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Abstract 

By using well-known Jacobian theta function additive identities, a 
formula of Jacobian theta function is obtained. A product formula of 
theta functions is also established. To illustrate the application of these 
two formulas, we derive some interesting modular equations of degree 
three, five, seven and nine. 

1. Introduction 

We suppose, throughout this paper, q denotes ( ),exp τπi  where τ has 

positive imaginary part. To carry out study, we need some basic facts about 
the Jacobian theta functions ( ) ( ) ( ),,, 321 τ|θτ|θτ|θ zzz  and ( )τ|θ z4  which 

are defined as 
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From this, we readily find that ( )τ|θ z1  is an odd function and others are 

even functions and that 

( ) ( ) ( ) ( ),, 1
21

111 τ|θ−=τ|πτ+θτ|θ−=τ|π+θ −− zeqzzz iz  (5) 

( ) ( ) ( ) ( ),, 2
21

222 τ|θ=τ|πτ+θτ|θ−=τ|π+θ −− zeqzzz iz  (6) 

( ) ( ) ( ) ( ),, 3
21

333 τ|θ−=τ|πτ+θτ|θ=τ|π+θ −− zeqzzz iz  (7) 

( ) ( ) ( ) ( )., 4
21

444 τ|θ−=τ|πτ+θτ|θ=τ|π+θ −− zeqzzz iz  (8) 

Using the well-known Jacobi triple product identity [2, pp. 21, 22], we 
have 

( ) ( ) ( ) ,;,,sin2 22222241
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( ) ( ) ( ) ,;,,cos2 22222241
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see for example, [7, p. 469]. For brevity, by ( ),2 τθ  ( )τθ3  and ( ),4 τθ  we 

will represent ( ),02 τ|θ  ( )τ|θ 03  and ( ),04 τ|θ  respectively. 

In the course of searching, we require the following Lemmas 1 and 2 can 
be found in [1] or [7]. 

Lemma 1. If the elliptic function f has no poles, then it is constant. 

Lemma 2. An elliptic function has two poles at least. 

Now we recall the following additive formulas (see for example [3, 4, 6]). 

Theorem 1. Let x, y be any complex numbers. Then 

( ) ( ) ( ) ( ) ( ) ( ),2222 323211 τ|−θτ|+θ−τ|+θτ|−θ=τ|θτ|θ yxyxyxyxyx  (13) 

( ) ( ) ( ) ( ) ( ) ( ),2222 323222 τ|−θτ|+θ+τ|+θτ|−θ=τ|θτ|θ yxyxyxyxyx  (14) 

( ) ( ) ( ) ( ) ( ) ( ),2222 332233 τ|−θτ|+θ+τ|+θτ|−θ=τ|θτ|θ yxyxyxyxyx  (15) 

( ) ( ) ( ) ( ) ( ) ( ),2222 223344 τ|−θτ|+θ−τ|+θτ|−θ=τ|θτ|θ yxyxyxyxyx  (16) 

from the above equations, we are able to deduce that 

Theorem 2. Let x, y be any complex numbers. Then  

( ) ( ) ( ) ( ) ( ) ( ),222 333344 τ|−θτ|+θ=τ|θτ|θ+τ|θτ|θ yxyxyxyx  (17) 

( ) ( ) ( ) ( ) ( ) ( ),222 224433 τ|−θτ|+θ=τ|θτ|θ−τ|θτ|θ yxyxyxyx  (18) 

( ) ( )τ|θτ|θ 22 22 yx  
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2. Two Formulas of the Theta Functions and their Proofs 

Theorem 3. Let x, y and a be any complex numbers. Then 

( ) ( ) ( ) ( )τ|+θτ|+θτ|θτ|θ ayaxyx 3333  

( ) ( ) ( ) ( )τ|+θτ|+θτ|θτ|θ− ayaxyx 4444  

( ) ( ) ( ) ( ).222 2223 τ|θτ|++θτ|−θτ|−θ= aayxyxyx  (20) 

