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Abstract

A right R-module M is called PQ-injective if every right

R-homomorphism from a cyclic module A into M extends from M to M. It

is shown that M is IP-quasi-injective (i.e., if every right

R-homomorphism f from a module A into M with cyclic image ( )Af  in M

extends from M to M, where A is a submodule of M) if and only if M is

PQ-injective and GIN-module (i.e., ( ) ( ) ( )BlAlBAl SSS +=∩  for any

submodules A and B of M). We prove that M is quasi HN-injective (i.e., if

every right R-homomorphism f from A to M with finitely generated

image ( )Af  in M extends from M to M) if and only if M is PQ-injective

and ( ) ( ) ( )KlNlKNl SSS +=∩  for any finitely generated submodule N

and submodule K. We also show that, for a right R-module M; the

idempotents of ( )MEnd  are central if and only if every direct summand

of M is fully invariant. Two examples are given to show that a

commutative IN-ring R need not be CSSES-ring and the idempotents of

( )MEnd  are central for a right R-module M is not necessarily M is duo

respectively.
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1. Introduction

Throughout the paper all rings have unity and all modules are
unitary. The right (resp. left) annihilator of a subset N of a module is
denoted by ( ) ( )( )..resp NlNr  If M is an R-module, then we write ( )MSoc

for the socle of M. If R is a ring, then we denote by ( ) ( )RSocRSoc RR ,  and

( ),RJ  for the right socle, the left socle, and the Jacobson radical of R,

respectively.

The module M is called CS-module if for any submodule of M is
essential in a direct summand of M. CS-module is also said to be 1C  or

extending module in the context. Every injective module is CS-module. A
ring R is called right-CS ring if the right R-module RR  is CS-module. A

module M is said to satisfy 2C  condition if every submodule, that is,

isomorphic to a direct summand of M is itself a direct summand, and is
said to satisfy 3C  condition if for any direct summands 1M  and 2M  of M

with 2121 ,0 MMMM ⊕=∩  is also a direct summand of M. A module

M is called continuous if it is CS and ( );2C  M is called quasi-continuous if

it is CS and ( );3C  and M is called ( )2GC  if, for any submodule N of M

with ,MN ≅  N is a summand of M. A ring R is called right (resp. left)

Kasch if every simple right (resp. left) R-module embeds in ,RR  or

equivalently if ( ) ( )( )0.resp0 ≠≠ IrIl  for any maximal right (resp. left)

ideal I of R. Recall that a right ideal A is called complement of a right
ideal B if A is maximal such that ,0=BA ∩  in which case BA ⊕  is

essential in .RR

Let N be any submodule of the module M. N is said to be small in M if
MKN ≠+  for any proper submodule K of M. Let M be any module. If

there exists an epimorphism MPp →:  such that P is projective and

( )pKer  is small in P, then it is said that P is a projective cover of M and M

is said to be semiperfect if any homomorphic image of M has a projective
cover. We call a module M CSSES-module if M is a CS, then semiperfect
module with essential socle. CSSES-modules generalize semisimple
modules, projective uniform modules, and any domain considered as a
module over itself. We call the ring R right CSSES-ring if the right



w
w

w
.p

ph
m

j.c
om

ON A GENERALIZATION OF INJECTIVE MODULES … 397

R-module RR  is CSSES-module over R. We say that a submodule K of M

is fully invariant in M if ( ) KK ⊆λ  for every ( )MEnd∈λ  and M is

called duo module if every submodule of M is fully invariant. The ring R
is called a duo ring if every one-sided ideal is two-sided (equivalently

RaaR =  for all ).Ra ∈  For the unexplained terminology, the reader is

referred to ([1], [5]), ([6] or [7]).

We consider the following condition (1) for rings

( ) ( ) ( )TlTlTTl ′+=′∩  for all right ideals T and T ′  of R. (1)

The ring R is called right Ikeda-Nakayama ring (right IN-ring, for short)

(see namely [2]), if (1) holds for all right ideals T and T ′  of R, while R is

called right Generalized Ikeda-Nakayama rings (right GIN-rings, for

short), if (1) holds for all right ideals T and T ′  with T principal.

