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Abstract

By using well-known Jacobian theta function additive identities, a
formula of Jacobian theta function is obtained. A product formula of
theta functions is also established. To illustrate the application of these
two formulas, we derive some interesting modular equations of degree
three, five, seven and nine.

1. Introduction

We suppose, throughout this paper, q denotes exp(wit), where t has

positive imaginary part. To carry out study, we need some basic facts about
the Jacobian theta functions 6;(z| 1), 0,(z|t), 63(z|t), and 04(z|t) which

are defined as
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0,(z|7) = —ig¥* Z (—1)"q"(n+De(2n+D)iz

N=—o0

= 2q1/4z (-1)"g" "D sin(2n + 1)z, (1)
n=0

0,(z|7) = q]/4 Z qn(n+1)e(2n+1)iz

N=—o
- 2q]/42q”(”+1) cos(2n +1)z, )
n=0
= 2 o 22
05(z|1) = Z q" e =14 ZZq” cos 2nz, (3)
n=—o0 n=0
i 2 o i 2
04(z]7) = Z (-1)"g" e®"M =1+ 22:(—1)”qn cos 2nz. (4)
n=-—oo n=0

From this, we readily find that 6;(z| ) is an odd function and others are
even functions and that

0y(z +m|t) = -0y(z7), Oy(z +mt|7) = -q e POy(z[1),  (5)
02(z+m|t) = —0p(z|1), Op(z+7t|7) = q e 0,(2]7),  (6)
03(z + 1| 1) = 03(z7), Og(z + m1|7) = —q e 704(z 1), )
04(z+m|1) = 04(2|7), O4(z +m1|7) = —q e ?P04(z]7).  (8)

Using the well-known Jacobi triple product identity [2, pp. 21, 22], we
have

01(z|7) = 2a¥*(sin 2)(q%, q%27, q% 7%, ¢2),, ©)

0,(z]7) = 29%4(cos 2) (g%, —q%e??, —q%e2%; ¢?),, (10)
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03(z|7) = (0%, -qe*?, —-qe™?%; ¢%),,, (12)
04(z7) = (4%, 0™, qe ™% ¢%),,, (12)

see for example, [7, p. 469]. For brevity, by 0,(t), 63(t) and 64(t), we
will represent 6,(0|t), 63(0]t) and 6,4(0| ), respectively.

In the course of searching, we require the following Lemmas 1 and 2 can
be found in [1] or [7].

Lemma 1. If the elliptic function f has no poles, then it is constant.
Lemma 2. An elliptic function has two poles at least.
Now we recall the following additive formulas (see for example [3, 4, 6]).

Theorem 1. Let X, y be any complex numbers. Then
01(x|1)01(y[1) = O2(x = y[27)03(x + ¥|27) = O(x + y|27)03(X - y|21), (13)
02(x]7)02(y 1) = 02(x = y[21)03(x + y|27) + O (x + ¥ | 27) 03(x — y| 21), (14)
03(x[1)03(y[1) = 02(x = y[21)02(X + ¥|27) + 63(x + ¥ | 27)03(X — ¥ | 21), (15)
04(x[1)04(y|7) = 03(x — y[27)03(X + y|21) — 02(X + y|27)02(X — Y| 21), (16)
from the above equations, we are able to deduce that

Theorem 2. Let x, y be any complex numbers. Then
04(x[1)04(y 1) + 03(x|1)03(y[1) = 203(X + ¥|21)03(x — y|21), (17)
03(x]7)03(Y[1) = 04(x[1)04(y[7) = 205(x + y|27)05(x — y|21), (18)

0,(x|27)0,(y|21)

= %[92(%3’“)92()(; ’ 'Tj _el(xz : 'Tjel(x N 'TH' 19
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2. Two Formulas of the Theta Functions and their Proofs

Theorem 3. Let x, y and a be any complex numbers. Then
63(x]1)03(y[1)03(x + a|1)03(y + al )
= 04(X[1)04(y | 1)04(x + a|1)04(y + al 1)
= 203(x — ¥[21)0,(x — ¥|21)0,(x + y + a|1)0,(a] 7). (20)
Proof. For brevity, we set
A =03(x|1)03(y[1), A =04(x|T)04(y|T),
B=03(x+a|t)03(y+alt), B =04(x+alt)0s(y+alr),
W = AB - AB'".
By (21) and (22), we readily find that
A+ A =203(x + y|21)03(x — y|21),
A— A =20,(x+y|21)0,(x — y|21),
B+ B’ =203(x+y+al|2t)03(x — y|21),
B—B' =20,(x+y+al2t)0,(x — y|21).
Substituting these in the identity
2(AB — AB') = (A+ A)(B-B')+(A- A)(B +B’)
and using (23), we obtain that
W = 203(x = y[21)02(x - y[21)02(x + y + a[1)02(al 1)
which is what we intend to prove.

Theorem 4. Let x be any complex number and k be any natural number.

