodule of M is
essential in a direct summand of M. CS-module is also said to be C; or
extending module in the context. Every injective module is CS-module. A
ring R is called right-CS ring if the right R-module Rp is CS-module. A
module M is said to satisfy Cg condition if every submodule, that is,
isomorphic to a direct summand of M is itself a direct summand, and is
said to satisfy Cs condition if for any direct summands M; and My of M
with My N My =0, M; & My is also a direct summand of M. A module
M is called continuous if it is CS and (Cy); M is called quasi-continuous if
it is CS and (C3); and M is called (GC2) if, for any submodule N of M
with N = M, N is a summand of M. A ring R is called right (resp. left)
Kasch if every simple right (resp. left) R-module embeds in Rp, or
equivalently if {(I) # O (resp. r(I) # 0) for any maximal right (resp. left)
ideal I of R. Recall that a right ideal A is called complement of a right
ideal B if A is maximal such that A () B = 0, in which case A ® B 1is

essential in Rp.

Let N be any submodule of the module M. N is said to be small in M if
N + K # M for any proper submodule K of M. Let M be any module. If
there exists an epimorphism p : P - M such that P is projective and
Ker(p) is small in P, then it is said that P is a projective cover of M and M
1s said to be semiperfect if any homomorphic image of M has a projective
cover. We call a module M CSSES-module if M 1s a CS, then semiperfect
module with essential socle. CSSES-modules generalize semisimple

modules, projective uniform modules, and any domain considered as a
module over itself. We call the ring R right CSSES-ring if the right
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R-module Rp is CSSES-module over R. We say that a submodule K of M
is fully invariant in M if MK) c K for every A € End(M) and M is

called duo module if every submodule of M is fully invariant. The ring R
is called a duo ring if every one-sided ideal is two-sided (equivalently
aR = Ra for all a € R). For the unexplained terminology, the reader is

referred to ([1], [5]), ([6] or [7]).
We consider the following condition (1) for rings

TNT)=UT)+ UT") for all right ideals T'and T" of R. (1)

The ring R is called right Ikeda-Nakayama ring (right IN-ring, for short)
(see namely [2]), if (1) holds for all right ideals 7" and T’ of R, while R is
called right Generalized Ikeda-Nakayama rings (right GIN-rings, for
short), if (1) holds for all right ideals T'and 7" with T principal.

Let M be a right R-module and S = End(M). Then M is S-R-

bimodule. For any X ¢ M and any T < S, consider
Ig(X)={seS:sX =0} and ry(T)={m e M : Tm = 0},

where lg(X) denotes the annihilator of X in S and ry;(7") denotes the
annihilator of 7'in M.

We consider the following condition (2) for modules M

lg(AN B) =1g(A) + Ig(B) for any submodules A and B of M. (2)

By extending “IN-rings” notion studied in [8] to modules, M is called
ITkeda-Nakayama Module (IN-module, for short), if (1) holds for all
submodules A and B of M. A module M is called Generalized Ikeda-
Nakayama Module (GIN-module, for short) if it satisfies (2) for each pair
of submodules A and B with A cyclic. GIN-modules generalizes right
GIN-rings. In [3] it is proved that R is right IP-injective if and only if R is
right P-injective and right GIN-ring.

2. IN-modules with some Injectivities

Definition 2.1. Let M be a right R-module. We call M P-injective (or
Principally Quasi injective, PQ-injective, for short) if every right



398 N. AGAYEV, A. LEGHWEL and A. HARMANCI

R-homomorphism from a cyclic module A into M extends from B to M,
where A and B are modules with exact row 0 - A — B (or where A is a
submodule of B = M).

Definition 2.2. Let M be a right R-module. We call M IP-injective
module (or IP-quasi-injective) if every right R-homomorphism f from a
module A into M with cyclic image f(A) in M extends from B (or M) to

M, where A and B are modules with exact row 0 - A — B (or where A
is a submodule of M).