Let M be a right R-module and ( ).MEndS =  Then M is S-R-

bimodule. For any MX ⊆  and any ,ST ⊆  consider

( ) { }0: =∈= sXSsXlS   and  ( ) { },0: =∈= TmMmTrM

where ( )XlS  denotes the annihilator of X in S and ( )TrM  denotes the

annihilator of T in M.

We consider the following condition (2) for modules M

( ) ( ) ( )BlAlBAl SSS +=∩  for any submodules A and B of M. (2)

By extending “IN-rings” notion studied in [8] to modules, M is called

Ikeda-Nakayama Module (IN-module, for short), if (1) holds for all

submodules A and B of M. A module M is called Generalized Ikeda-

Nakayama Module (GIN-module, for short) if it satisfies (2) for each pair

of submodules A and B with A cyclic. GIN-modules generalizes right

GIN-rings. In [3] it is proved that R is right IP-injective if and only if R is

right P-injective and right GIN-ring.

2. IN-modules with some Injectivities

Definition 2.1. Let M be a right R-module. We call M P-injective (or

Principally Quasi injective, PQ-injective, for short) if every right
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R-homomorphism from a cyclic module A into M extends from B to M,

where A and B are modules with exact row BA →→0  (or where A is a

submodule of ).MB =

Definition 2.2. Let M be a right R-module. We call M IP-injective

module (or IP-quasi-injective) if every right R-homomorphism f from a

module A into M with cyclic image ( )Af  in M extends from ( )MB or  to

M, where A and B are modules with exact row BA →→0  (or where A

is a submodule of M).

Definition 2.3. We call a right R-module M HN-injective (or simple-

injective) if every right R-homomorphism f from A to M with finitely

generated (or simple) image ( )Af  in M extends from B to M, where A and

B are modules with exact row .0 BA →→  If ,MB =  then HN-injective

(or simple-injective) module is called quasi HN-injective (or quasi simple-

injective) module.

It is obvious that every HN-injective module is IP-injective, and any

IP-injective module is simple-injective and PQ-injective module.

Definition 2.4. We call a right R-module M f-injective if every right

R-homomorphism from a finitely generated module A into M extends

from B to M, where A and B are modules with exact diagram

.0 BA →→

Lemma 2.5. Let M be a right R-module with ( ).RMEndS =  Then the

following are equivalent:

(1) MS  is PQ-injective.

(2) ( )( ) Smmlr SM ≤  for all .Mm ∈

(3) ( ) ( ),1mlml SS ≤  where Mmm ∈1,  implies that .1 SmSm ≤

(4) ( )( ) ( ) SmSfSrmlSfSr MSM +=∩  for all .Sf ∈

(5) If MSm
α
→  is S-linear, then ( ) .Smm ∈α

Proof. (1) ⇒ (2) Let M be any PQ-injective as left S-module and

( )( )mlrx SM∈  for any .Mm ∈  Define MSm
ϕ
→  with ( ) ,fxfm =ϕ  where
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.Sf ∈  Then ϕ is well defined S-homomorphism, by assumption ϕ extends

