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Abstract 

In this paper, we study the equation 

( ) ( )txuctxut
k ,, 2 ⊕=

∂
∂  

with the initial condition ( ) ( )xfxu =0,  for .nx R∈  The operator 
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k⊕  is named the oplus operator iterated k times, and is defined by 
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where nqp =+  is the dimension of ,nR  ( )txu ,  is an unknown 

function on ( ) ,,0 ∞×nR  ( )xf  is the given generalized function, k is 

a positive integer, and c is a positive constant. 

We obtain the solution of such equation, which is related to the 
spectrum and the kernel which is so called oplus heat kernel. 
Moreover, such oplus heat kernel has interesting properties and also 
related to the kernel of an extension of the heat equation. 

1. Introduction 

The causal fundamental solution ( )txh ,  is the particular solution of 

( ) ( ),txEat
E δδ=Δ−
∂
∂  

which vanishes identically for .0<t  Thus ( )txh ,  satisfies 

( ) ( ) 0, ≡δδ=Δ−
∂
∂ htxhat
h  for .0<t  

The causal fundamental solution ( )txh ,  has a direct physical interpretation; 

it is the temperature distribution in a medium, which is at zero temperature 
up to the time ,0=t  when a concentrated source is introduced at ,0=x  this 
source instantaneously releasing a unit of heat. Although h is defined for all t 
and x, its calculation presents a problem only for 0>t  ( ).0for0 <= th  

This immediately suggests a slightly different point of view; for 0>t  no 
sources are present, so that h satisfies the homogeneous equation and must 
reduce, at ,0+=t  to a certain initial temperature. This initial temperature is 

the one to which the medium has been raised just after the introduction of an 
instantaneous concentrated source of unit strength. We now show that this 
initial temperature is ( ).xδ  
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It is known that the one-dimensional diffusion equation 

( ) ( ) ,,,
2

2

x
txuDt

txu
∂

∂=
∂

∂  

where ( )txu ,  is the temperature of some object and D is a constant called 

the “thermal diffusivity” of the material that makes up the object (we could 
equally well have modeled the diffusion of chemical by letting ( )txu ,  

represent the concentration of some chemical and D be the constant 
“diffusivity” of the chemical species inside the material that makes up the 
object). The diffusion equation describes such physical situation as the heat 
conduction in a one-dimensional solid body, spread of a die in a stationary 
fluid, population dispersion, and other similar processes. In [2], Chou and 
Jiang described the diffusion onto a small surface patch on a spherical 
molecule with an attractive potential all around it. A similar model has been 
presented by Zhou, who takes into account the attractive interaction and the 
influence from the heterogeneous surface reactivity only in a thin spherical 
shell around the target molecule [23]. In this way, the interaction required to 
hold the reactants together long enough for them to find the reactive site can 
be estimated. Both of these models indicate that the short range Van der 
Waals’ force could provide sufficient interaction to overcome the 
orientational constraint of the target molecule. For a recent discussion of 
these and some other models for heterogeneous surface reactivity see also 
Chou and Zhou [3]. We refer the readers to the papers [1, 4, 24, 25] for these 
subjects. 

It is well known that for the heat equation 

 ( ) ( )txuctxut ,, 2Δ=
∂
∂  (1.1) 

with the initial condition ( ) ( ),0, xfxu =  where 

2

2

2
2

2

2
1

2

nxxx ∂
∂++

∂
∂+

∂
∂=Δ  

denotes the Laplace operator and ( ) ( ) ( ),,0,...,,,, 21 ∞×∈= n
n txxxtx R  
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we have 

( )
( )

( )∫ −−
π

= n dyeyxf
tc

txu tcy
n R

22 4
224

1,  

or the solution in the classical convolution form 

( ) ( ) ( ),,, xftxEtxu ∗=  

where 

 ( )
( )

tcx
n e

tc
txE

22 4
224

1, −

π
=  (1.2) 

and the symbol * designates as the classical convolution. 

In [13, 14, 15], Nonlaopon and Kananthai have studied the ultra-
hyperbolic heat equation 

 ( ) ( )txuctxut
k ,, 2
=

∂
∂  (1.3) 

with the initial condition ( ) ( ),0, xfxu =  where k
  is the ultra-hyperbolic 

operator iterated k-times, and is defined by 
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nqp =+  is the dimension of kn ,R  is a positive integer, ( )txu ,  is an 

unknown function on ( ),,0 ∞×nR  ( )xf  is the given generalized function, 

and c is a positive constant. The solution of (1.3) can be expressed in the 
form 

( )
( )

( ) ( )∫ ∫ ∑ ∑ ξ
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
ξ+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
ξ−ξ−

