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Abstract 

The paper reviews extreme value theory in finance. It discusses 
extreme value theory in interest rate models, stochastic volatility 
models and long memory models. 

1. Basic Extremes 

1.1. Extreme value distributions 

Frechet: ( ) ( ) .0,exp >−=Φ α−
α xxx  

Gumbel: ( ) ( ) .,exp R∈−=Λ − xex x  

Weibull: ( ) ( ( ) ) .0,exp ≤−−=Ψ α
α xxx  

1.2. Regular variation 

A positive measurable function f on ( )∞,0  is regularly varying at ∞ 
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with index α if 

( )
( ) .0,lim >= α

∞→
xxtf

txf
t

 

We use the notation ( )α∈ Rf  for a regularly varying function with 

index α.  

f is said to be slowly varying if ,0=α  rapidly varying if the above limit 
is 0 for 1>x  and ∞   for .10 << x  

( ) 0, ≥γγ∈ LF  if for every ,R∈y  

( )
( )

,lim y
x

e
xF

yxF γ

∞→
=

−  

where ( ) ( ) ( ).1 uXPuFuF >=−=  See Resnick [5]. 

Convolution equivalent distributions 

Let X have d.f. F. ( ) 0, ≥γγ∈ SF  if ( )γ∈ LF  and 

( )
( )

( ),ˆ2lim
2

γ=
∗

∞→
f

xF
xF

x
 

where ( ) XEef γ=γˆ  is the moment generating function of X at γ. The class 

( )0: SS =  is the class of subexponential distributions. 

Subexponential distributions are heavy tailed in the sense that no 
exponential moments exist. S  contains all d.f.s F with regularly varying tails 
and is a much larger class. Distribution functions in ( )γS  for some 0>γ  

have exponential tails, hence are lighter tailed than subexponential 
distributions. 

Theorem 1.1 (Fisher-Tippett Theorem). For an i.i.d. sequence, the limit 
distribution of the maxima is one of the three extreme value distributions: 
Frechet, Gumbel and Weibull. 
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2. Diffusion Extremes 

Consider the Itô stochastic differential equation model for asset price 

( ) ( ) .,0, 0 xXtdWXdtXdX tttt =>σ+μ=  

W : standard Brownian motion, 

μ : drift coefficient, 

σ : diffusion coefficient or volatility, 

X : diffusion process. 

Running maxima: 

.0,max
0

>=
≤≤

tXM stst  

Scale function: 

( ) ( )
( )

( )∫ ∫ ∈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

σ

μ−=
x

z

y

z
rlxdydt

t
txs ,,,2exp 2  

where z is any interior point in ( )., rl  

Speed measure: 

m has Lebesgue density 

( )
( ) ( )

( )rlx
xsx

xm ,,2
2 ∈

′σ
=′  

and total mass ( )( )., rlmm =  s′  is the Lebesgue density of s. tX  is 

ergodic and its stationary distribution is absolutely continuous with Lebesgue 
density 

( ) ( ) ( ).,, rlxm
xmxh ∈

′
=  

tX  satisfies the usual conditions which guarantees that X is ergodic with 



Jaya Bishwal 4 

stationary density: 
( ) ( ) ,∞=−= lsrs  

.∞<m  

Theorem 2.1 (Davis [2]). Let ( ) 0≥ttX  satisfy the usual conditions. Then 

for any initial value ( )rlyX ,0 ∈=  and any ,rut ↑  

( ) ( ) ,0lim =−≤
∞→

t
t

tt
y

t
uFuMP  

where F is a df defined for any ( )rlz ,∈  by 

( ) ( ) ( ).,,1exp rzxxsmxF ∈⎟
⎠
⎞

⎜
⎝
⎛−=  

Outline of Proof. Diffusion can be represented as an Ornstein-
Uhlenbeck process after a random time-change. Then standard theory of 
extremes of Gaussian processes applies 

Corollary 2.1. 

( ) ( ) ( )( ) .,~~ 1
1

rxxsmdyysmxF
x

z
↑⎟

⎠
⎞

⎜
⎝
⎛ ′ −

−

∫  

F is in the maximum domain of attraction of ( )GMDAFG ∈:  if 

., ∞→→
− tGa

bM
t

tt D  

{ } .0,, >αΛΦ∈ αG  

αΦ  is Frechet distribution, Λ is Gumbel distribution. 

Theorem 2.2. If μ and σ are differentiable in some left neighborhood of 
r such that  

( )
( )

,0lim
2

=
μ
σ

→ x
x

dx
d

rx
 

( )
( )

( )
( )

,2explim 2

2
−∞=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

σ

μ−
μ
σ ∫→

x

zrx
dt

t
t

x
x  
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then 

( ) ( ) ( ) .,~ rxxhxxF ↑μ  

3. Interest Rate Extremes 

We discuss stochastic interest rate models. 