to a g on M. Hence ( ) .11 Smgmmxx MM ∈=ϕ==  Thus ( )( ) .Smmlr SM ≤

(2) ⇒ (3) Let Mmm ∈1,  and ( ) ( ).1mlml SS ≤  Then ( )( )11 mlrm SM∈

( )( ).mlr SM≤  By (2), ( )( ) .1 SmmlSrSm SM ≤≤

(3) ⇒ (4) Let ( )( ).mlrx SM∈  Then ( ) ( ).xlml SS ≤  By (3), ,SmSx ≤

and so ( )( ) ,SmmlSr SM ≤  in particular, ( )( ) .Smmlr SM ≤  Since ,Sff ∈

it follows that ( ) ( )frSfr MM ≤  and ( )( ) ( ) ( )( )mlrSfrmlSfr SMMSM +≤∩

( ) ,SmfrM +≤  and so ( )( ) ( ) .SmfSrmlSfSr MSM +≤∩  As for the reverse

inclusion, since ( )( ) ,0=mmlSf S∩  ( )( ).mlSfrm SM ∩∈  Hence ≤Sm

( )( ).mlSfSr SM ∩  On the other hand, ( ) SfmlSf S ≤∩  implies ( ) ≤SfrM

( )( ).mlSfr SM ∩  Hence ( ) ( )( ),mlSfrSmSfr SMM ∩≤+  and so ( )SfSrM

( )( )mlSfSrSm SM ∩≤+  which is what we aimed at proving.

(4) ⇒ (5) Let MSm
α
→  be a left S-module homomorphism with ( )αm

.1m=  Then ( ) ( ),1mlml SS ≤  and so ( )( ) ( )( ),1 mlrmlr SMSM ≤  therefore

( )( ) ( )( ).1 mlSrmlSr SMSM ≤  By taking Mf 1=  in (4), ( )( ) SmmlSr SM =

holds for all .Mm ∈  Hence ( )( ) ( )( ) .11 SmmlSrmlSrSm SMSM =≤=

Since SmmSmm ∈∈ 111 ,  and then (5) follows.

(5) ⇒ (1) Let MSm
α
→  be any left S-module homomorphism. By (5),

( ) fmm =α  for some .Sf ∈  So the left S-homomorphism α is a left

multiplication by f. Let Sg ∈  be any. Then ( ) ( ) ( ) =α== mgfmgmgf

( ) ( ) ( ) .mfggmfgm ==α  Hence gffg =  for all .Sg ∈  Define MM
β
→

by ( ) ( ),mfm ′=β′  where .Mm ∈′  It is clear that β is a left S-

homomorphism of M and .α=β|Sm
 Thus (1) holds.

It is well known that a ring R is right IP-injective if and only if R is
right P-injective and right GIN, that is, ( ) ( ) ( )LlKlLKl +=∩  for each

pair of right ideals K and L of R with K principal (see [3]). It is clear that
every f-injective module is PQ-injective. Also in [3] it is proved that a ring
R is right f-injective if and only if R is right P-injective and ( ) =LKl ∩



w
w

w
.p

ph
m

j.c
om

N. AGAYEV, A. LEGHWEL and A. HARMANCI400

( ) ( )LlKl +  for each pair of finitely generated right ideals K and L of R

(see [3]). We generalize these results to module cases.

Theorem 2.6. Let M be right R-module and ( ).MEndS =  Then the

following are equivalent:

(1) M is IP-quasi-injective.

(2) M is PQ-injective and GIN-module.

Proof. We use the Hajarnavis-Norton technique (HN for short) (see
the proof of [4, Proposition 5.2]) as it is used in the proof of [3, Theorem
2.2] in ring case.

(2) ⇒ (1) First we suppose that MAAf →+ 21:  is a right

R-homomorphism such that MAf A →| 1:
1

 extends to a Sg ∈  and

MAf A →| 2:
2

 extends to an Sh ∈  with 1A  cyclic. Let .21 AAx ∩∈

Then ( ) ( ) ( )xfxhxg ==  and so ( ) .0=− xhg  Then ( ).21 AAlhg S ∩∈−

By (2), there exist ( )11 Alg S∈  and ( )22 Alg S∈  such that .21 gghg +=−

Let 11 Aa ∈  and .22 Aa ∈  Then ( ) 011 =ag  and ( ) ,022 =ag  and ( )21 aaf +

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2212221121 aghaahaghaggahag +++=++−=+=

( ) ( ).212 aagh ++=  It follows that f extends to 2gh +  on M.

Now let N be a submodule of M and ( )MNHomf ,∈  with ( )Nf

cyclic. So ( ) ( )RnfNf =  for some .Nn ∈  Hence ( ).fKernRN +=  Since

M is PQ-injective, nRf |  extends on M and ( )fKerf |  extends on M to zero

homomorphism. By the preceding paragraph f extends on M.

