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Abstract 

This paper is concerned with the problem of stability analysis for 
neural networks with discrete and unbounded distributed delays. In 
terms of linear matrix inequalities, a new delay-dependent condition is 
proposed, which ensures the existence of a unique equilibrium point 
and its global asymptotic stability of the delayed neural networks. A 
numerical example is given to demonstrate the reduced conservatism 
of the condition. 

1. Introduction 

In the past two decades, neural networks have found many applications 
in pattern classification, associative memory and combinatorial optimization. 
It is well known that the stability of neural networks plays an important role 
in such applications. In hardware implementation of neural networks, time 
delays will unavoidable occur due to the finite switching speed of amplifiers. 
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The existence of time delays in a neural network may be a source of 
oscillation and instability [1]. Therefore, the problem of stability analysis      
of delayed neural networks has attracted extensive attention. Until now, 
however, most studies are based on the assumption that the time delays are 
discrete. Although this assumption is not unreasonable, as noted in [2], it is 
more appropriate to introducing continuously distributed delays such that the 
distant past has less influence compared to the recent behavior of the state. 
For previous stability results of neural networks with distributed delays, 
please refer to [3-5] and the references cited therein. 

The purpose of this paper is to study further the global asymptotic 
stability of neural networks with both discrete and unbounded distributed 
delays given in [5]. A new delay-dependent condition for the existence of a 
unique equilibrium point and its global asymptotic stability of the networks 
is developed by using the Lyapunov-Krasovskii functional method. The 
condition is expressed in terms of linear matrix inequalities (LMIs), and 
hence can be easily verified with the help of the Matlab LMI Toolbox. A 
numerical example is provided to demonstrate the less conservatism of the 
obtained result by comparing with those reported recently in the literature. 

2. Problem Formulation 

Consider the following neural network with discrete and unbounded 
distributed delays [5]: 
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for ,...,,2,1 ni =  where n denotes the number of neurons in the system, 

( )tui  is the state of the ith neuron at time t, 0>ic  is the passive decay rate, 
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,ijw  ija  and ijb  are the synaptic connection strengths, iI  is the external 

constant input, 0>τ  is the discrete transmission delay from one neuron to 
another, jk  is a real value non-negative continuous function defined on 

[ )∞,0  satisfying ( )∫
∞

=
0

,1dssk j  and jg  is the neuron activation which is 

assumed to be bounded and to satisfy ( ( ) ( )) ( ) jjj lgg ≤ξ−ξξ−ξ≤ 21210  

for any ,, 21 R∈ξξ  ,21 ξ≠ξ  where ,jl  ,...,,2,1 nj =  are positive constants. 

With the boundedness of functions ,jg  ,...,,2,1 nj =  system (1) has  

at least one equilibrium point [1]. Suppose that [ ]Tnuuuu 21=  is an 

equilibrium point of the system. Then, we can shift u  to the origin by taking 

the transformation ( ) ( ) ,uux −⋅=⋅  which puts system (1) into the following 

form: 

( ) ( ) ( )( ) ( )( ) ( ) ( )( )∫ ∞−
−+τ−++−=

t
dssxfstKBtxAftxWftCxtx ,  (2) 

where 

( ) ( ) ( ) ( )[ ] ( ),...,,,,...,,, 2121 nn cccdiagCstkstkstkdiagstK =−−−=−  

[ ] ,nnijwW ×=  [ ] ,nnijaA ×=  [ ] ,nnijbB ×=  [ ] ,21
T

nxxxx =  

( ) ( ) ( ) ( )[ ]Tnn xfxfxfxf 2211=  

with ( ) ( ) ( ),jjjjjjj uguxgxf −+=  ....,,2,1 nj =  Note that nfff ...,,, 21  

satisfy 

 ( ) jjjj lxxf ≤≤0  and ( ) .00 =jf  (3) 

The following fact will be used in the proof of our main result. 

Fact 1. For any real matrices ,iM  5...,,2,1=i  with appropriate 

dimensions, we have 
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3. Stability Condition 

Theorem 1. The origin of system (2) is the unique equilibrium point and 
it is globally asymptotically stable if there exist matrices ,...,,, 521 MMM  

,01 >P  ,03 >P  06 >P  and diagonal matrices ,02 >P  ,04 >P  ,05 >P  

,07 >P  08 >P  such that the following LMI holds: 
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 (4) 

where 

,,, 222221211261111 PCMCMZPMCMZPMMZ TTT ++=++=τ++=  

,, 854224753223 LPPCMAMZLPPCMWMZ TT +−+−=+++−=  

,2 7433333 PPPMWWMZ TT −++−−=  

( ),,2 854683
1

22
1

4444 LPPZPPLPLMAAMZ TT −τ−=−−−−−= −−  

[ ]....,,,,, 2166645555 n
TT llldiagLPZPMBBMZ =τ−=−−−=  
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Proof. First, we will show the origin of system (2) is the unique 
equilibrium point. Let x  be the equilibrium point of system (2). Then, we 
have 

 ( ) ( ) .0=+++− xfBAWxC  (5) 

Multiplying both sides of (5) by 

[ ( ) ( )]54322 MMMxfMx TT +++  

gives 

[ ( ) ( )] ( ) ( )[ ] .02 5432 =+++−+++ xfBAWxCMMMxfMx TT  (6) 

Noting that (6) can be rewritten as 
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By (3), it follows from (7) that 

[ ( ) ( ) ( )] [ ( ) ( ) ( )] .0≥Ω TTTTTTTTT xfxfxfxxfxfxfx  

On the other hand, (4) gives .0<Ω  Thus we have ,0=x  which means 

the origin of system (2) is the unique equilibrium point. 

Next, we prove that the origin of (2) is globally asymptotically stable. To 
the end, the following Lyapunov-Krasovskii functional is constructed: 
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Calculating the time derivative of ( )( )txV  yields 
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By the Cauchy inequality (see [4]), we obtain 
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In the light of the well-known Jensen inequality, we have 
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In view of (3), we obtain 
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If 

 ,0<Ψ  (14) 

holds, then ( )( ) 0<txV  for all ( ) .0≠tx  That is, the origin of system (2) is 

globally stable under condition (14). The proof of Theorem 1 is completed 
due to the fact that (14) is equivalent to (4). 

4. Numerical Example 

Example 1. Consider a second-order neural network (2) with 
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( ) ( ) .2,1,tanh == jxxf jjj  

Note that (3) holds with .121 == ll  

For this delayed neural network, it can be verified that the stability 
conditions in [4] and [5] are not satisfied. Thus the conditions in [4] and [5] 
fail to check whether the system is globally asymptotically stable or not. 
However, by resorting to the Matlab LMI Toolbox, we find the LMI (4) is 
feasible. Hence, by Theorem 1, we can conclude that the system is globally 
asymptotically stable. 
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