ON THE q-EXTENSION OF SECOND KIND EULER POLYNOMIALS

C. S. Ryoo

Department of Mathematics
Hannam University
Daejeon 306-791, Korea

Abstract

In this paper, we construct the q-extension of the second kind Euler numbers $E_{n, q}$ and polynomials $E_{n, q}(x)$. From these numbers and polynomials, we establish some interesting identities and relations.

1. Introduction

Throughout this paper, we always make use of the following notations: $\mathbb{N}=\{1,2,3, \cdots\}$ denotes the set of natural numbers, \mathbb{R} denotes the set of real numbers, \mathbb{C} denotes the set of complex numbers, \mathbb{Z}_{p} denotes the ring of p-adic rational integers, \mathbb{Q}_{p} denotes the field of p-adic rational numbers, and \mathbb{C}_{p} denotes the completion of algebraic closure of \mathbb{Q}_{p}.

Let v_{p} be the normalized exponential valuation of \mathbb{C}_{p} with $|p|_{p}=$ $p^{-v_{p}(p)}=p^{-1}$. When one talks of q-extension, q is considered in many ways such as an indeterminate, a complex number $q \in \mathbb{C}$, or p-adic number
© 2012 Pushpa Publishing House
2010 Mathematics Subject Classification: 11B68, 11S40, 11S80.
Keywords and phrases: the second kind Euler numbers and polynomials, the q-extension of the second kind Euler numbers and polynomials.
$q \in \mathbb{C}_{p}$. If $q \in \mathbb{C}$, then we normally assume that $|q|<1$. If $q \in \mathbb{C}_{p}$, then we normally assume that $|q-1|_{p}<p^{-\frac{1}{p-1}}$ so that $q^{x}=\exp (x \log q)$ for $|x|_{p} \leq 1$. Throughout this paper, we use the notation:

$$
[x]_{q}=\frac{1-q^{x}}{1-q}, \quad \text { cf. }[1,2,3,4,5] .
$$

Hence, $\lim _{q \rightarrow 1}[x]_{q}=x$ for any x with $|x|_{p} \leq 1$ in the present p-adic case.
For
$g \in U D\left(\mathbb{Z}_{p}\right)=\left\{g \mid g: \mathbb{Z}_{p} \rightarrow \mathbb{C}_{p}\right.$ is uniformly differentiable function $\}$,
$\operatorname{Kim}[1,2]$ defined the p-adic integral on \mathbb{Z}_{p} as follows:

$$
\begin{equation*}
I_{1}(g)=\int_{\mathbb{Z}_{p}} g(x) d \mu_{-1}(x)=\lim _{N \rightarrow \infty} \sum_{0 \leq x<p^{N}} g(x)(-1)^{x} \tag{1.1}
\end{equation*}
$$

From (1.1), we obtain

$$
\begin{equation*}
I_{-1}\left(g_{n}\right)=(-1)^{n} I_{-1}(g)+2 \sum_{l=0}^{n-1}(-1)^{n-1-l} g(l) \text {, (see [1-3]), } \tag{1.2}
\end{equation*}
$$

where $g_{n}(x)=g(x+n)$.
First, we introduce the second kind Euler numbers E_{n} and polynomials $E_{n}(x)$ (see [4]). The second kind Euler numbers E_{n} are defined by the generating function:

$$
\begin{equation*}
F(t)=\frac{2 e^{t}}{e^{2 t}+1}=\sum_{n=0}^{\infty} E_{n} \frac{t^{n}}{n!} \tag{1.3}
\end{equation*}
$$

We introduce the second kind Euler polynomials $E_{n}(x)$ as follows:

$$
\begin{equation*}
F(x, t)=\frac{2 e^{t}}{e^{2 t}+1} e^{x t}=\sum_{n=0}^{\infty} E_{n}(x) \frac{t^{n}}{n!} \tag{1.4}
\end{equation*}
$$

2. q-extension of the Second Kind Euler Polynomials

In this section, we introduce the q-extension of the second kind Euler numbers $E_{n, q}$ and polynomials $E_{n, q}(x)$ and investigate their properties. Let $\mathbb{Z}_{+}=\mathbb{N} \cup\{0\}$.