(1) ⇒ (2) Let N be any cyclic submodule of M. The image of N under
any R-homomorphism is cyclic. By (1), any homomorphism from N to M
extends on M. Hence M is PQ-injective. To show M is GIN-module, let N
be a cyclic submodule of M and K be any submodule of M. Since KN ∩

N≤  and ,KKN ≤∩  so ( ) ( ) ( ).KNlKlNl SSS ∩≤+  Let ( ).KNlg S ∩∈

For KNkn +∈+  with Nn ∈  and ,Kk ∈  let ( ) ( ).ngknf =+  Then f is

a well-defined R-homomorphism from KN +  to M with ( ) =+ KNf

( ).Ng  Since ( )Ng  is cyclic submodule, by (1), f extends to Sh ∈  and so

( ) ( ) ( )knhknfng +=+=  for all Nn ∈  and .Kk ∈  Let .0=k  Then ( )ng
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( )nh=  for all Nn ∈  and so ( ).Nlhg S∈−  Let .0=n  Then ( ) 0=kh

for all Kk ∈  and so ( ).Klh S∈  Hence ( ) ( ) ( ).KlNlhhgg SS +∈+−=

Thus ( ) ( ) ( ).KlNlKNl SSS +=∩

Theorem 2.7. Let M be a right R-module and ( ).MEndS =  Then the

following are equivalent:

(1) M is quasi HN-injective.

(2) M is PQ-injective and ( ) ( ) ( )KlNlKNl SSS +=∩  for any finitely

generated submodule N and submodule K.

Proof. (2) ⇒ (1) First we suppose that MAAf →+ 21:  is an

R-homomorphism such that MAf A →| 1:
1

 extends to a Sg ∈  and

MAf A →| 2:
2

 extends to an Sh ∈  with ( )1Af  finitely generated. We

prove that f extends to an element of S. Let .21 AAx ∩∈  Then

( ) ( ) ( )xfxhxg ==  and so ( ) .0=− xhg  Then ( ).21 AAlhg S ∩∈−  By

(2), there exist ( )11 Alg ∈  and ( )22 Alg ∈  such that .21 gghg +=−

Let 11 Aa ∈  and .22 Aa ∈  Then ( ) ,011 =ag  ( ) ,022 =ag  and ( ) =+ 21 aaf

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) =+++=++−=+ 2212221121 aghaahaghaggahag

( ) ( ).212 aagh ++  It follows that f extends to 2gh +  on M.

Now let N be a submodule of M and ( )MNHomf ,∈  with ( )Nf

finitely generated. So ( ) ( ) ( ) ( )RnfRnfRnfNf t+++= "21  for some

....,,, 21 Nnnn t ∈  Let .21 RnRnRnK t+++= "  Then ( ).fKerKN +=

Since M is PQ-injective. If K is cyclic, then Kf |  extends to .1 Sf ∈

Assume that RnRnK 21 +=  is 2-generated. Then by the preceding

paragraph Kf |  extends to an .1 Sf ∈  By induction on the generators of

K, Kf |  extends to an element of S. Clearly ( )fKerf |  extends to an

element of S. As in the first paragraph f extends to an element of S.

(1) ⇒ (2) Let N be any cyclic submodule of M. The image of N under
any R-homomorphism is cyclic. By (1) any homomorphism from N to M
extends on M. Hence M is PQ-injective. To show M is GIN-module, let N
be a finitely generated submodule of M and K be any submodule of M.
Since NKN ≤∩  and ,KKN ≤∩  and so ( ) ( ) ( ).KNlKlNl SSS ∩≤+
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Let ( ).KNlg S ∩∈  For KNkn +∈+  with Nn ∈  and ,Kk ∈  let

( ) ( ).ngknf =+  Then f is a well defined R-homomorphism from KN +

to M. Since ( )Ng  is finitely generated, so is ( ).KNf +  By (1), f extends

to an Sh ∈  and so ( ) ( ) ( )knhknfng +=+=  for all Nn ∈  and .Kk ∈

Let .0=k  Then ( ) ( )nhng =  for all Nn ∈  and so ( ).Nlhg S∈−  Let

.0=n  Then ( ) 0=kh  for all Kk ∈  and so ( ).Klh S∈  Hence ( )hgg −=

( ) ( ).KlNlh SS +∈+  Thus ( ) ( ) ( ).KlNlKNl SSS +=∩

Theorem 2.8. Let M be a right R-module and ( ).MEndS =  Consider

the following conditions:

(1) M is quasi simple-injective.

