
 

Advances and Applications in Statistics 
Volume 25, Number 1, 2011, Pages 47-61 
Published Online: January 2012 
Available online at http://pphmj.com/journals/adas.htm 
Published by Pushpa Publishing House, Allahabad, INDIA 

 

HousePublishingPushpa2011©  

2010 Mathematics Subject Classification: 62.
 Keywords and phrases: coefficient of variation. 

∗Corresponding author 
Received September 2, 2011 

CONFIDENCE INTERVALS FOR THE RATIO OF 
NORMAL MEANS WITH A KNOWN COEFFICIENT 

OF VARIATION 

Suparat Niwitpong1, Sanoe Koonprasert2 and Sa-aat Niwitpong1,* 
1Department of Applied Statistics 
King Mongkut’s University of Technology  
North Bangkok, Thailand 
e-mail: snw@kmutnb.ac.th 
            suparatn@kmutnb.ac.th 

2Department of Mathematics 
King Mongkut’s University of Technology  
North Bangkok, Thailand 
e-mail: skp@kmutnb.ac.th 

Abstract 

In this paper, we propose two new confidence intervals for the ratio of 
normal population means with a known coefficient of variation. This 
situation occurs in environment and agriculture experiments where the 
scientist needs to know the coefficient of variation of the control group 
(treatment) when compared with another treatment whose a coefficient 
of variation is unknown. This problem is analogous to Maity and 
Sherman [6] who suggested the new test statistics t-test for the 
difference means with a known variance, and Niwitpong [7] who 
constructed the confidence interval for the difference between normal 
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means with a known variance. We propose two new confidence 
intervals for the ratio of normal means with a known coefficient of 
variation. One of our confidence intervals constructed from the pivotal 
statistic Z, where Z follows a standard normal distribution, another 
confidence interval is constructed based on the generalized confidence 
interval (Weerahandi [8]). The performance of the proposed methods 
is assessed through Monte Carlo simulation studies. Coverage 
probabilities and expected lengths of these confidence intervals are 
used to assess these confidence intervals. 

1. Introduction 
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are the estimators of means and variances of X and Y, respectively. We are 
interested in constructing the new confidence interval for a ratio of means 

.
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Recent paper of Lee and Lin [9] described the situation where the ratio of 
normal means arises in bioassay problem, the relative potency of a test 
preparation as compared with a standard is estimated by the ratio of two 
independent normal random variables for parallel-line assays. In biological 
assay problems, Fieller [2, 3] proposed Fieller’s theorem to construct the 
confidence intervals for the ratio of means. Koschat [4] also commented that 
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the coverage probability of confidence interval from Filler solution is exact 
for all the parameters when a common variance assumption is assumed. For 
possible unequal variances assumption and unequal sample sizes, Lee and 
Lin [9] showed that the generalized confidence interval (Weerahandi [8]) 
based on the generalized p-value (Tsui and Weerahandi [10]) performs well 
compared to the Cox’s confidence interval (Cox [1]) and Filler’s confidence 
interval. Their simulation results showed that, for unequal variances 
assumption, the Filler’s confidence interval performs poorly in terms of its 
coverage probability. Also, the coverage probability of the Cox’s confidence 
interval is not better than the generalized confidence interval. In fact, in some 
cases, e.g., unequal sample sizes, the generalized confidence interval 
performs better than the Cox’s methods. We, therefore, do not consider the 
Filler’s confidence interval and the Cox’s confidence interval in our studies. 
Unlike Lee and Lin [9], our problem here is to construct the confidence 
interval for the ratio of means when we know a coefficient of variation. We 
proposed two new confidence intervals for the ratio of normal means with a 
known coefficient of variation. This kind of problem is an analogous to the 
works of Maity and Sherman [6] and Niwitpong [7] who investigated the t 
statistic test and the confidence interval for the difference between normal 
means with a known variance. One of our new confidence intervals 
constructed from the asymptotic normality of the test statistic Z, where Z 
follows a standard normal distribution, another confidence interval is 
constructed based on the generalized confidence interval (Weerahandi [8]), 
see Lee and Lin [9]. The performance of the proposed methods is assessed 
through Monte Carlo simulation studies. Coverage probabilities and expected 
lengths of these confidence intervals are used to assess these confidence 
intervals. 