Definition 2.3. We call a right R-module M HN-injective (or simple-
injective) if every right R-homomorphism f from A to M with finitely
generated (or simple) image f(A) in M extends from B to M, where A and

B are modules with exact row 0 - A — B. If B =M, then HN-injective
(or simple-injective) module is called quasi HN-injective (or quasti simple-

injective) module.

It is obvious that every HN-injective module is IP-injective, and any

IP-injective module is simple-injective and PQ-injective module.

Definition 2.4. We call a right R-module M f-injective if every right
R-homomorphism from a finitely generated module A into M extends
from B to M, where A and B are modules with exact diagram
0—>A—>B.

Lemma 2.5. Let M be a right R-module with S = End(Mp). Then the

following are equivalent:
(1) gM is PQ-injective.
(2) ryr(lg(m)) < Sm forall m e M.

(3) lg(m) < lg(my), where m, my € M implies that Sm; < Sm.

(4) Srys(Sf NIg(m)) = Srys(Sf)+ Sm forall f € S.

(5) If Sm 5 Mis S-linear, then (m)o € Sm.

Proof. (1) = (2) Let M be any PQ-injective as left S-module and

x e ryr(lg(m)) for any m € M. Define Sm % M with o(fm) = fx, where
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f € S. Then ¢ is well defined S-homomorphism, by assumption ¢ extends

toagon M. Hence x =1p;x = 9(13ym) = gm € Sm. Thus ry;(Ig(m)) < Sm.

(2) = (3) Let m,my e M and Ig(m) < lg(m;). Then my e ry(lg(my))
< }"M(ls(m)) By (2), Sml < Sl"M(ls(m)) < Sm.

(3) = (4) Let x e rpr(Ig(m)). Then Ig(m) < Ig(x). By (3), Sx < Sm,
and so Srys(lg(m)) < Sm, in particular, ry;(lg(m)) < Sm. Since f e Sf,
it follows that ry;(Sf) < rpr(f) and ry(Sf N Ig(m)) < rar(SF) + rpr(Ig(m))
< ry(f)+ Sm, and so Sry;(Sf N lg(m)) < Srps(f) + Sm. As for the reverse
inclusion, since (Sf NIg(m))m =0, m e ry(Sf Nlg(m)). Hence Sm <
Sryr(Sf N lg(m)). On the other hand, Sf N ig(m) < Sf implies ry;(Sf) <
rar (Sf N lg(m)). Hence ry(Sf)+ Sm < ry(Sf N ig(m)), and so Sry;(Sf)
+Sm < Sry;(Sf Nlg(m)) which is what we aimed at proving.

(4) = (5) Let Sm % M be aleft S-module homomorphism with (m)a
=m;. Then Ig(m) < lg(m;), and so ry(lg(m;)) < ryr(lg(m)), therefore
Sryr(lg(my)) < Sryr(lg(m)). By taking f =13, in (4), Sry(lg(m)) = Sm
holds for all m e M. Hence Sm; = Sry(lg(m;)) < Srys(lg(m)) = Sm.

Since my; € Smy, m; € Sm and then (5) follows.

(5) = (1) Let Sm E) M Dbe any left S-module homomorphism. By (5),
(m)a = fm for some f e S. So the left S-homomorphism a is a left

multiplication by f. Let g € S be any. Then (gf)m = g(fm) = g(ma) =

B
(gm)a = f(gm) = (fg)m. Hence fg = gf for all g € S. Define M - M
by (m')B=f(m'), where m'e M. It is clear that B is a left S-
homomorphism of M and B om = % Thus (1) holds.

It is well known that a ring R is right IP-injective if and only if R is
right P-injective and right GIN, that is, I(K N L) = ((K) + I(L) for each
pair of right ideals K and L of R with K principal (see [3]). It is clear that
every f-injective module is P@Q-injective. Also in [3] it is proved that a ring
R is right f-injective if and only if R is right P-injective and (K N L) =
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I(K)+ (L) for each pair of finitely generated right ideals K and L of R

(see [3]). We generalize these results to module cases.

