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Abstract

In this paper, we construct the g-extension of the second kind Euler
numbers E, q and polynomials E, q(x). From these numbers and

polynomials, we establish some interesting identities and relations.

1. Introduction

Throughout this paper, we always make use of the following notations:
N =1{1, 2, 3, -1} denotes the set of natural numbers, R denotes the set of

real numbers, C denotes the set of complex numbers, Z,, denotes the ring
of p-adic rational integers, Q, denotes the field of p-adic rational numbers,

and C, denotes the completion of algebraic closure of Q.

Let v, be the normalized exponential valuation of C, with | p ||0 =
p_vp(p) = p_l. When one talks of g-extension, q is considered in many
ways such as an indeterminate, a complex number q € C, or p-adic number
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q e Cp. If g € C, then we normally assume that | q| <1. If g € Cp, then
1

we normally assume that | g —1[, < p P=1 5o that q* = exp(xlogq) for

| X ||O < 1. Throughout this paper, we use the notation:

[X]q = 1‘qq . cf[1,2,3,45].

Hence, Iimq_>1[x]q = x for any x with |x|p <1 inthe present p-adic case.

For

g €UD(Zy) =1{919 : Zy — C, is uniformly differentiable function},

Kim [1, 2] defined the p-adic integral on Z , as follows:

W(@=] 90dui00=lim > gD @D
p

0<x< pN

From (1.1), we obtain
n-1
1_1(9n) = (D" 14(9) + 2D ()" g(1), (see[1-3]),  (12)
1=0

where g,(x) = g(x + n).

First, we introduce the second kind Euler numbers E, and polynomials
En(x) (see [4]). The second kind Euler numbers E, are defined by the
generating function:

2¢t t"
F(t) = v =" (1.3)

_l.
1 =0 n!

We introduce the second kind Euler polynomials E(x) as follows:

Fx =22 et = S E D
' e +1 "l

n=0

(1.4)
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2. g-extension of the Second Kind Euler Polynomials

In this section, we introduce the g-extension of the second kind Euler
numbers E, o and polynomials E, 4(x) and investigate their properties. Let

Z. =NU{0}.
For g e C, with [1-q |p <1, g-extension of the second kind Euler

numbers E, o are defined by
Enq = jZ [2x + 1 du_3(x). 2.1)
p

By using p-adic integral on Z, we obtain

N_1
j [2x +1]gdu_y(x) = lim pz [2x + 1] (<)
Zp N —o0 o

oS Mgy
_2(1—QJ ZU( Ve g2

=0

=2 i (-1)™[2m + 1J5. (2.2)
m=0

By (2.1), we have the following theorem.

Theorem 1. For q e C, with [ g —1[; <1, we have

=2 i (-1)™[2m + 1]g.
m=0

We set

Fy(t) = Z‘)En'qﬁ
n=
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By using above equation and (2.2), we have

Fq(t) = Z;,)En,q o
n=

_ 22[(1_ jg[ ](—1)'q' 1+1q2.J%

= [2m+1],t
=2) (-D)"e a

(2.3)

Thus, g-extension of the second kind Euler numbers, E,  are defined by

means of the generating function

E (t)—ZZ( 1)m 2m+l

By using (2.1), we have

0

Z n,q n, ZI 2X+1]qu 1(X)_

n=0

B [2x+1]q
[, 0 a0,

By (2.3), (2.5), we have

[2x+1q B me [2m+1],
[, &7 dua0 = 22(1)

p

(2.4)

(2.5)

Next, we introduce g-extension of the second kind Euler polynomials
En,q(X). The g-extension of the second kind Euler polynomials E, 4(x) are

defined by

Enq(0) = [, [x+ 2y + chuy(y).
p

(2.6)
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By using p-adic integral, we obtain

En o(X) = Z(LJnZn: " (_1)Iq(x+1)l _1 (2.7)
n.4 1-q) &l 1+9% '
We set
Ryt )= En,q(x)%. (2.8)
n=0 :

