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Abstract

In this paper, motivated by Ciarlet’s research work on the two-dimensional non-
linear shell model of Koiter’s type, we propose a new two-dimensional linear
shell model of Koiter’s type, in which the flexural part is different from the clas-
sical two-dimensional linear Koiter’s shell model. As the thickness of the shell
goes to zero, using the corresponding Korn’s inequality, we obtain a justifica-
tion of the two-dimensional linear shell model of Koiter’s type by the method
of the asymptotic analysis.

1. Introduction

There are various methods to study the elastic shell, one of the known

methods is the method of the asymptotic analysis: Under the mechanical and

geometrical assumptions with the shell thickness as “small” parameter, how to
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infer a rational two-dimensional shell model from the three-dimensional shell

model and to mathematically justify the obtained two-dimensional shell model

in a rational way (for example, Koiter’s shell model)? In this paper, we use

the method of the asymptotic analysis to justify modified Koiter’s shell model.

In [3], Ciarlet and Lods considered a family of linearly elastic shells with

thickness 2ε, clamped along their entire lateral face, the family of linearly

elastic shells have the same middle surface S which is “uniformly elliptic” in

the sense that the two principal radii of curvature of S are either both positive

or both negative at all points of S . Let the field ~u(ε) = (ui(ε)), ui(ε)(i = 1, 2, 3)

denote the three covariant components of the displacement of the points of the

shell given by the equations of three-dimensional elasticity. It has been shown

in [3] that, if the applied body force density is O(1) with respect to ε, the field
~u(ε) = (ui(ε)) converges to a limit ~u as ε → 0, in which ~u is independent of

the transverse variable and satisfies the two-dimensional equations of a “mem-

brane shell” (for details, see [3]). In [4], Ciarlet et al. considered a family of

linearly elastic shells with thickness 2ε, all having the same middle surface

S = ~ϕ(ω) ⊂ R3, where ω ⊂ R2 is a bounded and connected open set with a

Lipschitz-continuous boundary, and ~ϕ ∈ C3(ω; R3). The shells are clamped

on a portion of their lateral face, whose middle line is ~ϕ(γ0), where γ0 is any

portion of ∂ω with length γ0 > 0. Ciarlet et al. made an essential geometrical

assumption on the middle surface S and on the set γ0, which states that the

space of inextensional displacements

VF(ω) = {~η = (ηi) ∈ H1(ω) × H1(ω) × H2(ω);

ηi = ∂νη3 = 0 on γ0, γαβ(~η) = 0 in ω}

contains non-zero functions, where γαβ(~η) are the components of the linearized

change of metric tensor for the middle surface S . It showed in [4] that, if the

applied body force density is O(ε2) with respect to ε, the field ~u(ε) = (ui(ε))

converges to a limit ~u as ε → 0, in which ~u is independent of the transverse

variable and satisfies the two-dimensional equations of a “flexural shell” (for

details, see [4]). In [5], Ciarlet and Lods considered, as in [3] and [4], a family
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of linearly elastic shells with thickness 2ε, all having the same middle surface

S = ~ϕ(ω) ⊂ R3, where ω ⊂ R2 is a bounded and connected open set with a

Lipschitz-continuous boundary, and ~ϕ ∈ C3(ω; R3). The shells are clamped

on a portion of their lateral face, whose middle line is ~ϕ(γ0), where γ0 is a

portion of ∂ω with length γ0 > 0. For all ε > 0, let uεi be the covariant compo-

nents of the displacement uεi ~g
i,ε of the points of the shell, derived by solving

the three-dimensional problem; let ζεi be the covariant components of the dis-

placement ζεi ~a
i of the points of the middle surface S , derived by solving the

two-dimensional linear Koiter’s shell model. Making the same assumptions

as in [3], Ciarlet and Lods proved that the fields 1
2ε

∫ ε
−ε uεi ~g

i,εdxε3 and ζεi ~a
i have

the same principal part as ε → 0; with the same assumptions as in [4], they

also proved that the same fields again have the same principal part as ε → 0,

thus they verified the two-dimensional linear Koiter’s shell model for “mem-

brane” and “flexural” shells (for details, see [5]).

