ON THE q-EXTENSION OF SECOND KIND EULER POLYNOMIALS

C. S. Ryoo

Department of Mathematics Hannam University Daejeon 306-791, Korea

Abstract

In this paper, we construct the q-extension of the second kind Euler numbers $E_{n,q}$ and polynomials $E_{n,q}(x)$. From these numbers and polynomials, we establish some interesting identities and relations.

1. Introduction

Throughout this paper, we always make use of the following notations: $\mathbb{N} = \{1, 2, 3, \cdots\}$ denotes the set of natural numbers, \mathbb{R} denotes the set of real numbers, \mathbb{C} denotes the set of complex numbers, \mathbb{Z}_p denotes the ring of p-adic rational integers, \mathbb{Q}_p denotes the field of p-adic rational numbers, and \mathbb{C}_p denotes the completion of algebraic closure of \mathbb{Q}_p .

Let v_p be the normalized exponential valuation of \mathbb{C}_p with $|p|_p = p^{-v_p(p)} = p^{-1}$. When one talks of q-extension, q is considered in many ways such as an indeterminate, a complex number $q \in \mathbb{C}$, or p-adic number

Keywords and phrases: the second kind Euler numbers and polynomials, the q-extension of the second kind Euler numbers and polynomials.

Received August 23, 2011

^{© 2012} Pushpa Publishing House

²⁰¹⁰ Mathematics Subject Classification: 11B68, 11S40, 11S80.

 $q \in \mathbb{C}_p$. If $q \in \mathbb{C}$, then we normally assume that |q| < 1. If $q \in \mathbb{C}_p$, then we normally assume that $|q-1|_p < p^{-\frac{1}{p-1}}$ so that $q^x = \exp(x\log q)$ for $|x|_p \le 1$. Throughout this paper, we use the notation:

$$[x]_q = \frac{1-q^x}{1-q}$$
, cf. [1, 2, 3, 4, 5].

Hence, $\lim_{q\to 1} [x]_q = x$ for any x with $|x|_p \le 1$ in the present p-adic case.

For

 $g \in UD(\mathbb{Z}_p) = \{g \mid g : \mathbb{Z}_p \to \mathbb{C}_p \text{ is uniformly differentiable function}\},$

Kim [1, 2] defined the *p*-adic integral on \mathbb{Z}_p as follows:

$$I_1(g) = \int_{\mathbb{Z}_p} g(x) d\mu_{-1}(x) = \lim_{N \to \infty} \sum_{0 \le x < p^N} g(x) (-1)^x.$$
 (1.1)

From (1.1), we obtain

$$I_{-1}(g_n) = (-1)^n I_{-1}(g) + 2\sum_{l=0}^{n-1} (-1)^{n-1-l} g(l), \text{ (see [1-3])},$$
 (1.2)

where $g_n(x) = g(x+n)$.

First, we introduce the second kind Euler numbers E_n and polynomials $E_n(x)$ (see [4]). The second kind Euler numbers E_n are defined by the generating function:

$$F(t) = \frac{2e^t}{e^{2t} + 1} = \sum_{n=0}^{\infty} E_n \frac{t^n}{n!}.$$
 (1.3)

We introduce the second kind Euler polynomials $E_n(x)$ as follows:

$$F(x, t) = \frac{2e^t}{e^{2t} + 1}e^{xt} = \sum_{n=0}^{\infty} E_n(x)\frac{t^n}{n!}.$$
 (1.4)

2. q-extension of the Second Kind Euler Polynomials

In this section, we introduce the *q*-extension of the second kind Euler numbers $E_{n,q}$ and polynomials $E_{n,q}(x)$ and investigate their properties. Let $\mathbb{Z}_+ = \mathbb{N} \cup \{0\}$.

For $q\in\mathbb{C}_p$ with $|1-q|_p<1$, q-extension of the second kind Euler numbers $E_{n,\,q}$ are defined by

$$E_{n,q} = \int_{\mathbb{Z}_p} [2x+1]_q^n d\mu_{-1}(x). \tag{2.1}$$

By using *p*-adic integral on \mathbb{Z}_p , we obtain

$$\int_{\mathbb{Z}_p} [2x+1]_q^n d\mu_{-1}(x) = \lim_{N \to \infty} \sum_{x=0}^{p^N - 1} [2x+1]_q^n (-1)^x$$

$$= 2 \left(\frac{1}{1-q}\right)^n \sum_{l=0}^n \binom{n}{l} (-1)^l q^l \frac{1}{1+q^{2l}}$$

$$= 2 \sum_{m=0}^{\infty} (-1)^m [2m+1]_q^n. \tag{2.2}$$

By (2.1), we have the following theorem.