Theorem 2.6. Let M be right R-module and S = End(M). Then the
following are equivalent:

(1) M is IP-quasi-injective.

(2) M is PQ-injective and GIN-module.

Proof. We use the Hajarnavis-Norton technique (HN for short) (see
the proof of [4, Proposition 5.2]) as it is used in the proof of [3, Theorem
2.2] in ring case.

(2) = () First we suppose that f:A; + Ay > M 1is a right
R-homomorphism such that f|A1 :A] > M extends to a ge S and
fla, : Ay > M extends to an h € S with A; cyclic. Let x € A; 1 A,.
Then g(x) = h(x) = f(x) and so (g — h)x = 0. Then g — h e Ig(A; N Ag).
By (2), there exist g; € lg(A;) and g9 €lg(Ag) such that g—h = g; + go.
Let a; € A; and ay € Ay. Then g;(a;) =0 and gg(ay) =0, and f(a; + ag)
= glay) + hlag) = (8 - g1)(a1) + (h + 82)(az) = (h + ag)(ar) + (h + 82)(az)
= (h + g9)(a; + ay). It follows that f extends to h + go on M.

Now let N be a submodule of M and f € Hom(N, M) with f(N)
cyclic. So f(N) = f(n)R for some n € N. Hence N = nR + Ker(f). Since
M is PQ-injective, f|,p extends on M and f |k (s) extends on M to zero

homomorphism. By the preceding paragraph f extends on M.

(1) = (2) Let N be any cyclic submodule of M. The image of N under
any R-homomorphism is cyclic. By (1), any homomorphism from N to M
extends on M. Hence M is P@-injective. To show M is GIN-module, let N
be a cyclic submodule of M and K be any submodule of M. Since N (1 K

<N and NNK <K, so Ig(N)+1g(K) < Ig(NNK). Let g elg(NNK).
Forn+ke N+ K with ne N and k € K, let f(n+ k)= g(n). Then fis
a well-defined R-homomorphism from N + K to M with f(N + K) =
g(N). Since g(N) is cyclic submodule, by (1), f extends to A € S and so
gln)=f(n+k)=h(n+k) forall ne N and k € K. Let k =0. Then g(n)
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= h(n) for all n e N and so g —h € lg(N). Let n =0. Then h(k) =0
for all k € K and so h € Ig(K). Hence g = (g —h)+h € Ig(N) + Ig(K).
Thus Zs(N ﬂ K) = ls(N) + Zs(K)

Theorem 2.7. Let M be a right R-module and S = End(M). Then the

following are equivalent:

(1) M is quasi HN-injective.

(2) M is PQ-injective and Ig(N N K) = Ig(N) + Ig(K) for any finitely
generated submodule N and submodule K.

Proof. (2) = (1) First we suppose that f: A; + A9 > M 1is an
R-homomorphism such that fls : A4 — M extends to a g€ S and
fla, : A9 — M extends to an h € S with f(A4;) finitely generated. We

prove that f extends to an element of S. Let x € A; N Ay. Then
g(x)=h(x)=f(x) and so (g —h)x =0. Then g-—he lg(A; N Ay). By
(2), there exist g; € I(A;) and g9 € l(Ag) such that g —h = g + g9.
Let a; € A; and ay € Ay. Then g1(a;)=0, gs(as)=0, and f(a; +ag)=
gla) + h(ag) = (g — g1)(@) + (7 + g2)(ag) = (A + ag)(ar) + (A + g2)(az) =
(h + g9)(a; + ay). It follows that f extends to h + g9 on M.