Then
2k

| IO x+;n|r
8 2k +1
r=0

2k +1

= (qzﬁ;l.q;?kﬂ) 63((2k +1)x|(2k +1)7). 1)

0
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Proof. Let
2k r
f(X) = HG;{X +mﬂf|'€),
r=0

2K(2k+1)

5 d e 2™ — 1. From (5)-(8), we

noting that 1+ 2 + --- + 2k =
are able to find that

f(x+n)= f(x),
f(X I TC‘E) _ q—(2k+1)e—2(2k+1)ix f (X)

From above two identities, we deduce that f(x)/03((2k +1)x|
(2k +1)7) is an elliptic function with periods = and =t. It is clear that

n+(2k +)xt .
2(2k +1)

the period parallelogram. By Lemmas 1 and 2, we know that
f(x)/063((2k +1)x|(2k +1)t) is an independent x. To determine the

constant C = f(x)/03((2k +1)x|(2k +1)t), we set x = 0, using the product
representations of theta functions, after simple reduction, we obtain

03((2k +1)x|(2k +1)t) has only a simple zero at x =

.\ 2k+1
C= (4 ) . Thus, we finish the proof of Theorem 4.
(q2k+1. q2k+1)
! ©

3. Special Cases and Applications of Theorems

In this section, we find some well-known formulas of theta functions
which happen to be special cases of Theorems 3 and 4. At the same time, we
find some interesting results of theta functions.

In (24), setting x = y = a = 0, we get that
03(t) - 04(7) = 203(21)0,(21)03(x). (22)
Using (14) and (15), we are able to know that

203(21)0,(21) = 03(7). (23)
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From above two identities, we get following famous Jacobi identity:
03(t) ~ 04(c) = 03(v). (24)
In (24), letting x = y and a = 0, we are able to find that
03(x|7) - 03(x| 1) = 03(x)02(2x| 7). (25)
In (24), letting x = y = a, we are able to find that
65 (x|7)65(2x|7) - O3 (x| 1)0F(2x| 7) = 65(1)02(3x| 1)0(x|7).  (26)
By the way, in (23), letting x = y, we have
20,(x|27)03(x | 27) = 0,(1)0,(X]| 7). (27)

Now we study (25). We know easily that (21) holds too for 6,(x|t) and
04(x|1). By (7), we note that, when x = 0,

r 2k +1—r
Gi(m"")—ei(“‘w"")

2k +1—r 2k +1—r
-0 P ) = 0 Ferr ) (28)

inwhich j =2, 3, 4. Combining with (21), we have

k .\ 2k+1
Hej(r)eﬁ(ﬁmj: (qz(kcfl;qlgkﬂ) 0;(2k+D7).  (29)

o0

In the identity above, letting k =1 and k = 2, we get that [6, p. 108]

3

1 (@ 9) :
ej(r)ef(gnnj = (C13'—q39j(31) for j =23 4 (30)

! o0

2(1 | Vo2 2 (a; @3, .
GJ(I)GJ(gnHjBJ(th) = (qS—qS)eJ(ST) for J = 2, 3, 4, (31)

! 0
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Similarly, we could get that

ej(r)ef(%n|r)e§(§n|r)eﬁ($n|r) - %ej(h)

! 0

for j =2, 3 4, (32)

Oj(T)G%(%7t|Tj@%(%n|rj6%(%n|r)9%(gn|r) = %Oj(%)

for j=2,3 4, (33)
and so on. From the above conclusion, we get that

Theorem 5. We have

03(3t) 03(3 %6°)%

460 32( V) _gg 99 2 @% a®)5(-0% a®)5(-a% %), (34)
04(1)  03(7) (a; a)s,

Proof. In (24), setting x =y = a = % we easily know that

6%[%n|t)9§(%n|rj - eﬁ@mr)eﬁ(énn)
_ 293(21)62(21)92(1)92(%Tc|rj.

Noting that ej(%mrj = e,—(énuj for j =2, 3, 4, we obtain

eﬁ(%m) - eg(%mj _ 293(21)92(21)92@)92(%71 | r). (35)

From (31), we get
20,(21)03(21) = 03(7).

Substituting (34) into the identity (39) and simplifying the resulting
equation, we arrive at Theorem 5.
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Theorem 6. We have

04(5t) _ 03(6v) _, (@5 0°), 2. _ |
00 B3 g e @ e a0, 39

0

=

Proof. In (24), letting x = y = =7 = a, we get that

9%(%n|rj9§(én|t) - eﬁ@mr)eﬁ(énu)

= 263(21)62(21)92(% | 1)62(% 7| rj.

ol

Substituting (35) into the identity above and after simplification gives

63(51)04(7) — 04(57)03(7)

5. .5
- 4Q%93(T)94(T)(q2: 02! (~a% g2 (-a'%; ot©),,.

This completes the proofs of the theorem.

Using the same method, we derive following two theorems which are
about modular equations of degree seven and nine. The proofs are omitted.

Theorem 7. We have [5, p. 138]

V03(77)03(t) — 4/04(77)04(1) = 4/0,(77)0(7). (37)

Theorem 8. We have that

Joe e
03(1) 04(t)

@”; o), (@% a®)%(-a% 9?),(-q'%; ¢'®)
ry £ 0 o o 38
@ (-a% q®), 9
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