π
=

+

+= =
n n dydyitcyxftxu

kqp

pj

p

j
jjn R R

,exp
2

1,
1 1

222  

 (1.4) 
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or the solution in the classical convolution form 

( ) ( ) ( ),,, xftxEtxu ∗=  

where 

( )
( )

( )∫ ∑ ∑Ω

+

+= =

ξ
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
ξ+⎟

⎟

⎠

⎞
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π
= ,,exp

2
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1 1

222 dyitctxE

kqp

pj

p

j
jjn  (1.5) 

which is so called ultra-hyperbolic heat kernel and nR⊂Ω  is the spectrum 
of ( )txE ,  for any fixed, .0>t  

In [16], Saglam et al. have studied Bessel diamond heat equation 

( ) ( )txuctxut
k
B ,, 2◊=

∂
∂  (1.6) 

with the initial condition ( ) ( ),0, xfxu =  for all { ==∈ + xxx n :R  

( ) }.0...,,0,...,, 11 >> nn xxxx  The operator k
B◊  is first introduced by 

Yildirim et al. [22] and is called the Bessel diamond operator iterated                 
k-times, and is defined by 

[( ) ( ) ] ,2
1

2
21

k
xpxxx

k
B qpp BBBBB

+
++−+++=◊ +  

where ,nqp =+  ,0,2
1,122,2

2

2
>−>α+α=

∂
∂+

∂
∂= iiii

ii
i

i
x xvxx

v
x

B i  

ni ...,,2,1=  and n is the dimension of ,+nR  k is a positive integer, ( )txu ,  

is an unknown function on ( ),,0 ∞×+
nR  ( )xf  is the given generalized 

function and c is a positive constant. The solution of (1.6) can be expressed 
in the form 
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 (1.7) 
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where iiv
yxJ

i 2
1−

 is the normalized Bessel function which is the 

eigenfunction of the Bessel differential operator, ( ) ( )222
2

2
1 pzzzzV +++=  

( )222
2

2
1 qppp zzz +++ +++−  and 

.2
12

1

1

2
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⎛
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i
i

v
v vC i  

Or the solution in the B-convolution form 

( ) ( ) ( ),,, xftxEtxu ∗=  

where 

( ) [( ) ( ) ] ( )∫ ∏+
++

Ω = −

++−++=
n

i

v
iiiv

yyyytc
v dyyyxJeCtxE i

i

k
qppp

1

2

2
1 ,,

222
1

222
1

2
 

 (1.8) 

which is so called Bessel diamond heat kernel and ++ ⊂Ω nR  is the spectrum 

of ( )txE ,  for any fixed, .0>t  

In [17], Saglam et al. have studied Bessel ultra-hyperbolic heat equation 

 ( ) ( )txuctxut
k
B ,, 2
=

∂
∂  (1.9) 

with the initial condition ( ) ( )xfxu =0,  for .+∈ nx R  The operator k
B
  is 

called the Bessel ultra-hyperbolic operator iterated k-times, and is defined by 

( ) ,121
k

xxxxx
k
B qppp BBBBB

++
−−−+++=
  

where nqp =+  is the dimension of the .+nR  The solution of (1.9) can be 

written in the B-convolution form ( ) ( ) ( ),,, xftxEtxu ∗=  where 

 ( ) ( ) ( ) ( )∫ ∏Ω
=

−
−

⎟
⎟

⎠

⎞

⎜
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⎝

⎛
= ,,

1
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2
1

1 2
dyyyxJeCtxE

n

i
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iiiv

ytVc
v

i

i

kk
 (1.10) 

which is so called Bessel ultra-hyperbolic heat kernel and +⊂Ω nR  is the 

spectrum of ( )txE ,  for any fixed, .0>t  
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In [5], Kananthai has studied diamond heat equation 

 ( ) ( )txuctxut ,, 2◊=
∂
∂  (1.11) 

with the initial condition ( ) ( )xfxu =0,  for .nx R∈  The operator ◊  is first 

introduced by Kananthai [6] and is called diamond operator defined by 
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where nqp =+  is the dimension of the space .nR  The solution of (1.11) 

can be expressed in the classical convolution form ( ) ( ) ( ),,, xftxEtxu ∗=  

where 
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i
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which is so called diamond heat kernel and nR⊂Ω  is the spectrum of 
( )txE ,  for any fixed, .0>t  

Furthermore, in [20], Tariboon has studied generalized diamond heat 
equation 

 ( ) ( )txuctxut
k ,, 2◊=

∂
∂  (1.13) 

with the initial condition ( ) ( ).0, xfxu =  The solution of (1.13) can be 

expressed in the classical convolution form ( ) ( ) ( ),,, xftxEtxu ∗=  where 
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and nR∈Ω  is spectrum of the ( )txE ,  for any fixed .0>t  
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In 2000, Kananthai et al. [11] have introduced the operator ,k⊕  and is 
defined by 
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where nqp =+  is the dimension of nR  and k is a positive integer. Next, in 