In this paper, motivated by Ciarlet’s work on the two-dimensional nonlin-

ear shells model of Koiter’s type (see [6]), we propose a new two-dimensional

linear shells model of Koiter’s type in which the flexural part is different from

the classical two-dimensional linear Koiter’s shell model. By establishing the

corresponding Korn’s inequality, we prove that the new two-dimensional lin-

ear shell model of Koiter’s type is asymptotically equivalent to the classical

two-dimensional linear Koiter’s shell model when the thickness of the shell

goes to zero.

Throughout this paper, we assume that i, j, k, · · · take their values in the set

{1, 2, 3}; α, β, σ, τ, · · · take their values in the set {1, 2}; the summation conven-

tion with respect to repeated indices and exponents is used. We shall denote

by ~a ·~b and ~a×~b the scalar and exterior products of ~a, ~b ∈ R3, respectively, and

denote by |~a| the Euclidean norm of ~a ∈ R3. Let ω be a bounded open con-

nected subset of R2 with a Lipschitz-continuous boundary γ, the set ω being

locally on one side of γ. Let y = (yα) denote a generic point in ω, the closure

of ω, and ∂α = (∂/∂yα)(α = 1, 2), ∂αβ = ∂2/∂yα∂yβ.
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Let ~θ : ω → R3 be a C3 injective mapping such that the two vectors
~aα(y) = ∂α~θ(y) are linearly independent at any given point y ∈ ω, ~aα(y)(α =

1, 2) constitute a covariant basis for the tangent plane to the surface S = ~θ(ω)

at the point ~θ(y), and the two vectors ~aα(y)(α = 1, 2) defined by

~aα(y) · ~aβ(y) = δαβ

constitute a contravariant basis for the same tangent plane. Let

~a3(y) = ~a3(y) =
~a1(y) × ~a2(y)
|~a1(y) × ~a2(y)|

.

For the surface S , the metric tensor in covariant or contravariant components

(aαβ) or (aαβ), the curvature tensor in covariant or mixed components (bαβ) or

(bβα), and the Christoffel symbols Γσαβ, are defined, respectively, by (whenever

no confusion arises, we drop the dependence on the variable y ∈ ω)

aαβ = ~aα · ~aβ, aαβ = ~aα · ~aβ, (1.1)

bαβ = ~a3 · ∂β~aα, bβα = aβσ · bσα, (1.2)

and

Γσαβ = ~a
σ · ∂β~aα. (1.3)

It is easy to see that

aαβ = aβα, aαβ = aβα,

bαβ = bβα, Γσαβ = Γ
σ
βα.

The area element of S is
√

ady, where

a = det(aαβ). (1.4)

All the functions defined in (1.1)-(1.4) are at least continuous over the set ω.
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Then, there exists a constant a0 such that

0 < a0 ≤ a(y), ∀ y ∈ ω. (1.5)

Let γ0 denote a measurable subset of the boundary γ of ω with length γ0 > 0.

For more details about these geometrical preliminaries, we refer the reader to

[1, Chapter 2]. Given any differentiable field ~η = (ηi) : ω → R3, define the

vectors ~aα(~η) = ∂α(~θ + ηi~ai) and the functions aαβ(~η) = ~aα(~η) · ~aβ(~η).

If the two vectors ~aα(~η)(y) are linearly independent at each point y ∈ ω,

they thus constitute the covariant basis of the tangent plane to the deformed

surface (~θ+ ηi~ai)(ω) at the point (~θ+ ηi~ai)(y), y ∈ ω, of this deformed surface,

and the functions aαβ(~η) are the covariant components of the metric tensor of

the same deformed surface. If the two vectors ~aα(~η) are linearly independent

in ω, the vector

~a3(~η) =
~a1(~η) × ~a2(~η)
|~a1(~η) × ~a2(~η)|

is then normal to the deformed surface (~θ+ηi~ai)(ω) at the point (~θ+ηi~ai)(y), y ∈

ω, of this deformed surface, and the functions bαβ(~η) = ~a3(~η) · ∂α~aβ(~η) are the

covariant components of the curvature tensor of the same deformed surface.