The paper is organized as follows: Section 2 presents two new 
confidence intervals for the ratio of two normal population means based on 
the exact method and the generalized confidence interval. Simulation design 
to study coverage probabilities and average length widths for each interval 
and their results are outlined in Section 3. Section 4 contains a discussion of 
the results and conclusions. 
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2. Confidence Interval for the Ratio of Normal Means 
with a Known Coefficient of Variation 

2.1. Exact method 

We begin this section by considering the expected lengths and variance 

of the estimator of θ, .ˆ YX=θ  

This result shows that our estimator is an asymptotic biased estimator. 
Also, the variance of this estimator converges to zero for large sample size, 

i.e., ( ) .,0ˆ ∞→→θ nVar  

Theorem 1. Suppose ( ),,~ 2
xxi NX σμ  ,...,,2,1 ni =  ( ),,~ 2

yyj NY σμ  

,...,,2,1 mj =  where 22 ,,, yxyx σσμμ  are, respectively, population means 

and population variances of X and Y. Then the estimator of θ is ,ˆ
Y
X=θ  the 

expected lengths of ( )θ̂E  and ( )2θ̂E  when a coefficient of variation is 

known, ,
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Proof of Theorem 1. Using Taylor series expansion of 
Y
1  at yY μ=  as 

shown in Mahmoudvand and Hassani [5], the estimator θ̂  can be written as 
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From (1), 
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Proof of Corollary 1. Now consider only the first two terms of the right 
hand side of (1), 
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Now we will use the fact that, from Central Limit Theorem, 
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Plugging (6) to (7), we have 
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where 21 α−Z  is an upper 21 α−  quantile of the standard normal 

distribution. 

2.2. Generalized confidence interval (GCI) 

We now give a brief introduction to the GCI idea, based on Weerahandi 
[8] and the generalized p-value, Tsui and Weerahandi [10]. These two papers 
mentioned that the method of GCI can be used whenever ‘standard’ pivotal 
quantity is difficult to obtain. They introduced the concept of GCI as follows: 

G1. Let X be a random variable with probability distribution ( ),,, δθXf  

where θ is the parameter of interest and δ is a nuisance parameter. 

G2. Let x denote the observed value of X. In order to obtain a generalized 
confidence interval for θ, we start with a generalized pivotal quantity 

( ),,,, δθxXR  which is a function of the random variable X, its observed 

value x, and the parameters θ and δ. 

G3. Also, ( )δθ,,, xXR  is required to satisfy the following conditions: 

C1. For a fixed x, the probability distribution of ( )δθ,,, xXR  is free of 

unknown parameters. 

C2. The observed value of ( ),,,, δθxXR  namely, ( )δθ,,, xxR  is 

simply θ. 
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C3. For fixed x and δ, ( )( )θ|>δθ txXRP ,,,  is a non-decreasing in δ. 

A ( )%21100 α−  generalized lower confidence limit for θ is then given 
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( ) }2,,, txXR <δθ  is a ( )%1100 α−  generalized confidence interval for θ. 

We now begin to construct the confidence interval for 
y
x

μ
μ

=θ  with a 

known coefficient variation .
y

y
y μ

σ
=τ  

Consider 

( )
n

n

Xx x
x

x
x

σ
σ

μ−
−=μ  

( ) ( ) ,~,1,0~,11 2
1

2
−χ

−
−= n

x UNZ
nU

snZx  (9) 

( )
,,, yyy

y

y
y

yy

yy

y
y m

m

Y
y μτ=σ

μ
σ

=τ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ μτ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ μτ
μ−

−=μ  

,
m

Z
y yy

y
μτ

−=μ  

,1 y
m

Z y
y =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ τ
−μ  

.
1 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ τ
−

=μ

m
Z
y

y
y  (10) 



Suparat Niwitpong, Sanoe Koonprasert and Sa-aat Niwitpong 56 

From (9) and (10), 
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It is easily seen that ( )22,,,,,, yxyYxXR σσθ  satisfies Conditions C1-C3. 

Hence, a ( )%1100 α−  generalized confidence interval for θ is 

[ ],, 212 α−α= RRCIgci  (13) 

where 21 α−R  is a ( ) %10021 α−  upper quantile of ( ,,,,, θyYxXR  

)., 22
yx σσ  

3. Simulation Studies 

In this section, we use Monte Carlo simulation to assess two confidence 
intervals notified in the previous section: exactCI  and gciCI  based on their 

coverage probabilities and average length widths. We design a simulation, 
without losing generality, by setting ,121 =μ=μ  the ratio of variances 

=σσ 2
2

2
1  0.25, 0.5, 0.8, 1, 2, 3, 4, 5, 10 and the samples sizes (n = m = 10), 
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(n  = 10, m = 20), (n = 20, m = 10), (n = m = 20), (n = 20, m = 40), (n = 40, 
m  = 20), (n = m = 40). We wrote the function in R program to generate the 
data which is normally distributed with means and variances which are 
mentioned previously to construct confidence intervals exactCI  and gciCI  

and then compute coverage probability and average length width of each 
confidence interval. All results are illustrated in Table I with a number of 
simulation runs, 000,10=M  and the nominal level ( ).95.01 =α−  From 