Theorem 1. For $q \in \mathbb{C}_p$ with $|q-1|_p < 1$, we have

$$E_{n,q} = 2\left(\frac{1}{1-q}\right)^n \sum_{l=0}^{n-1} \binom{n}{l} (-1)^l q^l \frac{1}{1+q^{2l}}$$
$$= 2\sum_{m=0}^{\infty} (-1)^m [2m+1]_q^n.$$

We set

$$F_q(t) = \sum_{n=0}^{\infty} E_{n,q} \frac{t^n}{n!}.$$

By using above equation and (2.2), we have

$$F_{q}(t) = \sum_{n=0}^{\infty} E_{n,q} \frac{t^{n}}{n!}$$

$$= 2 \sum_{n=0}^{\infty} \left(\left(\frac{1}{1-q} \right)^{n} \sum_{l=0}^{n} \binom{n}{l} (-1)^{l} q^{l} \frac{1}{1+q^{2l}} \right) \frac{t^{n}}{n!}$$

$$= 2 \sum_{m=0}^{\infty} (-1)^{m} e^{[2m+1]q^{t}}.$$
(2.3)

Thus, q-extension of the second kind Euler numbers, $E_{n,q}$ are defined by means of the generating function

$$F_q(t) = 2\sum_{m=0}^{\infty} (-1)^m e^{[2m+1]_q t}.$$
 (2.4)

By using (2.1), we have

$$\sum_{n=0}^{\infty} E_{n,q} \frac{t^n}{n!} = \sum_{n=0}^{\infty} \int_{\mathbb{Z}_p} [2x+1]_q^n d\mu_{-1}(x) \frac{t^n}{n!}$$

$$= \int_{\mathbb{Z}_p} e^{[2x+1]_q t} d\mu_{-1}(x). \tag{2.5}$$

By (2.3), (2.5), we have

$$\int_{\mathbb{Z}_p} e^{[2x+1]q^t} d\mu_{-1}(x) = 2\sum_{m=0}^{\infty} (-1)^m e^{[2m+1]q^t}.$$

Next, we introduce q-extension of the second kind Euler polynomials $E_{n,q}(x)$. The q-extension of the second kind Euler polynomials $E_{n,q}(x)$ are defined by

$$E_{n,q}(x) = \int_{\mathbb{Z}_n} [x + 2y + 1]_q^n d\mu_{-1}(y).$$
 (2.6)

By using *p*-adic integral, we obtain

$$E_{n,q}(x) = 2\left(\frac{1}{1-q}\right)^n \sum_{l=0}^n \binom{n}{l} (-1)^l q^{(x+1)l} \frac{1}{1+q^{2l}}.$$
 (2.7)

We set

$$F_q(t, x) = \sum_{n=0}^{\infty} E_{n, q}(x) \frac{t^n}{n!}.$$
 (2.8)

By using (2.7) and (2.8), we obtain

$$F_q(t, x) = \sum_{n=0}^{\infty} E_{n, q}(x) \frac{t^n}{n!} = 2 \sum_{m=0}^{\infty} (-1)^m e^{[2m+1+x]_q t}.$$
 (2.9)

Since $[x + 2y + 1]_q = [x]_q + q^x [2y + 1]_q$, we easily see that

$$E_{n,q}(x) = \int_{\mathbb{Z}_p} [x + 2y + 1]_q^n d\mu_{-1}(y)$$

$$= \sum_{l=0}^n \binom{n}{l} [x]_q^{n-l} q^{xl} E_{l,q}$$

$$= ([x]_q + q^x E_q)^n$$

$$= 2 \sum_{l=0}^\infty (-1)^m [x + 2m + 1]_q^n, \qquad (2.10)$$

with the usual convention of replacing $(E_q)^n$ by $E_{n,q}$.

By (1.3), (1.4), (2.3), and (2.10), we have the following remark.

Remark 1. Note that

(1)
$$E_{n,q}(0) = E_{n,q}$$
.

(2) If
$$q \to 1$$
, then $E_{n,q}(x) = E_n(x)$, $E_{n,q} = E_n$.

(3) If
$$q \to 1$$
, then $F_q(x, t) = F(x, t)$, $F_q(t) = F(t)$.

By (2.7), we obtain the following theorem.

Theorem 2 (Property of complement).

$$E_{n,q^{-1}}(-x) = (-1)^n q^n E_{n,q}(x).$$

By (2.7), we have the following distribution relation:

Theorem 3. For any positive integer m(= odd), we have

$$E_{n,q}(x) = [m]_q^n \sum_{a=0}^{m-1} (-1)^a E_{n,q}^m \left(\frac{2a+x+1-m}{m}\right), n \in \mathbb{Z}_+.$$

By (1.2), (2.1), and (2.6), we easily see that

$$E_{m,q}(2n) + (-1)^{n-1}E_{m,q} = 2\sum_{l=0}^{n-1} (-1)^{n-1-l} [2l+1]_q^m.$$

Hence, we obtain the following theorem.

