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Abstract 

In this paper, we construct the q-extension of the second kind Euler 
numbers qnE ,  and polynomials ( )., xE qn  From these numbers and 

polynomials, we establish some interesting identities and relations. 

1. Introduction 

Throughout this paper, we always make use of the following notations: 
{ },3,2,1=N  denotes the set of natural numbers, R  denotes the set of 

real numbers, C  denotes the set of complex numbers, pZ  denotes the ring 

of p-adic rational integers, pQ  denotes the field of p-adic rational numbers, 

and pC  denotes the completion of algebraic closure of .pQ  

Let pν  be the normalized exponential valuation of pC  with =pp  

( ) .1−ν−
= pp pp  When one talks of q-extension, q is considered in many 

ways such as an indeterminate, a complex number ,C∈q  or p-adic number 
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.pq C∈  If ,C∈q  then we normally assume that .1<q  If ,pq C∈  then 

we normally assume that 1
1

1 −
−

<− p
p pq  so that ( )qxqx logexp=  for 

.1≤px  Throughout this paper, we use the notation: 

[ ] ,
1

1
q

qx
x

q −
−=    cf. [1, 2, 3, 4, 5]. 

Hence, [ ] xx qq =→1lim  for any x with 1≤px  in the present p-adic case. 

For 

( ) { ppp ggUDg CZZ →|=∈ :  is uniformly differentiable },function  

Kim [1, 2] defined the p-adic integral on pZ  as follows: 

 ( ) ( ) ( ) ( ) ( )∫ ∑
<≤

∞→− −=μ=
p Npx

x
N

xgxdxggI
Z

0
11 .1lim  (1.1) 

From (1.1), we obtain 

 ( ) ( ) ( ) ( ) ( )∑
−

=

−−
−− −+−=

1

0

1
11 ,121

n

l

lnn
n lggIgI   (see [1-3]), (1.2) 

where ( ) ( ).nxgxgn +=  

First, we introduce the second kind Euler numbers nE  and polynomials 

( )xEn  (see [4]). The second kind Euler numbers nE  are defined by the 

generating function: 

 ( ) ∑
∞

=
=

+
=

0
2 .

!1
2

n

n
nt

t

n
tE

e
etF  (1.3) 

We introduce the second kind Euler polynomials ( )xEn  as follows: 

 ( ) ( )∑
∞

=
=

+
=

0
2 .

!1
2,

n

n
n

xt
t

t

n
txEe

e
etxF  (1.4) 
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2. q-extension of the Second Kind Euler Polynomials 

In this section, we introduce the q-extension of the second kind Euler 
numbers qnE ,  and polynomials ( )xE qn,  and investigate their properties. Let 

{ }.0∪NZ =+  

For pq C∈  with ,11 <− pq  q-extension of the second kind Euler 

numbers qnE ,  are defined by 

 [ ] ( )∫ −μ+=
p

xdxE n
qqn Z

.12 1,  (2.1) 

By using p-adic integral on ,pZ  we obtain 

[ ] ( ) [ ] ( )∫ ∑
−

=
∞→− −+=μ+

p

Np

x

xn
qN

n
q xxdx

Z

1

0
1 112lim12  

( )∑
= +

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
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⎞

⎜
⎝
⎛

−
=
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l
l
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q
q
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q 0
21
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1

12  

( ) [ ]∑
∞

=
+−=

0
.1212

m

n
q

m m  (2.2) 

By (2.1), we have the following theorem. 

Theorem 1. For pq C∈  with ,11 <− pq  we have 

( )∑
−

= +
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
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−
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1
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1
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q
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q
E  

( ) [ ]∑
∞

=
+−=

0
.1212

m

n
q

m m  

We set 

( ) ∑
∞

=
=

0
, .

!n

n
qnq n

tEtF  
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By using above equation and (2.2), we have 

( ) ∑
∞

=
=

0
, !n

n
qnq n

tEtF  
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= =
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( ) [ ]∑
∞

=

+
−=

0

12
.12

m

mm tqe  (2.3) 

Thus, q-extension of the second kind Euler numbers, qnE ,  are defined by 

means of the generating function 

 ( ) ( ) [ ]∑
∞

=

+
−=

0

12
.12

m

mm
q

tqetF  (2.4) 

By using (2.1), we have 

[ ] ( )∑ ∑∫
∞

=

∞

=
−μ+=

0 0
1, !

12
!n n

n
n
q

n
qn

p n
txdx

n
tE

Z
 

[ ] ( )∫ −
+

μ=
p

tq xde
x

Z
.1

12
 (2.5) 

By (2.3), (2.5), we have 

[ ] ( ) ( ) [ ]
∫ ∑

∞

=

+
−

+
−=μ

p

tqtq

m

mmx
exde

Z 0

12
1

12
.12  

Next, we introduce q-extension of the second kind Euler polynomials 
( )., xE qn  The q-extension of the second kind Euler polynomials ( )xE qn,  are 

defined by 

 ( ) [ ] ( )∫ −μ++=
p

ydyxxE n
qqn Z

.12 1,  (2.6) 
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By using p-adic integral, we obtain 

 ( ) ( ) ( )∑
=

+

+
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

−
=

n

l
l

lxl
n

qn
q

q
l

n

q
xE

0
2

1
, .