[10], Kananthai et al. have studied the fundamental solution of the operator 
k⊕  related to wave equation and Laplacian. And, in [7, 8, 9] Kananthai and 

Suantai have studied the convolution product, Fourier transform and 

inversion of the distributional kernel νγβα ,,,K  related to the operator .k⊕  

Moreover, in [21], Tariboon and Kananthai have studied the Green function 

of the operator ( ) .2 km+⊕  Recently, in [18, 19], Satsanit has studied the 

Green function and Fourier transform for oplus operators and he has also 
studied the solutions of a partial differential equation related to the oplus 
operator. 

The purpose of this work is to study the equation 

( ) ( )txuctxut
k ,, 2 ⊕=

∂
∂  (1.16) 

with the initial condition ( ) ( )xfxu =0,  for all .nx R∈  We found that 

( ) ( ) ( )xftxEtxu ∗= ,,  as a solution of (1.16), where 
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22  (1.17) 

is the fundamental solution of (1.16), which is called the oplus heat kernel, 

and nR⊂Ω  is the spectrum of ( )txE ,  for any fixed .0>t  Some 

properties of ( )txE ,  will also be studied in at the end. 



On the Oplus Heat Kernel Related to the Spectrum 9 

Before we proceed to that point, the following definitions and concepts 
require clarifications. 

2. Preliminaries 

Definition 2.1. Let ( ) ( )nLxf R1∈  be the space of integrable function in 

.nR  Then the Fourier transform of ( )xf  is defined by 

 ( )
( )

( ) ( )∫ ξ−

π
=ξ n dxxfef xi

n R
,

2
1ˆ ,

2  (2.1) 

where ( )nξξξ=ξ ...,,, 21  and ( ) ,...,,, 21
n

nxxxx R∈=  ( ) +ξ=ξ 11, xx  

nnxx ξ++ξ 22  and .21 ndxdxdxdx =  

Also, the inverse of Fourier transform is defined by 

 ( )
( )

( ) ( )∫ ξξ
π

= ξ
n dfexf xi

n R
.ˆ

2
1 ,

2  (2.2) 

Definition 2.2. The spectrum of the kernel ( ),, txE  which is defined by 

(1.17), is the bounded support of the Fourier transform ( )tE ,ˆ ξ  for any fixed 

.0>t  

Definition 2.3. Let ( ) n
n R∈ξξξ=ξ ...,,, 21  and denote by 

{ }0and0: 1
22

1
22

1 >ξ>ξ−−ξ−ξ++ξ∈ξ=Γ +++ qppp
nR  

the set of an interior of the forward cone, and +Γ  denote the closure of .+Γ  

Let Ω be spectrum of ( ),, txE  defined by Definition 2.2 for any fixed 

0>t  and .+Γ⊂Ω  Let ( )tE ,ˆ ξ  be the Fourier transform of ( )txE ,  and we 

define 
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Lemma 2.1. Let L be the operator defined by 

 ,2 kctL ⊕−
∂
∂=  (2.4) 

where k⊕  is oplus operator iterated k-times, and is defined by 
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nqp =+  is the dimension of ,nR  k is a positive integer, ( )nxxx ...,,, 21  

( )∞∈∈ ,0, tnR  and c is a positive constant. Then we obtain 
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as a fundamental solution of (2.4) in the spectrum nR⊂Ω  for .0>t  

Proof. Let ( ),, txE  where is the kernel or the fundamental solution of 

operator L and δ is the Dirac-delta distribution. Thus, we have 

( ) ( ) ( ) ( ).,, 2 txtxEctxEt
k δδ=⊕−
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∂  
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where ( )tH  is the Heaviside function, because ( ) 1=tH  holds for .0>t  It 

follows that 
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⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ξ+
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
ξ−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
ξ

π
=

+

+==
n dxitctxE

k
qp

pj
j

p

i
in R

.,exp
2

1,

4

1

2
4

1

22  

Thus, we have 

( )
( )

( )∫ ∑∑Ω

+

+==

ξ
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ξ+
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
ξ−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
ξ