Assume that we are given a family of shells, each having the same middle

surface S = ~θ(ω), whose thickness 2ε > 0 is arbitrarily small. Then, for

each ε > 0, the reference configuration of the shell is the set ~Θ(Ωε), where

Ω
ε
= ω × [−ε, ε],

~Θ(y, xε3) = ~θ(y) + xε3~a3(y), (1.6)

for all (y, xε3) ∈ ω × [−ε, ε]. Let xε = (xεi ) denote a generic point in the set

Ω
ε (note that xεα = yα), and let ∂εi = ∂/∂x

ε
i . Then for ε > 0 small enough, the

mapping ~Θ : Ωε → R3 is injective and the three vectors

~gεi (xε) = ∂εi ~Θ(xε)

are linearly independent (see Theorem 3.1-1 in [1]). They then form the co-
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variant basis at the point ~Θ(xε) ∈ Θ(Ωε), while the three vectors ~gi,ε(xε) de-

fined by the relations

~gi,ε(xε) · ~gεj(xε) = δij

form the contravariant basis at the same point ~Θ(xε). Let γ0 be a subset of

γ = ∂ω such that length γ0 > 0. Each shell is then subjected to a bound-

ary condition of place along the portion ~Θ(γ0 × [−ε, ε]) of its lateral face
~Θ(γ × [−ε, ε]); this means that its displacement field vanishes on the set
~Θ(γ0 × [−ε, ε]). Each shell is subjected to applied body forces in its inte-

rior ~Θ(Ωε), and to applied surface forces on its "upper" and "lower" faces
~Θ(Γε+) and ~Θ(Γε−), where Γε+ = ω × {+ε} and Γε− = ω × {−ε}. There forces are

given by their contravariant components f i,ε ∈ L2(Ωε) and hi,ε ∈ L2(Γε+
⋃
Γε−).

Finally, the elastic material constituting the shell is assumed to be a St. Venant-

Kirchhoff material, the same for each shell. Hence the material is character-

ized by its two Lame constants λ > 0 and µ > 0, which are independent of ε.

For each ε > 0, the unknown is the vector field ~uε = (uεi ) : Ωε → R3, where

the functions uεi : Ωε → R denote the covariant components of the displace-

ment field of the shell. This means that, for each xε ∈ Ω
ε, the displacement

vector of the point ~Θ(xε) is uεi (xε)~gi,ε(xε). A two-dimensional nonlinear shell

model, based on a priori assumptions of geometrical and mechanical natures,

has been proposed by Koiter for modelling nonlinearly elastic shells. In the

model, the unknown ~ξεk = (ξεi,k) : ω → R3, whose components ξεi,k : ω → R3

are covariant components of the displacement field of the surface S , should be

a stationary point of the energy jεk defined by

jεk(~η) = ε2
∫
ω aαβστGαβ(~η)Gστ(~η)

√
ady

+ ε
3

6

∫
ω aαβστRαβ(~η)Rστ(~η)

√
ady −

∫
ω pi,εηi

√
ady,

(1.7)

where

Gαβ(~η) =
1
2

(aαβ(~η) − aαβ),

Rαβ(~η) = bαβ(~η) − bαβ,

respectively, denote the covariant components of the change of metric tensor
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and the change of curvature tensor associated with a displacement field ηi~ai of

the surface S , and

pi,ε =

∫ ε

−ε
f i,εdxε3 + hi,ε

+ + hi,ε
− , (1.8)

where hi,ε
+ = hi,ε(·,+ε), hi,ε

− = hi,ε(·,−ε). But the functions bαβ(~η), and thus the

functions Rαβ(~η), are not defined at those points of ω, where the two vectors
~aα(~η) are linearly dependent, for the denominator |~a1(~η) × ~a2(~η)| =