Now let N be a submodule of M and f € Hom(N, M) with f(N)
finitely generated. So f(N)= f(n)R + f(ng)R+ -+ f(n,)R for some
ny, ng,...,n; € N. Let K = R+ ngR + -+ nR. Then N = K + Ker(f).
Since M is PQ-injective. If K is cyclic, then f|gx extends to f; € S.
Assume that K = n R+ n9R is 2-generated. Then by the preceding
paragraph f|g extends to an f; € S. By induction on the generators of

K, flg extends to an element of S. Clearly f|g., ;) extends to an
element of S. As in the first paragraph f extends to an element of S.

(1) = (2) Let N be any cyclic submodule of M. The image of N under
any R-homomorphism is cyclic. By (1) any homomorphism from N to M
extends on M. Hence M is P@-injective. To show M is GIN-module, let N
be a finitely generated submodule of M and K be any submodule of M.
Since NN K <N and NN K < K, and so lg(N)+ Ig(K) < Ig(N N K).
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Let gelg(NNK). For n+ke N+ K with ne N and ke K, let
f(n + k) = g(n). Then fis a well defined R-homomorphism from N + K
to M. Since g(N) is finitely generated, so is f(N + K). By (1), f extends
toan h e S andso g(n)=f(n+k)=h(n+k) forall n e N and k € K.
Let £ =0. Then g(n)= h(n) for all n e N and so g —h € Ig(N). Let
n = 0. Then h(k) = 0 forall k € K and so h € Ig(K). Hence g =(g—h)
+helg(N)+Ig(K). Thus Ig(N N K) = Ig(N) + Ig(K).

Theorem 2.8. Let M be a right R-module and S = End(M). Consider

the following conditions:

(1) M is quasi simple-injective.

(2) (@) Ig(NNK) =1g(N)+1Ig(K) for any submodules N and K with
N simple.

(b) Every homomorphism from a cyclic submodule of M to M with
simple image extends to an endomorphism of M.

Then (1) = (2).

Proof. (1) = (2) (a) To prove Ig(NNK)=Ig(N)+ Ig(K) for any
submodule N and K with N simple, we may assume that N K = 0,
otherwise that equality is obvious. Then Ig(N N K) = S. Let g € S. For
n+keN+K with ne N and k € K, let f(n+ k)= g(n). Then fis a
well defined R-homomorphism from N + K to M with f(IN + K) = g(N)
simple. By (1), f extends to an h € S and so g(n) = f(n + k) = h(n + k)
for all ne N and ke K. Let £ =0. Then g(n) = h(n) for all n e N
and so g —h € Ig(N). Let n=0. Then h(k) =0 for all k € K and so
helg(K). Hence g=(g—h)+helg(N)+Ig(K). Thus Ig(NNK)=
Ig(N) + Ig(K) and so (2) (a) holds.

(1) = (2) (b) Clear by definitions.

Theorem 2.9. Let M be a right R-module and S = End(M). Consider
the following:

(1) M is quasi simple-injective.
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(2) (a) Ig(NNK) =1Ig(N)+Ig(K) for any submodules N and K with
N cyclic.

(b) Every homomorphism from a cyclic submodule of M to M with
simple image extends to an endomorphism of M.

Then (2) = (1).

Proof. (2) = (1) Let N be a submodule of M and 0 # f € Hom(N, M)
with f(N) simple. So f(N)= f(n)R for some 0 # n € N. Hence N =
nR + Ker(f) and f is defined on the cyclic submodule nR with f(NV)
simple. By (2)(b), the restriction, say f; of f on nR extends to a g since
fi(N) = f(N) is simple, and the restriction of f on Ker(f) extends to an
h = 0. By HN technique and the condition 2(a), we show that f extends
on M as was done in the previous results:

Suppose that f: A; + Ay — M is an R-homomorphism such that f |4 :
A; > M extendstoa g €S and f|y, : Ay > M extendstoan h e S
with A; cyclic. Let x € A; 1 Ag. Then g(x)=h(x)= f(x) and so (g — h)x
=0. Then g -h elg(A; N Ay). By (2)(a) there exist g; € Ig(4;) and
g9 € lg(Ay) such that g —h = g1 + g9. Let a; € A; and ag € Ay. Then
81(a) =0, go(az)=0, and f(a +ay) = gla) + hlag) = (g - g1)(ar) +
(h+g2)(az) = (h + g2) (@) + (h + g2)(ag) = (h + g2) (a1 + ag). It follows
that f extends to h + g9 on M.