Proof. For brevity, we set 

( ) ( ) ( ) ( ),, 4433 τ|θτ|θ=′τ|θτ|θ= yxAyxA  

( ) ( ) ( ) ( ),, 4433 τ|+θτ|+θ=′τ|+θτ|+θ= ayaxBayaxB  

.BAABW ′′−=  

By (21) and (22), we readily find that 

( ) ( ),222 33 τ|−θτ|+θ=′+ yxyxAA  

( ) ( ),222 22 τ|−θτ|+θ=′− yxyxAA  

( ) ( ),222 33 τ|−θτ|++θ=′+ yxayxBB  

( ) ( ).222 22 τ|−θτ|++θ=′− yxayxBB  

Substituting these in the identity 

( ) ( ) ( ) ( ) ( )BBAABBAABAAB ′+′−+′−′+=′′−2  

and using (23), we obtain that 

( ) ( ) ( ) ( )τ|θτ|++θτ|−θτ|−θ= aayxyxyxW 2223 222  

which is what we intend to prove. 

Theorem 4. Let x be any complex number and k be any natural number. 
Then  
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Proof. Let 
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noting that ( )
2

122221 +
=+++

kkk  and .12 =π− kie  From (5)-(8), we 

are able to find that 

( ) ( ),xfxf =π+  

( ) ( ) ( ) ( ).12212 xfeqxf ixkk +−+−=πτ+  

From above two identities, we deduce that ( ) ( )( |+θ xkxf 123  

( ) )τ+ 12k  is an elliptic function with periods π and πτ. It is clear that 

(( ) ( ) )τ+|+θ 12123 kxk  has only a simple zero at ( )
( )122

12
+

τ++π
= k

xkx  in 

the  period parallelogram. By Lemmas 1 and 2, we know that 
( ) (( ) ( ) )τ+|+θ 12123 kxkxf  is an independent x. To determine the 

constant ( ) ( ) ( )( ),12123 τ+|+θ= kxkxfC  we set ,0=x  using the product 

representations of theta functions, after simple reduction, we obtain 

( )
( )

.
;

;
1212

12

∞
++

+
∞= kk

k

qq
qq

C  Thus, we finish the proof of Theorem 4. 

3. Special Cases and Applications of Theorems 

In this section, we find some well-known formulas of theta functions 
which happen to be special cases of Theorems 3 and 4. At the same time, we 
find some interesting results of theta functions. 

In (24), setting ,0=== ayx  we get that 

( ) ( ) ( ) ( ) ( ).222 2
223

4
4

4
3 τθτθτθ=τθ−τθ  (22) 

Using (14) and (15), we are able to know that 

( ) ( ) ( ).222 2
223 τθ=τθτθ  (23) 
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From above two identities, we get following famous Jacobi identity: 

( ) ( ) ( ).4
2

4
4

4
3 τθ=τθ−τθ  (24) 

In (24), letting yx =  and ,0=a  we are able to find that 

( ) ( ) ( ) ( ).22
3
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4
4

4
3 τ|θτθ=τ|θ−τ|θ xxx  (25) 

In (24), letting ,ayx ==  we are able to find that 
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By the way, in (23), letting ,yx =  we have 

( ) ( ) ( ) ( ).222 2232 τ|θτθ=τ|θτ|θ xxx  (27) 

Now we study (25). We know easily that (21) holds too for ( )τ|θ x2  and 

( ).4 τ|θ x  By (7), we note that, when ,0=x  
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in which .4,3,2=j  Combining with (21), we have 
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In the identity above, letting 1=k  and ,2=k  we get that [6, p. 108] 
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Similarly, we could get that 
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for ,4,3,2=j  (32) 
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and so on. From the above conclusion, we get that 

Theorem 5. We have 
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Proof. In (24), setting ,3
π

=== ayx  we easily know that 
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From (31), we get 

( ) ( ) ( ).222 2
232 τθ=τθτθ  

Substituting (34) into the identity (39) and simplifying the resulting 
equation, we arrive at Theorem 5. 
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Theorem 6. We have  
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Proof. In (24), letting ,5
1 ayx =π==  we get that 
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Substituting (35) into the identity above and after simplification gives 
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This completes the proofs of the theorem. 

Using the same method, we derive following two theorems which are 
about modular equations of degree seven and nine. The proofs are omitted. 

Theorem 7. We have [5, p. 138] 

( ) ( ) ( ) ( ) ( ) ( ).777 224433 τθτθ=τθτθ−τθτθ  (37) 

Theorem 8. We have that 
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