Vasicek model 

( ) ,0,,, 0 >∈=σ+−= baxXdWdtbXadX ttt R  

( )∫ −−− σ+⎟
⎠
⎞⎜

⎝
⎛ −+=

t
s

stbbt
t dWeeb

axb
aX

0
,  

( ) ,, ∞→→⎟
⎠
⎞⎜

⎝
⎛ −+= − tb

aeb
axb

aXE bt
t  

( ) ( ) .,212

2
2

2
∞→σ→−σ= − tbebXVar bt

t  

tX  has a normal stationary distribution .2,
2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ σ
bb

aN  

Condition of Theorem 2.2 holds which gives 

( ) ( ) ,,2~
2

2

2
∞→⎟

⎠
⎞⎜

⎝
⎛ −

σ
xxHb

axbxF  

where ( )xH  is the tail of a stationary normal distribution, hence F has 

heavier tail than H. 

( )Λ∈ MDAF  with norming constants 

,
log2 tb

at
σ=  

( ) .
log

2logloglog
4

log
2

t
bt

bb
at

b
bt

πσ+σ++σ=  

Cox-Ingersoll-Ross (CIR) model 

( ) ,tttt dWXdtbXadX σ+−=  
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( ) ,, ∞→→⎟
⎠
⎞⎜

⎝
⎛ −+= − tb

aeb
axb

aXE bt
t  

( ) ⎜⎜
⎝

⎛ σ→⎟
⎠
⎞⎟

⎠
⎞⎜

⎝
⎛ −+⎟

⎠
⎞⎜

⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛ −+−σ= −− ,

2
2211

2 2

2
32

2

2

b
aea

b
b
axea

b
b
ax

b
aXV btbt

t  

.∞→t  

tX  has a Gamma stationary distribution .2,2
22 ⎟
⎠
⎞

⎜
⎝
⎛

σσ
Γ ba  

A, B and C are positive constants. 

Condition of Theorem 2.2 holds which gives 

( ) ( ) ( ) ,,~2~ 2 ∞→
σ

xxHAxxGabxF  

where ( )xG  is the tail of a stationary gamma distribution ⎟
⎠
⎞

⎜
⎝
⎛

σ
+

σ
Γ 22

2,12 ba
 

hence F has heavier tail than H. 

( )Λ∈ MDAF  with norming constants 

,2

2

bat
σ=  

( )
.

2
logloglog2log2 22

2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

σΓ
+

σ
+σ=

a
btatbbt  

Chan-Karloyi-Longstaff-Sanders (CKLS) model 

( ) [ ).,21, ∞∈γσ+−= γ
tttt dWXdtbXadX  

Case I. 12
1 <γ< : 

( ) ,0,, >∞→→⎟
⎠
⎞⎜

⎝
⎛ −+= − btb

aeb
axb

axE bt
t  

( ) ,0,, <∞→∞→⎟
⎠
⎞⎜

⎝
⎛ −+= − bteb

axb
axE bt

t  

( ) .0,, =∞→∞→+= btatxxE t  



Financial Extremes: A Short Review 7 

The lack of first moment indicates that for certain parameter values the 
model can capture very large fluctuations in the data, which will reflect also 
in the maxima. 

Stationary density is 

( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛

γ−
+

−γσ
−

σ
= γ−−γ−γ− 2212

2
2

2 2212
2exp2 xbxax

A
xh  

for some constant .0>A  

Condition of Theorem 2.2 holds. 

( ) ( ) ( ) ( ) .,~~ 12 ∞→γ− xxHBxxbxhxF  

( )Λ∈ MDAF  with norming constants 

( ) ,log1
2

22
12

22 γ−
−γ

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ γ−σσ
= t

bb
at  

( )
( )

( )

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ γ−σ

γ−

−γ−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ γ−σ=
2

γ−

t

tb
tbbt log

log1log

22
121log1

2

22
1

2
 

 .2log 2 ⎟⎠
⎞

⎜
⎝
⎛

σ
+

A
bat  

Case II. 1=γ : 

The model has an explicit solution 

.
0

22

22

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

+= ∫
σ−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ σ+σ+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ σ+− t WsbWtb

t dseaxeX
st

 

The stationary density is inverse gamma: 

( ) ,2exp12
2

1
2

22
1

2

12
2 22

⎟
⎠
⎞

⎜
⎝
⎛

σ
−⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ +
σ

Γ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ σ= −−σ−
−−

σ
−

xaxb
axh b

b
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,0>x  ( )22 2 −σ−∈ bh R  and the tail H  of the stationary distribution is 

regularly varying. 