For $q \in \mathbb{C}_{p}$ with $|1-q|_{p}<1$, q-extension of the second kind Euler numbers $E_{n, q}$ are defined by

$$
\begin{equation*}
E_{n, q}=\int_{\mathbb{Z}_{p}}[2 x+1]_{q}^{n} d \mu_{-1}(x) \tag{2.1}
\end{equation*}
$$

By using p-adic integral on \mathbb{Z}_{p}, we obtain

$$
\begin{align*}
\int_{\mathbb{Z}_{p}}[2 x+1]_{q}^{n} d \mu_{-1}(x) & =\lim _{N \rightarrow \infty} \sum_{x=0}^{p^{N}-1}[2 x+1]_{q}^{n}(-1)^{x} \\
& =2\left(\frac{1}{1-q}\right)^{n} \sum_{l=0}^{n}\binom{n}{l}(-1)^{l} q^{l} \frac{1}{1+q^{2 l}} \\
& =2 \sum_{m=0}^{\infty}(-1)^{m}[2 m+1]_{q}^{n} \tag{2.2}
\end{align*}
$$

By (2.1), we have the following theorem.
Theorem 1. For $q \in \mathbb{C}_{p}$ with $|q-1|_{p}<1$, we have

$$
\begin{aligned}
E_{n, q} & =2\left(\frac{1}{1-q}\right)^{n n-1} \sum_{l=0}^{n}\binom{n}{l}(-1)^{l} q^{l} \frac{1}{1+q^{2 l}} \\
& =2 \sum_{m=0}^{\infty}(-1)^{m}[2 m+1]_{q}^{n} .
\end{aligned}
$$

We set

$$
F_{q}(t)=\sum_{n=0}^{\infty} E_{n, q} \frac{t^{n}}{n!} .
$$

By using above equation and (2.2), we have

$$
\begin{align*}
F_{q}(t) & =\sum_{n=0}^{\infty} E_{n, q} \frac{t^{n}}{n!} \\
& =2 \sum_{n=0}^{\infty}\left(\left(\frac{1}{1-q}\right)^{n} \sum_{l=0}^{n}\binom{n}{l}(-1)^{l} q^{l} \frac{1}{1+q^{2 l}}\right) \frac{t^{n}}{n!} \\
& =2 \sum_{m=0}^{\infty}(-1)^{m} e^{[2 m+1]_{q} t} \tag{2.3}
\end{align*}
$$

Thus, q-extension of the second kind Euler numbers, $E_{n, q}$ are defined by means of the generating function

$$
\begin{equation*}
F_{q}(t)=2 \sum_{m=0}^{\infty}(-1)^{m} e^{[2 m+1]_{q} t} \tag{2.4}
\end{equation*}
$$

By using (2.1), we have

$$
\begin{align*}
\sum_{n=0}^{\infty} E_{n, q} \frac{t^{n}}{n!} & =\sum_{n=0}^{\infty} \int_{\mathbb{Z}_{p}}[2 x+1]_{q}^{n} d \mu_{-1}(x) \frac{t^{n}}{n!} \\
& =\int_{\mathbb{Z}_{p}} e^{[2 x+1]_{q}{ }^{t}} d \mu_{-1}(x) \tag{2.5}
\end{align*}
$$

By (2.3), (2.5), we have

$$
\int_{\mathbb{Z}_{p}} e^{[2 x+1]_{q} t} d \mu_{-1}(x)=2 \sum_{m=0}^{\infty}(-1)^{m} e^{[2 m+1]_{q} t}
$$

Next, we introduce q-extension of the second kind Euler polynomials $E_{n, q}(x)$. The q-extension of the second kind Euler polynomials $E_{n, q}(x)$ are defined by

$$
\begin{equation*}
E_{n, q}(x)=\int_{\mathbb{Z}_{p}}[x+2 y+1]_{q}^{n} d \mu_{-1}(y) \tag{2.6}
\end{equation*}
$$

By using p-adic integral, we obtain

$$
\begin{equation*}
E_{n, q}(x)=2\left(\frac{1}{1-q}\right)^{n} \sum_{l=0}^{n}\binom{n}{l}(-1)^{l} q^{(x+1) l} \frac{1}{1+q^{2 l}} . \tag{2.7}
\end{equation*}
$$

We set

$$
\begin{equation*}
F_{q}(t, x)=\sum_{n=0}^{\infty} E_{n, q}(x) \frac{t^{n}}{n!} \tag{2.8}
\end{equation*}
$$