Now let N be a submodule of M and f € Hom(N, M) with f(N)
cyclic. So f(IN) = f(n)R for some n € N. Hence N = nR + Ker(f). Since
M is PQ-injective, f|,g extends on Mto f; and f|ger(s) extends on M to

zero homomorphism. By the preceding paragraph f extends on M and (1)
follows.

3. CS-modules with IN-conditions

In the rest of the paper, we discuss the implication between CSSES-
rings and IN-rings and give a proof to generalize Proposition 14 of [8].
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Lemma 3.1 [8, Corollary 12]. If R satisfies the condition that, for any
set {A; :i e I} of right ideals such that Njc;A; =0, R = ZieIlR(Ai)
and Rp satisfies (GC2), then R is a semiperfect right continuous ring

with a finitely generated essential right socle. In particular, R is left and
right Kasch.

Motivated by preceding Lemma 3.1 we prove the following:

Theorem 3.2. Let R be a semiperfect ring. If R satisfies the condition
that, for any set {A; :i € I} of right ideals such that N;c;A4; =0, R =

Y. r(A), then Ris a right CSSES-ring.

Proof. Let R be a ring satisfying the condition that, for any set {4; :
i e I} of right ideals such that Nic;4; =0, R=Y__ Ip(4), by [8,
Proposition 11(2)] Rp is finitely cogenerated. In particular, Soc(Rp) is
essential in Rp. Also by [8, Theorem 8], Rp is m-injective (that is, quasi-

continuous). Hence R is right CSSES-ring.

Definition 3.3. A right R-module M is called strongly Ikeda-
Nakayama module if, for any set {A; : i € I} of submodules such that

Is(Nier 4;) = zie[ Ig(4;). Mis called dual module if every submodule N
of M is a right annihilator of a subset of S = Endr(M). A ring R is called
strongly right-IN if, for any set {A; :i € I} of right ideals such that
Ir(Nier 4;) = Ziel Ir(4;). The ring R is called right dual if every right
ideal of R is a right annihilator.

The following example shows that there is no implication between
right CSSES-rings and right IN-rings. Notice that the following is an
interesting example to be considered (see [6, Example 6.42]).

Example 3.4. There exists a commutative IN-ring R such that R is
neither semiperfect nor GC2 nor Kasch nor dual. Hence R is not CSSES-

ring.
Proof. Let R be the trivial extension of Z with the Z -module Zz“"

Then R is also considered as the matrix ring with usual matrix operations
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n m
R = nezZ, meZ_.;.
0 n 2

We will prefer to use matrix form for R
soc® = 1|0 " 12+ 2)Z <7
oc = tme + <7,
0 0 2

1s essential minimal ideal, so R is finitely cogenerated.

Let {A; : i € I} be any right ideals (in fact they are two sided ideals)
of R such that N;c.; A; =0. Then R = zie[ lp(4;) since at least one of
A; is zero.

Moreover, R is IN-ring. Clear: If A is a nonzero ideal in R, then it is
easily checked that I(A) = Soc(Rg). If A; and Ay are nonzero, then

A; N Ag is nonzero and so I(A; N Ag) = Soc(Rg) = (A7) + I(Ag). Assume
at least one of A; and Agy is zero. Then A; [ Ay is zero and so I(A; N
Ag) = R = I(A;) + I(Ay).

But R contains nonzero divisors which are not invertible, so R is not

3 0
(GC2). In fact let a = {0 3}. Then any annihilator of a is zero. But a is

not invertible, and so aR = R. Hence aR is not direct summand since R

is uniform.