√
a(~η),

where a(~η) = det(aαβ(~η)), vanishes at those points. In order to circumvent this

difficulty, Ciarlet proposed to replace the components Rαβ(~η) of the “exact”

change of curvature tensor by the functions

Rc
αβ(~η) =

1
√

a
∂αβ(~θ + ηi~ai)[~a1(~η) × ~a2(~η)] − bαβ. (1.9)

After this replacement, the unknown vector field ~ξε = (ξεi ) : ω → R3,

where the functions ξεi : ω → R are again the covariant components of the

displacement field ξεi ~a
i of the surface S , should be a stationary point of the

energy jε defined by

jε(~η) = ε2
∫
ω aαβστGαβ(~η)Gστ(~η)

√
ady

+ ε
3

6

∫
ω aαβστRc

αβ(~η)R
c
στ(~η)

√
ady −

∫
ω pi,εηi

√
ady.

(1.10)

In other words, the unknown ~ξε = (ξεi ) satisfies the following variational

problem pε(ω):

~ξε ∈ w(ω) = {~η = (ηi) ∈ w2,p(ω); ~η = ∂ν~η = 0 on γ0}(p > 2),

ε
∫
ω aαβστGστ(~ξε)(G′αβ(~ξ

ε)~η)
√

ady + ε
3

3

∫
ω aαβστRc

στ(~ξ
ε)((Rc

αβ)
′(~ξε)~η)

√
ady

=
∫
ω pi,εηi

√
ady

(1.11)

for all ~η = (ηi) ∈ w(ω), where

Gαβ(~η) =
1
2

(aαβ(~η) − aαβ) =
1
2

(ηα||β + ηβ||α + amnηm||αηn||β),

G′αβ(~ξ)~η =
1
2

(ηα||β + ηβ||α + amn[ξm||αηn||β + ξn||βηm||α],
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(Rc
αβ)
′(~ξ)~η = 1√

a∂αβ(
~θ + ξi~ai) · [~a1(~ξ) × ∂2(η j~a j)]

+∂1(ηk~ak) × ~a2(~ξ)] + 1√
a∂αβ(ηi~ai) · [~a1(~ξ) × ~a2(~ξ)],

for arbitrary fields ~ξ = (ξi) and ~η = (ηi) in the space w2,p(ω)(p > 2). For

simplicity, we consider the case when surface force vanishes, i.e.,

pi,ε =

∫ ε

−ε
f i,εdxε3.

Remark 1.1. Compared with functions Rαβ(~η), by formal linearization

with respect to ~η the functions Rc
αβ(~η) do not reduce to the covariant compo-

nents ραβ(~η) of the linearized change of curvature tensor of the middle surface

for the shell. As is easily checked by direct computation they satisfy

ρcl
αβ(~η) = [Rc

αβ(~η)]
lin = ραβ(~η) + bαβaστγστ(~η),

where the functions γστ(~η) are the covariant component of the linearized change

of metric tensor, ρστ(~η) are the covariant components of the linearized change

of curvature tensor.
The linearized model equations of (1.11) are

~ξε ∈ w(ω) = {~η = (ηi) ∈ w2,p(ω); ~η = ∂ν~η = 0 on γ0}(p > 2)

such that

ε
∫
ω aαβστγστ(~ξε)γαβ(~η)

√
ady + ε

3

3

∫
ω aαβστρcl

στ(~ξ
ε)ρcl
αβ(~η)

√
ady

=
∫
ω pi,εηi

√
ady

for all ~η = (ηi) ∈ w(ω). The functions ρcl
αβ(~η) represent the modified lin-

ear change of curvature tensor of the middle surface for the shell. Replac-

ing ραβ(~η) by ρcl
αβ(~η) in the linear Koiter’s shell model, we get a new two-

dimensional linear shell model of Koiter’s type, which is the linear counter-

part of the famed linear Koiter’s shell model (porposed by Koiter in 1970, the

reader is referred to [8]),

~ξε = (ξεi ) ∈ Vk(ω) = {~η = (ηi) ∈ H1(ω)×H1(ω)×H2(ω); ηi = ∂νη3 = 0 on γ0}
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such that

ε
∫
ω aαβστγστ(~ξε)γαβ(~η)