π
= ,,exp

2
1,

4

1

2
4

1

22 dxitctxE

k
qp

pj
j

p

i
in  

where Ω is the spectrum of ( )txE ,  and .0>t  ~ 

3. Main Results 

Theorem 3.1. Let us consider the equation 

 ( ) ( )txuctxut
k ,, 2 ⊕=

∂
∂  (3.1) 

with the initial condition 

 ( ) ( )xfxu =0,  (3.2) 

where k⊕  is oplus operator iterated k-times, and is defined by (1.15), k is a 

positive integer, ( )txu ,  is an unknown function on ( ),,0 ∞×nR  ( )xf  is the 

given generalized function, and c is a positive constant. Then, we obtain 

( ) ( ) ( )xftxEtxu ∗= ,,  

as the solution of (3.1), which satisfies (3.2), where ( )txE ,  is given by (2.5). 
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Proof. Taking the Fourier transform, which is defined by (2.1), to both 
sides of (3.1), we obtain 

( ) ( ).,ˆ,ˆ
4

1

2
4

1

22 tuctut

k
qp

pj
j

p

i
i ξ

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
ξ−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
ξ=ξ

∂
∂ ∑∑

+

+==

 

Thus, we get 

 ( ) ( ) ,exp,ˆ
4

1

2
4

1

22

k
qp

pj
j

p

i
itcKtu

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
ξ−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
ξξ=ξ ∑∑

+

+==

 (3.3) 

where ( )ξK  is constant and ( ) ( ).0,ˆ ξ=ξ Ku  

Now, by (3.2) we have 

 ( ) ( ) ( )
( )

( ) ( )∫ ξ−

π
=ξ=ξ=ξ n dxxfefuK xi

n R
,

22
1ˆ0,ˆ  (3.4) 

and by the inversion in (2.2), (3.3) and (3.4), we obtain 

( )
( )

( ) ( )∫ ξξ
π

= ξ
n dtuetxu xi

n R
,ˆ

2
1, ,

2  

( ) ∫ ∫ ∑
⎢
⎢
⎢

⎣

⎡

⎜
⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
ξ

π
=

=
n n

p

i
in tc

R R

4

1

22exp
2

1  

( ) ( ) .,

4

1

2 ξ
⎥
⎥
⎥

⎦

⎤

−ξ+
⎟
⎟
⎟

⎠

⎞

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
ξ− ∑

+

+=

dydyfyxi

k
qp

pj
j  (3.5) 

Set 

( )
( )

( )∫ ∑∑ ξ
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ξ+
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
ξ−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
ξ

π
=

+

+==
n dxitctxE

k
qp

pj
j

p

i
in R

.,exp
2

1,

4

1

2
4

1

22  (3.6) 
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Since the integral of (3.6) is divergent, therefore we choose nR⊂Ω  be the 
spectrum of ( )txE ,  and by (2.5), we have 

( )
( )

( )∫ ∑∑Ω

+

+==

ξ
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ξ+
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
ξ−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
ξ

π
= .,exp

2
1,

4

1

2
4

1

22 dxitctxE

k
qp

pj
j

p

i
in  (3.7) 

So, (3.6) can be written in the convolution form 

( ) ( ) ( ).,, xftxEtxu ∗=  

Since ( )txE ,  exists, 

( )
( )

( )∫Ω
ξ

→
ξ

π
= detxE xi

nt
,

0 2
1,lim  

( )
( )∫ ξ

π
= ξ

n de xi
n R

,

2
1  

( ),xδ=  for ,nx R∈  (3.8) 

see [12, p. 64, Equation (4)]. 

Thus for the solution ( ) ( ) ( )xftxEtxu ∗= ,,  of (3.1), then 

( ) ( ) ( ) ( ) ( )xfxfxxutxu
t

=∗δ==
→

0,,lim
0

 

which satisfies (3.2). This completes the proof. ~ 

Theorem 3.2. The kernel ( )txE ,  defined by (3.7) has the following 

properties: 

(1) ( ) ( ( ))∞×∈ ∞ ,0, ntxE RC  is the space of continuous function with 

infinitely differentiable. 

(2) ( ) 0,2 =⎟
⎠
⎞⎜

⎝
⎛ ⊕−
∂
∂ txEct

k  for .0>t  

(3) ( ) ( ).,lim
0

xtxE
t

δ=
→
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Proof. (1) From (3.7), and 

( )
( )

( )∫ ∑∑Ω

+

+==

ξ
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

ξ+
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
ξ−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
ξ

∂
∂

π
=

∂
∂ ,,exp

2
1,

4

1

2
4

1

22 dxitc
x

txE
x

k
qp

pj
j

p

i
in

n

nn

n
 

we have ( ) ∞∈ CtxE ,  for .0, >∈ tx nR  

(2) From ( ) ( ) ( ),,, xftxEtxu ∗=  we have following equality for 

( ) ( )xxf δ=  by Fourier transformation 

( ) ( ).,, txEtxu =  

Then by direct computation, we obtain 

( ) .0,2 =⎟
⎠
⎞⎜

⎝
⎛ ⊕−
∂
∂ txEct

k  

(3) This case is obvious by (3.8). ~ 
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