(2) (a) ( ) ( ) ( )KlNlKNl SSS +=∩  for any submodules N and K with

N simple.

(b) Every homomorphism from a cyclic submodule of M to M with
simple image extends to an endomorphism of M.

Then (1) ⇒ (2).

Proof. (1) ⇒ (2) (a) To prove ( ) ( ) ( )KlNlKNl SSS +=∩  for any

submodule N and K with N simple, we may assume that ,0=KN ∩
otherwise that equality is obvious. Then ( ) .SKNlS =∩  Let .Sg ∈  For

KNkn +∈+  with Nn ∈  and ,Kk ∈  let ( ) ( ).ngknf =+  Then f is a

well defined R-homomorphism from KN +  to M with ( ) ( )NgKNf =+

simple. By (1), f extends to an Sh ∈  and so ( ) ( ) ( )knhknfng +=+=

for all Nn ∈  and .Kk ∈  Let .0=k  Then ( ) ( )nhng =  for all Nn ∈

and so ( ).Nlhg S∈−  Let .0=n  Then ( ) 0=kh  for all Kk ∈  and so

( ).Klh S∈  Hence ( ) ( ) ( ).KlNlhhgg SS +∈+−=  Thus ( ) =KNlS ∩

( ) ( )KlNl SS +  and so (2) (a) holds.

(1) ⇒ (2) (b) Clear by definitions.

Theorem 2.9. Let M be a right R-module and ( ).MEndS =  Consider

the following:

(1) M is quasi simple-injective.
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(2) (a) ( ) ( ) ( )KlNlKNl SSS +=∩  for any submodules N and K with

N cyclic.

(b) Every homomorphism from a cyclic submodule of M to M with

simple image extends to an endomorphism of M.

Then (2) ⇒ (1).

Proof. (2) ⇒ (1) Let N be a submodule of M and ( )MNHomf ,0 ∈≠

with ( )Nf  simple. So ( ) ( )RnfNf =  for some .0 Nn ∈≠  Hence =N

( )fKernR +  and f is defined on the cyclic submodule nR with ( )Nf

simple. By (2)(b), the restriction, say 1f  of f on nR extends to a g since

( ) ( )NfNf =1  is simple, and the restriction of f on ( )fKer  extends to an

.0=h  By HN technique and the condition 2(a), we show that f extends

on M as was done in the previous results:

Suppose that MAAf →+ 21:  is an R-homomorphism such that :
1Af |

MA →1  extends to a Sg ∈  and MAf A →| 2:
2

 extends to an Sh ∈

with 1A  cyclic. Let .21 AAx ∩∈  Then ( ) ( ) ( )xfxhxg ==  and so ( )xhg −

.0=  Then ( ).21 AAlhg S ∩∈−  By (2)(a) there exist ( )11 Alg S∈  and

( )22 Alg S∈  such that .21 gghg +=−  Let 11 Aa ∈  and .22 Aa ∈  Then

( ) ,011 =ag  ( ) ,022 =ag  and ( ) ( ) ( ) ( ) ( ) +−=+=+ 112121 aggahagaaf

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).212221222 aaghaghaghagh ++=+++=+  It follows

that f extends to 2gh +  on M.

Now let N be a submodule of M and ( )MNHomf ,∈  with ( )Nf

cyclic. So ( ) ( )RnfNf =  for some .Nn ∈  Hence ( ).fKernRN +=  Since

M is PQ-injective, nRf |  extends on M to 1f  and ( )fKerf |  extends on M to

zero homomorphism. By the preceding paragraph f extends on M and (1)

follows.