√
ady + ε

3

3

∫
ω aαβστρcl

στ(~ξ
ε)ρcl
αβ(~η)

√
ady

=
∫
ω pi,εηi

√
ady,

for all ~η = (ηi) ∈ Vk(ω), where aαβστ are the contravariant components of the

two-dimensional elasticity tensor of the middle surface,

pi,ε =

∫ ε

−ε
f i,εdxε3, (1.12)

γαβ(~η) =
1
2

(∂βηα + ∂αηβ) − Γσαβησ − bαβη3, (1.13)

ραβ(~η) = ∂αβη3 − Γ
σ
αβ∂ση3 − bσαbσβη3 + bσα (∂βησ − Γτβσητ)

+bτβ(∂αητ − Γ
σ
ατησ) + (∂αbτβ + Γ

τ
ασbσβ − Γ

σ
αβb
τ
σ)ητ,

(1.14)

ρcl
αβ(~η) = ραβ(~η) + bαβaστγστ(~η). (1.15)

2. Korn’s Inequality

Similar to Theorem 2.1 in [2] (also see [1]), we have the following Theo-

rem 2.1 (its proof is just a modification of Theorem 2.1 in [2]).

Theorem 2.1. (Inequality of Korn’s type without Boundary conditions):

Let ω be a domain in R2 and ~θ ∈ C3(ω; R3) be an injective mapping such that

the two vectors ~aα = ∂α~θ are linearly independent at all points of ω.

Given ~η = (ηi) ∈ H1(ω) × H1(ω) × H2(ω), let γαβ(~η) ∈ L2(ω), ραβ(~η) ∈

L2(ω) denote the covariant components of the linearized change of metric ten-

sors and linearized change of curvature tensors associated with the displace-

ment fields ηi~ai (from γαβ(~η), ραβ(~η) ∈ L2(ω) it concludes that ρcl
αβ(~η) ∈ L2(ω)).
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Then, there exists a positive constant c0 = c0(ω,~θ) such that{∑
α
‖ηα‖

2
1,ω + ‖η3‖

2
2,ω

}1/2

≤ c0

{∑
α
‖ηα‖

2
0,ω + ‖η3‖

2
1,ω +

∑
α,β
|γαβ(~η)|20,ω +

∑
α,β
|ρcl
α,β(~η)|

2
0,ω

}1/2

for all ~η = (ηi) ∈ H1(ω) × H1(ω) × H2(ω).

Since ρcl
αβ(~η) = ραβ(~η) + bαβaστγστ(~η), it is easy to see that

γαβ(~η) = ρcl
αβ(~η) = 0 ⇐⇒ γαβ(~η) = ραβ(~η) = 0,

for all ~η = (ηi) ∈ H1(ω) × H1(ω) × H2(ω).

Similar to the proof of Theorem 2.3 in [2], we also get the following the-

orem.

Theorem 2.2. (Infinitesimal Rigid Displacement Lemma): Let the map-

ping ~θ : ω→ R3 be assumed as in Theorem 2.1. Then, we have the following:

(a) Let ~η = (ηi) ∈ H1(ω) × H1(ω) × H2(ω) be such that

γαβ(~η) = ρcl
αβ(~η) = 0 in ω.

Then, the vector field ηi~ai : ω→ R3 is an infinitesimal rigid displacement, in

the sense that there exist two vectors ~c, ~d ∈ R3 such that

ηi(y)~ai(y) = ~c + ~d × ~θ(y) for all y ∈ ω.

(b) Let γ0 be a dγ-measurable subset of γ = ∂ω that satisfies length γ0 > 0,

and let ∂ν be the outer normal derivative operator along γ.
Then,

~η = (ηi) ∈ H1(ω) × H1(ω) × H2(ω),

ηi = ∂νη3 = 0 on γ0,

γαβ(~η) = ρcl
αβ(~η) = 0 in ω.

 =⇒ ~η = ~O in ω.
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Based on Theorem 2.1 and Theorem 2.2, we can conclude the following

Theorem 2.3 (its proof is similar to Theorem 2.4 in [2]).