( ) .,~ 12 2
∞→−σ− xBxxF b  

( )221 σ+
Φ∈

b
MDAF  with norming constants 

( ) ,~
2211 σ+ b

t Cta  

.0=tb  

Case III. 1>γ : 

h has the same form as in the case 12
1 <γ<  and ( ),12 +γ−∈ RH  

( ) ( ) .,~ 1 ∞→− xAxxF  

CKLS pointed out, most plausible value of .5.1=γ   

Condition of Theorem 2.2 holds.  

( )1Φ∈ MDAF  with norming constants 

,~ Atat  

.0=tb  

4. Stochastic Volatility Extremes 

Levy-Ornstein-Uhlenbeck volatility 

Empirical volatility changes in time and exhibits tails which are heavier 
than normal. Empirical volatility has upward jumps and clusters on high 
levels. Levy driven Ornstein-Uhlenbeck models can capture heavy tails and 
volatility jumps and have volatility clusters if the driving Levy process has 
regularly varying tails. 

Black-Scholes model 

.tttt dWSdtrSdS σ+=  
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Heston model 

,ttttt dWSVdtrSdS +=  

( ) ,tttt dBVdtVadV σ+−λ=  

,0,, >σλ a  ,2

2σ≥λa  a is the long run mean, λ is the rate of mean 

reversion and 0>r  is the risk-free interest rate under the risk-neutral world. 
Volatility is a CIR Process, W and B are two independent Brownian motions 
for simplicity, they could be correlated to include leverage. 

GARCH model 

,ttt dWVdS =  

( ) .tttt dBVdtVadV σ+−λ=  

Volatility is a CKLS model with elasticity .1=γ  

Our focus is on Levy driven stock price and volatility model. 

Barndorff-Neilsen-Shephard model 

( ) ,ttttt dLdWVdtrSdS λρ+++μ=  

,ttt dLdtVdV λσ+λ−=  

( )∫ λ
−λ−λ− +=

t
s

stt
t dLeVeV

00  

is a cadlag process. 

If 0V  is independent of the driving Levy process L and ,
00 ∫
∞ −= s

sd dLeV  

then the process is stationary. The stationary solution is 

∫ ∞−
λ

λλ−=
t

s
st

t dLeeV .  

We are concerned with processes L which are heavy or semi-heavy 
tailed, i.e., whose tails decrease no faster than exponentially. 
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Define 
.sup:

0
t

ht
h VM

≤≤
=  

Theorem 4.1. (a) If ( ),1 αΦ∈ MDAL ∩S  then 

( ) ( ) ( ) .,~ 1
1 ∞→>α+λ> − xxLPhxMP h  

(b) If ( ),1 Λ∈ MDAL ∩S  then 

( ) ( ) .,~ 1 ∞→>λ> xxLhPxMP h  

Running maxima theorem 

(a) If ( ),1 αΦ∈ MDAL ∩S  then 

( ) ,0,lim 1 >=≤
α−−−

λ∞→
xexMaP x

TTT
 

where Ta  is such that 

( ) .0,lim 1 >=> α−

∞→
xxxaLTP T

T
 

(b) If ( ),1 Λ∈ MDAL ∩S  then 

( ( ) ) ,,lim 1 R∈=≤−
−−

λ
−
λ∞→

xexbMaP
xe

TTTT
 

where Ta  and Tb  are such that 

( ) .,lim 1 R∈=+> −
∞→

xebxaLTP x
TTT

 

Example: Positive shot noise process 

Let L be a positive compound Poisson process 

,
1
∑
=

ξ=
tN

j
jtL  

where ( ) 0≥ttN  is a Poisson process on +R  with intensity 0>μ  and jump 

times ( ) .N∈Γ kk  The process N is independent of the i.i.d. sequence of 

positive r.v.s ( ) N∈ξ kk  with d.f. F. The resulting volatility process is then the 
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positive shot noise process 

( )∫ λ
−λ−λ− +=

t
s

stt
t dLeVeV

00  

∑
λ

=

Γ+λ−λ− ξ+=
t

j
N

i
j

tt eVe
1

0 .  