3. CS-modules with IN-conditions

In the rest of the paper, we discuss the implication between CSSES-

rings and IN-rings and give a proof to generalize Proposition 14 of [8].
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Lemma 3.1 [8, Corollary 12]. If R satisfies the condition that, for any

set { }IiAi ∈:  of right ideals such that ,0=∈ iIi A∩  ( )∑ ∈=
Ii iR AlR

and RR  satisfies ( ),2GC  then R is a semiperfect right continuous ring

with a finitely generated essential right socle. In particular, R is left and

right Kasch.

Motivated by preceding Lemma 3.1 we prove the following:

Theorem 3.2. Let R be a semiperfect ring. If R satisfies the condition

that, for any set { }IiAi ∈:  of right ideals such that ,0=∈ iIi A∩  =R

( )∑ ∈Ii iR Al ,  then R is a right CSSES-ring.

Proof. Let R be a ring satisfying the condition that, for any set { :iA

}Ii ∈  of right ideals such that ,0=∈ iIi A∩  ( )∑ ∈=
Ii iR AlR ,  by [8,

Proposition 11(2)] RR  is finitely cogenerated. In particular, ( )RRSoc  is

essential in .RR  Also by [8, Theorem 8], RR  is π-injective (that is, quasi-

continuous). Hence R is right CSSES-ring.

Definition 3.3. A right R-module M is called strongly Ikeda-
Nakayama module if, for any set { }IiAi ∈:  of submodules such that

( ) ( )∑ ∈∈ =
Ii iSiIiS AlAl .∩  M is called dual module if every submodule N

of M is a right annihilator of a subset of ( ).MEndS R=  A ring R is called

strongly right-IN if, for any set { }IiAi ∈:  of right ideals such that

( ) ( )∑ ∈∈ =
Ii iRiIiR AlAl .∩  The ring R is called right dual if every right

ideal of R is a right annihilator.

The following example shows that there is no implication between
right CSSES-rings and right IN-rings. Notice that the following is an
interesting example to be considered (see [6, Example 6.42]).

Example 3.4. There exists a commutative IN-ring R such that R is
neither semiperfect nor GC2 nor Kasch nor dual. Hence R is not CSSES-
ring.

Proof. Let R be the trivial extension of Z  with the Z -module .
2∞

Z

Then R is also considered as the matrix ring with usual matrix operations
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.,:
0 2 








∈∈







= ∞ZZ mn

n

mn
R

We will prefer to use matrix form for R

( ) ( )








≤+∈







= ∞2

21:
00

0
ZZZm

m
RSoc

is essential minimal ideal, so R is finitely cogenerated.

Let { }IiAi ∈:  be any right ideals (in fact they are two sided ideals)

of R such that .0=∈ iIi A∩  Then ( )∑ ∈
=

Ii iR AlR  since at least one of

iA  is zero.

Moreover, R is IN-ring. Clear: If A is a nonzero ideal in R, then it is

easily checked that ( ) ( ).RRSocAl =  If 1A  and 2A  are nonzero, then

21 AA ∩  is nonzero and so ( ) ( ) ( ) ( ).2121 AlAlRSocAAl R +==∩  Assume

at least one of 1A  and 2A  is zero. Then 21 AA ∩  is zero and so ( ∩1Al

) ( ) ( ).212 AlAlRA +==

But R contains nonzero divisors which are not invertible, so R is not

( ).2GC  In fact let .
30

03








=a  Then any annihilator of a is zero. But a is

not invertible, and so .RaR ≅  Hence aR is not direct summand since R

is uniform.

Let

.,:
30

3
2 








∈∈







= ∞ZZ mn

n

mn
I

Clearly IR  is a simple R-module and IR  is not isomorphic to the

minimal ideal ( )RSoc  of R, since IR  and ( )RSoc  have distinct orders.

Hence R is not Kasch. Since ( ) ( )RJRSoc =  and ( )RJR  is not

semisimple. Hence R is not semiperfect and so is not CSSES-ring. If R

were right dual, then R would be Kasch. Hence R is not dual.