By using (2.7) and (2.8), we obtain

$$
\begin{equation*}
F_{q}(t, x)=\sum_{n=0}^{\infty} E_{n, q}(x) \frac{t^{n}}{n!}=2 \sum_{m=0}^{\infty}(-1)^{m} e^{[2 m+1+x]_{q^{t}}} . \tag{2.9}
\end{equation*}
$$

Since $[x+2 y+1]_{q}=[x]_{q}+q^{x}[2 y+1]_{q}$, we easily see that

$$
\begin{align*}
E_{n, q}(x) & =\int_{\mathbb{Z}_{p}}[x+2 y+1]_{q}^{n} d \mu_{-1}(y) \\
& =\sum_{l=0}^{n}\binom{n}{l}[x]_{q}^{n-l} q^{x l} E_{l, q} \\
& =\left([x]_{q}+q^{x} E_{q}\right)^{n} \\
& =2 \sum_{m=0}^{\infty}(-1)^{m}[x+2 m+1]_{q}^{n} \tag{2.10}
\end{align*}
$$

with the usual convention of replacing $\left(E_{q}\right)^{n}$ by $E_{n, q}$.
By (1.3), (1.4), (2.3), and (2.10), we have the following remark.
Remark 1. Note that
(1) $E_{n, q}(0)=E_{n, q}$.
(2) If $q \rightarrow 1$, then $E_{n, q}(x)=E_{n}(x), \quad E_{n, q}=E_{n}$.
(3) If $q \rightarrow 1$, then $F_{q}(x, t)=F(x, t), \quad F_{q}(t)=F(t)$.

By (2.7), we obtain the following theorem.
Theorem 2 (Property of complement).

$$
E_{n, q^{-1}}(-x)=(-1)^{n} q^{n} E_{n, q}(x)
$$

By (2.7), we have the following distribution relation:
Theorem 3. For any positive integer $m(=$ odd $)$, we have

$$
E_{n, q}(x)=[m]_{q}^{\eta} \sum_{a=0}^{m-1}(-1)^{a} E_{n, q^{m}}\left(\frac{2 a+x+1-m}{m}\right), n \in \mathbb{Z}_{+} .
$$

By (1.2), (2.1), and (2.6), we easily see that

$$
E_{m, q}(2 n)+(-1)^{n-1} E_{m, q}=2 \sum_{l=0}^{n-1}(-1)^{n-1-l}[2 l+1]_{q}^{m} .
$$

Hence, we obtain the following theorem.
Theorem 4. Let $m \in \mathbb{Z}_{+}$. If $n \equiv 0(\bmod 2)$, then

$$
E_{m, q}(2 n)-E_{m, q}=2 \sum_{l=0}^{n-1}(-1)^{l+1}[2 l+1]_{q}^{m} .
$$

If $n \equiv 1(\bmod 2)$, then

$$
E_{m, q}(2 n)+E_{m, q}=2 \sum_{l=0}^{n-1}(-1)^{l}[2 l+1]_{q}^{m} .
$$

From (1.2), we note that

$$
\begin{aligned}
2 e^{t} & =\int_{\mathbb{Z}_{p}} e^{[2 x+3]_{q}^{t}} d \mu_{-1}(x)+\int_{\mathbb{Z}_{p}} e^{[2 x+1]_{q}^{t}} d \mu_{-1}(x) \\
& =\sum_{n=0}^{\infty}\left(\int_{\mathbb{Z}_{p}}[2 x+3]_{q}^{n} d \mu_{-1}(x)+\int_{\mathbb{Z}_{p}}[2 x+1]_{q}^{n} d \mu_{-1}(x)\right) \frac{t^{n}}{n!}
\end{aligned}
$$

$$
=\sum_{n=0}^{\infty}\left(E_{n, q}(2)+E_{n, q}\right) \frac{t^{n}}{n!}
$$

Therefore, we obtain the following theorem.
Theorem 5. For $n \in \mathbb{Z}_{+}$, we have

$$
E_{n, q}(2)+E_{n, q}=2
$$

By Theorem 5 and (2.10), we have the following corollary.
Corollary 6. For $n \in \mathbb{Z}_{+}$, we have

$$
\left(q^{2} E_{q}+[2]_{q}\right)^{n}+E_{n, q}=2
$$

with the usual convention of replacing $\left(E_{q}\right)^{n}$ by $E_{n, q}$.