1
11

1
12  (2.7) 

We set 

 ( ) ( )∑
∞

=
=

0
, .

!
,

n

n
qnq n

txExtF  (2.8) 

By using (2.7) and (2.8), we obtain 

 ( ) ( ) ( ) [ ]∑ ∑
∞

=

∞

=

++
−==

0 0
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xmm
n

qnq
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Since [ ] [ ] [ ] ,1212 q
x

qq yqxyx ++=++  we easily see that 

( ) [ ] ( )∫ −μ++=
p

ydyxxE n
qqn Z 1, 12  

[ ]∑
=

−
⎟
⎟
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⎞
⎜
⎜
⎝
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l
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( ) [ ]∑
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0
,1212

m

n
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m mx  (2.10) 

with the usual convention of replacing ( )nqE  by ., qnE  

By (1.3), (1.4), (2.3), and (2.10), we have the following remark. 

Remark 1. Note that 

(1) ( ) .0 ,, qnqn EE =  

(2) If ,1→q  then ( ) ( ) ., ,, nqnnqn EExExE ==  
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(3) If ,1→q  then ( ) ( ) ( ) ( ).,,, tFtFtxFtxF qq ==  

By (2.7), we obtain the following theorem. 

Theorem 2 (Property of complement). 

( ) ( ) ( ).1 ,, 1 xEqxE qn
nn

qn
−=−−  

By (2.7), we have the following distribution relation: 

Theorem 3. For any positive integer ( ),oddm =  we have 

( ) [ ] ( )∑
−

=
+∈⎟

⎠
⎞⎜

⎝
⎛ −++−=

1

0
,, .,121
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m
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By (1.2), (2.1), and (2.6), we easily see that 

( ) ( ) ( ) [ ]∑
−

=

−−− +−=−+
1

0

1
,

1
, .121212

n

l

m
q

ln
qm

n
qm lEnE  

Hence, we obtain the following theorem. 

Theorem 4. Let .+∈ Zm  If ( ),2mod0≡n  then 

( ) ( ) [ ]∑
−

=

+ +−=−
1

0

1
,, .12122

n

l

m
q

l
qmqm lEnE  

If ( ),2mod1≡n  then 

( ) ( ) [ ]∑
−

=
+−=+

1

0
,, .12122
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qmqm lEnE  

From (1.2), we note that 
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( ( ) )∑
∞

=
+=

0
,, .

!
2

n

n
qnqn n

tEE  

Therefore, we obtain the following theorem. 

Theorem 5. For ,+∈ Zn  we have 

( ) .22 ,, =+ qnqn EE  

By Theorem 5 and (2.10), we have the following corollary. 

Corollary 6. For ,+∈ Zn  we have 

( [ ] ) ,22 ,
2 =++ qn

n
qq EEq  

with the usual convention of replacing ( )nqE  by ., qnE  

3. The Analogue of the Euler Zeta Function 

By using q-extension of second kind Euler numbers and polynomials, 
q-Euler zeta function and Hurwitz q-Euler zeta functions are defined. These 
functions interpolate the q-extension of second kind Euler numbers ,, qnE  

and polynomials ( ),, xE qn  respectively. Let q be a complex number with 

1<q  and .Z∈h  From (2.4), we note that 

( ) ( ) [ ]∑
∞

==

+−=
00

1212
m

k
q

n

t
qk

k
mtF

dt
d  

( ).,, N∈= kE qk  

By using the above equation, we are now ready to define q-Euler zeta 
functions. 

Definition 7. Let .C∈s  Then 

 ( ) ( )
[ ]∑
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= +

−=ζ
1

.
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n
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q

n
q

n
s  (3.1) 
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Note that ( )sqζ  is a meromorphic function on .C  Note that, if ,1→q  then 

( ) ( )ssq ζ=ζ  which is the Euler zeta function (see [5]). Relation between 

( )sqζ  and qkE ,  is given by the following theorem. 

Theorem 8. For ,N∈k  we have 

( ) ., qkq Ek =−ζ  

Observe that ( )sqζ  function interpolates qkE ,  numbers at non-negative 

integers. By using (2.9), we note that 

 ( ) ( ) [ ]∑
∞

==

++−=
00

1212,
m
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q
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t
qk

k
mxxtF

dt
d  (3.2) 

and 

 ( ) ( ),
! ,
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, xE

n
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dt
d

qk
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⎟
⎠
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⎛
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∞

=
∑  for .N∈k  (3.3) 

By (3.2) and (3.3), we are now ready to define the Hurwitz q-Euler zeta 
functions. 

Definition 9. Let .C∈s  Then 

 ( ) ( )
[ ]∑

∞

= ++

−
=ζ

0
.

12
12,

n
s
q

n
q

xn
xs  (3.4) 

Note that ( )xsq ,ζ  is a meromorphic function on .C  Obverse that, if ,1→q  

then ( ) ( )xsxsq ,, ζ=ζ  which is the Hurwitz Euler zeta function (see [5]). 

Relation between ( )xsq ,ζ  and ( )xE qk ,  is given by the following theorem. 

Theorem 10. For ,N∈k  we have 

( ) ( )., , xExk qkq =−ζ  

Observe that ( )xkq ,−ζ  function interpolates ( )xE qk ,  numbers at non-

negative integers. 
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