Theorem 4. Let $m \in \mathbb{Z}_+$. If $n \equiv 0 \pmod{2}$, then

$$E_{m,q}(2n) - E_{m,q} = 2\sum_{l=0}^{n-1} (-1)^{l+1} [2l+1]_q^m.$$

If $n \equiv 1 \pmod{2}$, then

$$E_{m,q}(2n) + E_{m,q} = 2\sum_{l=0}^{n-1} (-1)^{l} [2l+1]_{q}^{m}.$$

From (1.2), we note that

$$2e^{t} = \int_{\mathbb{Z}_{p}} e^{[2x+3]_{q^{t}}} d\mu_{-1}(x) + \int_{\mathbb{Z}_{p}} e^{[2x+1]_{q^{t}}} d\mu_{-1}(x)$$

$$= \sum_{n=0}^{\infty} \left(\int_{\mathbb{Z}_{p}} [2x+3]_{q}^{n} d\mu_{-1}(x) + \int_{\mathbb{Z}_{p}} [2x+1]_{q}^{n} d\mu_{-1}(x) \right) \frac{t^{n}}{n!}$$

$$= \sum_{n=0}^{\infty} (E_{n,q}(2) + E_{n,q}) \frac{t^n}{n!}.$$

Therefore, we obtain the following theorem.

Theorem 5. For $n \in \mathbb{Z}_+$, we have

$$E_{n,q}(2) + E_{n,q} = 2.$$

By Theorem 5 and (2.10), we have the following corollary.

Corollary 6. For $n \in \mathbb{Z}_+$, we have

$$(q^2E_q + [2]_q)^n + E_{n,q} = 2,$$

with the usual convention of replacing $(E_q)^n$ by $E_{n,q}$.

3. The Analogue of the Euler Zeta Function

By using q-extension of second kind Euler numbers and polynomials, q-Euler zeta function and Hurwitz q-Euler zeta functions are defined. These functions interpolate the q-extension of second kind Euler numbers $E_{n,\,q}$, and polynomials $E_{n,\,q}(x)$, respectively. Let q be a complex number with |q| < 1 and $h \in \mathbb{Z}$. From (2.4), we note that

$$\frac{d^{k}}{dt^{k}} F_{q}(t) \bigg|_{t=0} = 2 \sum_{m=0}^{\infty} (-1)^{m} [2m+1]_{q}^{k}$$
$$= E_{k,q}, (k \in \mathbb{N}).$$

By using the above equation, we are now ready to define q-Euler zeta functions.

Definition 7. Let $s \in \mathbb{C}$. Then

$$\zeta_q(s) = 2\sum_{n=1}^{\infty} \frac{(-1)^n}{[2n+1]_q^s}.$$
(3.1)

Note that $\zeta_q(s)$ is a meromorphic function on \mathbb{C} . Note that, if $q \to 1$, then $\zeta_q(s) = \zeta(s)$ which is the Euler zeta function (see [5]). Relation between $\zeta_q(s)$ and $E_{k,q}$ is given by the following theorem.

Theorem 8. For $k \in \mathbb{N}$, we have

$$\zeta_q(-k) = E_{k,q}.$$

Observe that $\zeta_q(s)$ function interpolates $E_{k,q}$ numbers at non-negative integers. By using (2.9), we note that

$$\frac{d^k}{dt^k} F_q(t, x) \bigg|_{t=0} = 2 \sum_{m=0}^{\infty} (-1)^m [2x + 1 + m]_q^k$$
 (3.2)

and

$$\left(\frac{d}{dt}\right)^k \left(\sum_{n=0}^{\infty} E_{n,q}(x) \frac{t^n}{n!}\right)\Big|_{t=0} = E_{k,q}(x), \text{ for } k \in \mathbb{N}.$$
 (3.3)

By (3.2) and (3.3), we are now ready to define the Hurwitz q-Euler zeta functions.

Definition 9. Let $s \in \mathbb{C}$. Then

$$\zeta_q(s, x) = 2\sum_{n=0}^{\infty} \frac{(-1)^n}{[n+2x+1]_q^s}.$$
 (3.4)

Note that $\zeta_q(s, x)$ is a meromorphic function on \mathbb{C} . Obverse that, if $q \to 1$, then $\zeta_q(s, x) = \zeta(s, x)$ which is the Hurwitz Euler zeta function (see [5]). Relation between $\zeta_q(s, x)$ and $E_{k,q}(x)$ is given by the following theorem.

Theorem 10. For $k \in \mathbb{N}$, we have

$$\zeta_q(-k, x) = E_{k,q}(x).$$

Observe that $\zeta_q(-k, x)$ function interpolates $E_{k,q}(x)$ numbers at non-negative integers.

References

- [1] T. Kim, *q*-Euler numbers and polynomials associated with *p*-adic *q*-integrals, J. Nonlinear Math. Phys. 14 (2007), 15-27.
- [2] T. Kim, q-Volkenborn integration, Russ. J. Math. Phys. 9 (2002), 288-299.
- [3] T. Kim, L. C. Jang and H. K. Pak, A note on *q*-Euler and Genocchi numbers, Proc. Japan Acad. 77A (2001), 139-141.
- [4] C. S. Ryoo, Calculating zeros of the second kind Euler polynomials, J. Comput. Anal. Appl. 12 (2010), 828-833.
- [5] C. S. Ryoo, A note on the *q*-Hurwitz Euler zeta functions, J. Comput. Anal. Appl. 13 (2011), 1012-1018.
- [6] C. S. Ryoo, Calculating zeros of the q-Euler polynomials, Proc. Jangjeon Math. Soc. 12 (2009), 253-259.