3. The Analogue of the Euler Zeta Function

By using q-extension of second kind Euler numbers and polynomials, q-Euler zeta function and Hurwitz q-Euler zeta functions are defined. These functions interpolate the q-extension of second kind Euler numbers $E_{n, q}$, and polynomials $E_{n, q}(x)$, respectively. Let q be a complex number with $|q|<1$ and $h \in \mathbb{Z}$. From (2.4), we note that

$$
\begin{aligned}
\left.\frac{d^{k}}{d t^{k}} F_{q}(t)\right|_{t=0} & =2 \sum_{m=0}^{\infty}(-1)^{n}[2 m+1]_{q}^{k} \\
& =E_{k, q},(k \in \mathbb{N})
\end{aligned}
$$

By using the above equation, we are now ready to define q-Euler zeta functions.

Definition 7. Let $s \in \mathbb{C}$. Then

$$
\begin{equation*}
\zeta_{q}(s)=2 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{[2 n+1]_{q}^{s}} \tag{3.1}
\end{equation*}
$$

C. S. Ryoo

Note that $\zeta_{q}(s)$ is a meromorphic function on \mathbb{C}. Note that, if $q \rightarrow 1$, then $\zeta_{q}(s)=\zeta(s)$ which is the Euler zeta function (see [5]). Relation between $\zeta_{q}(s)$ and $E_{k, q}$ is given by the following theorem.

Theorem 8. For $k \in \mathbb{N}$, we have

$$
\zeta_{q}(-k)=E_{k, q} .
$$

Observe that $\zeta_{q}(s)$ function interpolates $E_{k, q}$ numbers at non-negative integers. By using (2.9), we note that

$$
\begin{equation*}
\left.\frac{d^{k}}{d t^{k}} F_{q}(t, x)\right|_{t=0}=2 \sum_{m=0}^{\infty}(-1)^{m}[2 x+1+m]_{q}^{k} \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\left(\frac{d}{d t}\right)^{k}\left(\sum_{n=0}^{\infty} E_{n, q}(x) \frac{t^{n}}{n!}\right)\right|_{t=0}=E_{k, q}(x) \text {, for } k \in \mathbb{N} . \tag{3.3}
\end{equation*}
$$

By (3.2) and (3.3), we are now ready to define the Hurwitz q-Euler zeta functions.

Definition 9. Let $s \in \mathbb{C}$. Then

$$
\begin{equation*}
\zeta_{q}(s, x)=2 \sum_{n=0}^{\infty} \frac{(-1)^{n}}{[n+2 x+1]_{q}^{s}} \tag{3.4}
\end{equation*}
$$

Note that $\zeta_{q}(s, x)$ is a meromorphic function on \mathbb{C}. Obverse that, if $q \rightarrow 1$, then $\zeta_{q}(s, x)=\zeta(s, x)$ which is the Hurwitz Euler zeta function (see [5]). Relation between $\zeta_{q}(s, x)$ and $E_{k, q}(x)$ is given by the following theorem.

Theorem 10. For $k \in \mathbb{N}$, we have

$$
\zeta_{q}(-k, x)=E_{k, q}(x)
$$

Observe that $\zeta_{q}(-k, x)$ function interpolates $E_{k, q}(x)$ numbers at nonnegative integers.

References

[1] T. Kim, q-Euler numbers and polynomials associated with p-adic q-integrals, J. Nonlinear Math. Phys. 14 (2007), 15-27.
[2] T. Kim, q-Volkenborn integration, Russ. J. Math. Phys. 9 (2002), 288-299.
[3] T. Kim, L. C. Jang and H. K. Pak, A note on q-Euler and Genocchi numbers, Proc. Japan Acad. 77A (2001), 139-141.
[4] C. S. Ryoo, Calculating zeros of the second kind Euler polynomials, J. Comput. Anal. Appl. 12 (2010), 828-833.
[5] C. S. Ryoo, A note on the q-Hurwitz Euler zeta functions, J. Comput. Anal. Appl. 13 (2011), 1012-1018.
[6] C. S. Ryoo, Calculating zeros of the q-Euler polynomials, Proc. Jangjeon Math. Soc. 12 (2009), 253-259.