Table I, we found that the coverage probability of the exactCI  confidence 

interval performs as well as the confidence interval gciCI  for the ratio of 

variances, =σσ 2
2

2
1  0.25, 0.5, 0.8, 1, 2, 3, 4, 5, 10. Further, the coverage 

probability of these two intervals, for small ratio of variances, is below 0.95 
and increasing far beyond 0.95 otherwise. These results suggest us that the 
more ratio of variances, the more coverage probability of these two 
confidence intervals are. In other words, these two confidence intervals are 
wider than usual when the ratio of variances is large. Table I also shows that 
the ratio of the expected lengths of the two intervals, ( )exactgci CICIE  is 

slightly greater than 1 for moderate and large ratio of variances. This means 
the length of confidence interval exactCI  is shorter than the length of the 

confidence interval gciCI  for almost cases except two cases for small values 

of sample sizes, e.g., ( )10== mn  and ( ).20,10 == mn  

4. Discussion and Conclusion 

We propose two new confidence intervals for the ratio of normal means 
with a known coefficient of variation. One of these intervals, exactCI  is 

constructed using the result from the pivotal statistic Z, a standard normal 
distribution. Another confidence interval based on the generalized confidence 
interval is derived for the first time for this problem. It is shown, by means of 
simulation, that coverage probabilities of both intervals are not significantly 
different. The coverage probabilities of both intervals are slightly increased 
to one when a ratio of variances is large. This shows both confidence 
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intervals are wider when a ratio of variances is large. We may argue that a 
good confidence interval should have a large coverage probability and a 
short expected length. In this case, it is therefore to assess these two intervals 
using a ratio of expected lengths as shown in the last column of Table I. In 
sum, from the simulation studies, the confidence interval based on exact 
method, exactCI  is shorter than the confidence interval based on the 

generalized confidence interval. The confidence interval exactCI  is also easy 

to use more than the confidence interval gciCI  which is based on a 

computational approach. We, therefore, recommend the confidence interval 

exactCI  when a coefficient of variation is known for practitioner. 
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Table I. Coverage probability and a ratio of expected length of the intervals 

exactCI  and gciCI  

n m yτ  Coverage probability Ratio of lengths 

10 10  gciCI  exactCI  ( )exactgci CICIE  

10 10 0.25 0.9286 0.8986 0.9713 

  0.5 0.9270 0.9208 0.9766 

  0.8 0.9424 0.9566 1.0175 

  1 0.9552 0.9742 1.0419 

  2 0.9850 0.9990 1.0467 

  3 0.9890 0.9999 1.0722 

  4 0.9952 0.9999 1.0638 

  5 0.9960 0.9999 1.0599 

  10 0.9998 0.9999 1.1152 
      

10 20 0.25 0.9414 0.8986 0.9442 

  0.5 0.9460 0.9200 0.9557 

  0.8 0.9508 0.9500 0.9688 

  1 0.9594 0.9662 0.9048 

  2 0.9768 0.9962 1.0037 

  3 0.9872 0.9996 1.0163 

  4 0.9926 0.9999 1.1189 

  5 0.9954 0.9999 1.0787 

  10 0.9992 0.9999 1.0769 
      

20 10 0.25 0.9104 0.9074 1.0202 

  0.5 0.9132 0.9278 1.0279 

  0.8 0.9356 0.9608 1.0576 

  1 0.9536 0.9756 1.0211 
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  2 0.9828 0.9970 1.0252 

  3 0.9926 0.9992 1.0569 

  4 0.9966 0.9999 1.0335 

  5 0.9986 0.9999 1.0869 

  10 0.9999 0.9999 1.0477 
      

20 20 0.25 0.9262 0.9132 1.0171 

  0.5 0.9302 0.9268 1.0175 

  0.8 0.9416 0.9552 1.0147 

  1 0.9514 0.9698 1.0102 

  2 0.9806 0.9966 1.0132 

  3 0.9934 0.9992 1.0194 

  4 0.9974 0.9998 1.0325 

  5 0.9992 0.9999 1.0335 

  10 0.9994 0.9999 1.0266 
      

20 40 0.25 0.9330 0.9146 1.0152 

  0.5 0.9424 0.9350 1.0178 

  0.8 0.9448 0.9518 1.0112 

  1 0.9520 0.9626 1.0125 

  2 0.9838 0.9966 1.0008 

  3 0.9904 0.9994 1.0049 

  4 0.9968 0.9998 1.0404 

  5 0.9976 0.9999 1.0260 

  10 0.9996 0.9999 1.0397 
       

40 20 0.25 0.9134 0.9158 1.0199 

  0.5 0.9074 0.9264 1.0069 

  0.8 0.9316 0.9498 1.0069 
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  1 0.9546 0.9706 1.0097 

  2 0.9884 0.9964 1.0294 

  3 0.9954 0.9998 1.0213 

  4 0.99861 0.9999 1.0563 

  5 0.9998 0.9999 1.0301 

  10 0.9998 0.9999 1.0718 
      

40 40 0.25 0.9248 0.9214 1.0154 

  0.5 0.9234 0.9340 1.0093 

  0.8 0.9338 0.9498 1.0061 

  1 0.9482 0.9648 1.0048 

  2 0.9868 0.9954 1.0045 

  3 0.9950 0.9982 1.0105 

  4 0.9972 0.9999 1.0173 

  5 0.9988 0.9994 1.0170 

  10 0.9999 0.9999 1.0143 

 