The following lemma generalizes Proposition 14 of [8].
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Lemma 3.5. Let R be a ring. Consider the following:

(1) Every closed right ideal of R is a right annihilator of a finite subset

of R.

(2) R is right CS-ring.

(3) R is right continuous.

Then (1) ⇔ (2), (3) ⇒ (1). Suppose further that every finitely generated left

ideal of R is a left annihilator. Then (1) ⇒ (3).

Proof. Note that a ring R is right continuous if and only if

( ) += PlR  ( )Ql  for any right ideals P and Q with ,0=QP ∩  (see

namely [6, Theorem 6.31]).

(1) ⇒ (2) and (3). Let I and K be right ideals of R that are

complements of each other. Since they are closed, as in [8, Proof of

Proposition 14, (1) ⇒ (2)] ( ) ( ).KlIlR RR +=  Hence RR  is right quasi-

continuous. In particular R is right CS-ring.

(3) and (2) ⇒ (1). Clear from definitions.

Lemma 3.6. Let RM  be a right R-module and ( ).MEndS R=

Consider the following:

(1) ( ) ( ) ( )BlAlBAl SSS +=∩  for all submodules A and B of .RM

(2) For any submodules A and B of RM  with ,0=BA ∩  ( )AlS S=

( ).BlS+

(3) MS  is a CS-module as a left S-module.

Then (1) ⇒ (2) and (2) ⇔ (3).

Proof. (1) ⇒ (2) is obvious.

(2) ⇒ (3) Clear from [8, Corollary 4] since M is faithful left S-module.

(3) ⇒ (2) Let A be any submodule of M. By Zorn’s lemma there exists

a direct summand K of M such that A is essential in K. Let .LKM ⊕=

By (3) ( ) ( ).LlKlS SS +=  Since ( ) ( )AlKlKA SS ≤≤ ,  and so ( )AlS S=

( ).LlS+
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Proposition 3.7. Let RM  be a right R-module and consider the

following:

(1) RM  is CS-module and every idempotent of ( )RMEnd  is central.

(2) RM  is CS-module and every direct summand of RM  is fully

invariant.

(3) RM  is CS-module and duo module.

Then (1) ⇔ (2), and (3) ⇒ (1), (2).

Proof. (1) ⇒ (2) Let K be any direct summand of M, Kπ  be the

idempotent corresponding to K in S and Sf ∈  any. By (1) .ff KK π=π

Hence ( ) ( ) ( ) ( ) KMKfMfKf KKK =π≤π=π=  and (2) follows.

(2) ⇒ (1) Let π be any idempotent in S and Sf ∈  any. Since ( )Mπ

and ( ) ( )Mπ−1  are direct summands of M, by (2) ( ) ( )MMf π≤π  and

( ) ( ) ( ) ( ).11 MMf π−≤π−  Left multiply ( ) ( )MMf π≤π  by π−1  to obtain

( ) .01 =ππ− f  Then .ππ=π ff  Left multiply ( ) ( ) ( ) ( )MMf π−≤π− 11  by

π to obtain ( ) .01 =π−πf  Then .ππ=π ff  Hence .π=π ff  Thus π is central

idempotent of S.

(3) ⇒ (1) and (2) Clear.

The converse to Proposition 3.7 of [(3) ⇒ (1)] is false by Faith-Menal’s

example as following (see namely [6, Example 8.16]).

Example 3.8. Let D be any countable, existentially closed division

ring over a field ( ),, xFDRF F⊗=  and ( )






 ∈∈|



= DbRa

a

ba
DRT ,

0
,

denote the extension of D by R. Then the ring ( )DRT ,  is not a duo ring

and every idempotent of ( )DRT ,  is central.

Proof. It is obvious that the ring ( )DRT ,  is not a duo, since it is not

a commutative ring. It is easy to check that the only direct summands of

( )DRT ,  are itself and zero right ideal or it has the identity and zero as

the only idempotents. Hence every idempotent of ( )DRT ,  is central.
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