Let

3n m
I = nezZ mel ;.
HO 37J 2}

Clearly R/I is a simple R-module and R/I is not isomorphic to the
minimal ideal Soc(R) of R, since R/I and Soc(R) have distinct orders.
Hence R is not Kasch. Since Soc(R)=J(R) and R/J(R) is not
semisimple. Hence R is not semiperfect and so is not CSSES-ring. If R

were right dual, then R would be Kasch. Hence R is not dual.

The following lemma generalizes Proposition 14 of [8].
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Lemma 3.5. Let R be a ring. Consider the following:

(1) Every closed right ideal of R is a right annihilator of a finite subset
of R.

(2) R is right CS-ring.
(3) R is right continuous.

Then (1) < (2), (3) = (1). Suppose further that every finitely generated left
ideal of R is a left annihilator. Then (1) = (3).

Proof. Note that a ring R is right continuous if and only if
R =1[P)+ UQ) for any right ideals P and @ with PN Q =0, (see
namely [6, Theorem 6.31]).

(1) = (@) and (3). Let I and K be right ideals of R that are
complements of each other. Since they are closed, as in [8, Proof of
Proposition 14, (1) = (2)] R = Ir(I)+ lg(K). Hence Rp is right quasi-

continuous. In particular R is right CS-ring.
(3) and (2) = (1). Clear from definitions.

Lemma 8.6. Let Mp be a right R-module and S = Endgr(M).
Consider the following:

(1) Ig(AN B) = Ig(A) + Ig(B) for all submodules A and B of Mp.

(2) For any submodules A and B of Mp with ANB =0, S =1Ig(A)
+ Ig(B).

3) g M is a CS-module as a left S-module.
Then (1) = (2) and (2) < (3).

Proof. (1) = (2) is obvious.

(2) = (8) Clear from [8, Corollary 4] since M is faithful left S-module.

(3) = (2) Let A be any submodule of M. By Zorn’s lemma there exists
a direct summand K of M such that A is essential in K. Let M = K & L.
By (8) S =1g(K)+Ilg(L). Since A <K, Ig(K)<lg(A) and so S = Ig(A)
+ Ig(L).
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Proposition 3.7. Let Mp be a right R-module and consider the
following:

(1) My is CS-module and every idempotent of End(Mp) is central.

(2) Mp is CS-module and every direct summand of Mp is fully

invariant.

(3) Mg is CS-module and duo module.

Then (1) < (2), and (3) = (1), (2).

Proof. (1) = (2) Let K be any direct summand of M, mg be the
idempotent corresponding to Kin S and f € S any. By (1) frg = ngf.
Hence f(K) = fag (M) = ngf(K) < ng(M) = K and (2) follows.

(2) = (1) Let = be any idempotent in S and f € S any. Since n(M)
and (1 -m)(M) are direct summands of M, by (2) fn(M) < n(M) and
fA-n)(M)< (1 -mn)(M). Left multiply fr(M) < (M) by 1 - = to obtain
(1-n)fr = 0. Then frn = nfr. Left multiply f1 - n)(M) < (1 -n)(M) by
n to obtain nf(1 — ) = 0. Then nf = nfn. Hence nf = fr. Thus = is central

idempotent of S.
(3) = (1) and (2) Clear.

The converse to Proposition 3.7 of [(3) = (1)] is false by Faith-Menal’s
example as following (see namely [6, Example 8.16]).

Example 3.8. Let D be any countable, existentially closed division

b
ring over a field F, R = D ®p F(x), and T(R, D) = Hg }lae R be D}
a

denote the extension of D by R. Then the ring T(R, D) is not a duo ring
and every idempotent of T(R, D) is central.

Proof. It is obvious that the ring T(R, D) is not a duo, since it is not

a commutative ring. It is easy to check that the only direct summands of

T(R, D) are itself and zero right ideal or it has the identity and zero as
the only idempotents. Hence every idempotent of T(R, D) is central.
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