Running maxima theorem 

(a) Let V be a stationary version of the OU process, where L is a positive, 
compound Poisson process. Assume ( ) .0,1 >γγ∈ SL  Then 

( ( ) ) ,,lim 1 R∈=≤−
−−

λ
−
λ∞→

xexbMaP
xe

TTTT
 

where 0>Ta  and R∈Tb  are such that 

( ) .,lim
0

1
1 R∈=+> −

γ

γ

∞→
xe

Ee
EebxaLTP x

V

L
TTT

 

(b) Assume that V is a ( )γμΓ , -OU process. Then 

( ( ) ) ,,lim 1 R∈=≤−
−−

λ
−
λ∞→

xexbMaP
xe

TTTT
 

where 0>Ta  and R∈Tb  are the norming constants of a ( )γ+μΓ ,1  

distributed r.v. Y such that 

( ) .,lim 1 R∈μ=+> −−
∞→

xebxaYTP x
TTT

 

5. Long Memory Extremes 

A stationary process with correlation function ρ exhibits long range 
dependence, if there exists a ( )21,0∈H  and l is a slowly varying function 

such that 

( ) ( ) .,~ 2 ∞→ρ − hhhlh H  

Long range dependence implies that 

( )∫
∞

∞=ρ
0

.dhh  
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5.1. Superposition of Ornstein-Uhlenbeck (supOU) processes 

Barndorff-Neilsen and Shephard proposed supOU processes as volatility 
models. Empirical volatility has long memory in the sense that the empirical 
autocorrelation function decreases slower than exponential. The class of 
supOU processes can capture extremal clusters and long range dependence. 

( )
[ )( ) ( ) ,0,,,0∫ ×

∞
−−

+
≥λΛ−=

RR
tsrdstIeV str

t  

where 0>λ  and Λ is an infinitely divisible independently scattered random 
measure (i.d.i.s.r.m.) which are extensions of OU type processes of the form 

( ) ,∫ ∞−
λ

−λ−=
t

s
st

t dLeV  

where 0>λ  and L is a Levy process. The time change by λ yields marginal 
distributions independent of λ. To guarantee that the volatility process V is 
positive, the Levy process L is chosen as a subordinator. The resulting price 

process has martingale term ,ttt dBVdS =  where B is a Brownian motion 

independent of L. 

Let π be a probability measure on +R  with ( )∫
+

∞<π=λ −−
R

.: 11 drr  

The generating quadruple ( )πνσ ,,, 2m  determines completely the 

distribution of Λ. The underlying driving Levy process 

[ ]( )tLt ,0×Λ= +R  

has generating triplet ( ).,, 2 νσm  

Define the probability measure ( ) ( )drrdr πλ=π :  and the idisrm Λ  with 

generating quadruple ( ).,,, 2 πνλλσλm  

Thus π  is a probability measure on +R  with ( )∫
+
π=λ

R
.: drr  The 

distribution π governs the long range dependence of the model. Essentially 
the measure π needs sufficient mass near 0. We write ( ) ( ]( ).,0: rr π=π  
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Then 

( )∫ ∫
∞

∞− ∞−
− Λ=

rt srt
t srdeeX .,  

Then VX =  a.s. 

{ ( ) ( )},,,∫
+

Λ+−=
R

rtddtdrtrXdXt  

where 

( ) ( )∫ ∫ ∞−
− λΛ=

B

rt srt srdeeBtX .,,  

Example 5.1. Let π be gamma distribution with density 

( ) ( ) drerHdr rH −−+Γ=π 2112  

for 0>r  and .0>H  Then H2=λ  and 

( ) ( ) ( ) ( )∫
∞ −+−−− ≥+=Γ=ρ
0

21121 .0,12 hhdrerHh HhrH  

The following theorem shows how long range dependence can be 
introduced in the supOU models. 

Theorem 5.1. Suppose l is slowly varying. Then 

( ) ( ) ( ) 0,2~ 211 →π −− rrrlHr H  

if and only if 

( ) ( ) ( ) .,2~ 2 ∞→Γρ − hhhlHh H  

Theorem 5.2. Define .sup: 0 tTtT VM ≤≤=  

(a) Let α−∈ R1L  with norming constants 0>Ta  such that 

( ) .0,lim 1 >=> α−
∞→

xxxaLTP TT
 

Then 

( ) .0,lim 1 >=≤
α−−−

λ∞→
xexMaP x

TTT
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(b) Let ( ) ( )Λγ∈ MDAL ∩S1  with norming constants 0>Ta  and 

R∈Tb  such that 

( ) .,lim 1 R∈=+> −
∞→

xebxaLTP x
TTT

 

Then 

( ( ) ) [ ] .,lim
0111 R∈=≤−

−γ−γ−
λ

−
λ∞→

xexbMaP
xVL eEeEe

TTTT
 

Typical examples of d.f.s in ( ) ( )Λγ MDA∩S  are GIG, NIG, GH, 

CGMY. All these distributions are self-decomposable, which means that they 
are possible stationary distributions of OU-type processes and hence also 
supOU processes. For proofs of theorems see [1-4]. 

Remark. More general stock price models should have both stochastic 
interest rate and stochastic volatility with jumps and long-memory driving 
terms. However, analyses of three factor models are difficult. 
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