By using (2.7) and (2.8), we obtain
= t" - [2m+1+x],t
Fat, )= > En,q(¥)— = 2> (-)Me Q. (2.9)
n=0 : m=0

Since [x +2y +1]; = [x] + a2y + 1], we easily see that

Enq(0= [ [x+2y+1jduy(y)
p

= 2%(—1)”‘[x +2m +1]g, (2.10)
m=0

with the usual convention of replacing (Eg " by En,q-

By (1.3), (1.4), (2.3), and (2.10), we have the following remark.
Remark 1. Note that
1) En,q(o) = En,q-

(2 1f g > 1, then E, q(X) = En(X), Ep g = Ep.
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() If g > 1, then Fy(x, t) = F(x, 1), Fy(t) = F(t).
By (2.7), we obtain the following theorem.

Theorem 2 (Property of complement).
E, g1(70) = (("4"En 4(x).

By (2.7), we have the following distribution relation:

Theorem 3. For any positive integer m(= odd ), we have

(M) nez,.
m

m-1
En, q(x) = [m]g Z (-1? Enqu
a=0
By (1.2), (2.1), and (2.6), we easily see that
1 S 1-1
Em,q(20) + (-D)" “Ep q = 2D (D" [20 + 1]g.
1=0
Hence, we obtain the following theorem.

Theorem 4. Let m € Z,. If n = 0(mod 2), then

n-1

Em,q(2n) - Em,q = 2> (<) "[21 +1]7.
1=0

If n =1(mod2), then
n-1 |
Em,q(2n) + Em,q = 2 (' [21 +1]].
1=0

From (1.2), we note that

[2x+3],t [2x+1],t
2¢t = j e d”—l(X”JZ e g (%)
p p

_ Z UZp [2x + 3]gdu—1(X) + _[Zp [2x + 1]gdp_1(x)j%

n=0
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o0

= Z(En,q(2)+ En,q)%-

Therefore, we obtain the following theorem.

Theorem 5. For n € Z_, we have
En,q(2) + Enq = 2
By Theorem 5 and (2.10), we have the following corollary.

Corollary 6. For n € Z,, we have
2
(Q°Eq + [Z]q)n +Eng =2
with the usual convention of replacing (E " by En,g-

3. The Analogue of the Euler Zeta Function

By using g-extension of second kind Euler numbers and polynomials,
g-Euler zeta function and Hurwitz g-Euler zeta functions are defined. These

functions interpolate the g-extension of second kind Euler numbers E; ¢,
and polynomials Enyq(x), respectively. Let g be a complex number with

|g|<1and h e Z. From (2.4), we note that

dk .
o F)| = 2mzzo(—1) [2m + 1

t=0

= Equ, (k € N)
By using the above equation, we are now ready to define g-Euler zeta
functions.
Definition 7. Let s € C. Then

Cqls) = 22 [2(n ?1 (3.)
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Note that Cq(s) is a meromorphic function on C. Note that, if g — 1, then
Cq(s) = &(s) which is the Euler zeta function (see [5]). Relation between

Qq(s) and Ey ¢ is given by the following theorem.

Theorem 8. For k € N, we have
Cq(_k) = Ek,q-

Observe that Z;q(s) function interpolates Ey 4 numbers at non-negative

integers. By using (2.9), we note that

dk

F (t X)
atk

=2 i (-)"[2x +1+ m]§ (3.2)
m=0

t=0

(G [Zees]

By (3.2) and (3.3), we are now ready to define the Hurwitz g-Euler zeta
functions.

and

= Ey q(x), for k e N. (3.3)

Definition 9. Let s € C. Then

Cq(s, x) = ZZ (D" (3.4)

[n+2x+l

Note that Qq(s, x) is a meromorphic function on C. Obverse that, if g — 1,
then (s, x) = £(s, x) which is the Hurwitz Euler zeta function (see [5]).

Relation between Cq (s, x) and Ey q(x) is given by the following theorem.
Theorem 10. For k € N, we have
Cq(_k’ X) = Ek,q(x)-

Observe that Qq(—k, x) function interpolates Ek|q(x) numbers at non-

negative integers.
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