Theorem 2.3. (Inequality of Korn’s type with Boundary conditions): Let

the mapping ~θ : ω → R3 be assumed as in Theorem 2.1, and let γ0 be a

dγ-measurable subset of γ = ∂ω that satisfies length γ0 > 0, the space Vk(ω)

be defined by

Vk(ω) = {~η = (ηi) ∈ H1(ω) × H1(ω) × H2(ω); ηi = ∂νη3 = 0 on γ0}.

Then, there exists a positive constant c1 = c1(ω, γ0, ~θ) such that

{
∑
α
‖ηα‖

2
1,ω + ‖η3‖

2
2,ω}

1/2

≤ c1{
∑
α,β
|γαβ(~η)|20,ω +

∑
α,β
|ρcl
αβ(~η)|

2
0,ω}

1/2

for all ~η ∈ Vk(ω).

3. Asymptotic Analysis

Based on Theorem 2.3, we conclude the following existence and unique-

ness theorem from the Lax-Milgram theorem.

Theorem 3.1. Suppose that the mapping ~θ : ω → R3 is given as in

Theorem 2.1, let γ0 be a dγ-measurable subset of γ = ∂ω that satisfies length

γ0 > 0, and let the space Vk(ω) be defined by

Vk(ω) = {~η = (ηi) ∈ H1(ω) × H1(ω) × H2(ω); ηi = ∂νη3 = 0 on γ0}.

Then, there exists a unique solution to the problem

~ξε = (ξεi ) ∈ Vk(ω) = {~η = (ηi) ∈ H1(ω)×H1(ω)×H2(ω); ηi = ∂νη3 = 0 on γ0}

such that

ε
∫
ω aαβστγστ(~ξε)γαβ(~η)

√
ady + ε

3

3

∫
ω aαβστρcl

στ(~ξ
ε)ρcl
αβ(~η)

√
ady

=
∫
ω pi,εηi

√
ady for all ~η = (ηi) ∈ Vk(ω).

(3.1)
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In what follows we will discuss the asymptotic analysis of problem (3.1)

as ε→ 0. First, we discuss the relationship between the linear membrane shell

model and the linear shell model (3.1) of Koiter’s type.

Theorem 3.2. Assume that γ = γ0 and that there exists a positive constant

c such that

{∑
α

‖ηα‖
2
1,ω + ‖η3‖

2
0,ω

}1/2

≤ c

∑
α,β

|γαβ(~η)|20,ω


1/2

(3.2)

for all ~η = (ηi) ∈ VM(ω), where the space VM(ω) is defined by

VM(ω) = {~η = (ηi); ηα ∈ H1
0(ω), η3 ∈ L2(ω)} = H1

0(ω)×H1
0(ω)×L2(ω), (3.3)

and assume that there exist functions f i ∈ L2(Ω) independent of ε such that

f i,ε(xε) = f i(x) f or all x ∈ Ω = ω × (−1, 1). (3.4)

Let ~ξ ∈ VM(ω) denote the unique solution of the two-dimensional membrane

shell equation:∫
ω

aαβστγστ(~ξ)γαβ(~η)
√

ady =
∫
ω
{

∫ 1

−1
f i(x)dx3}ηi

√
ady (3.5)

for all ~η = (ηi) ∈ VM(ω).

Finally, let ~ξε = (ξεi ) ∈ VK(ω) denote the solution of the two-dimensional

shell equations (3.1) of Koiter’s type. Then,

ξεα → ξα in H1(ω)(α = 1, 2), ξε3 → ξ3 in L2(ω) (3.6)

as ε→ 0.
Remark 3.1. In the case when the middle surface of the elastic shell is

elliptic, if the boundary γ ofω is of class C4 and ~θ ∈ C5(ω; R3), then inequality

(3.2) is satisfied.
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Proof. There exists a positive constant c0 such that (the reader is referred

to Lemma 2.1 of Bernadou et al. in [7])

∑
α,β

|tαβ|2 ≤ c0aαβστ(y)tστtαβ (3.7)

for all y ∈ ω and all symmetric matrices (tαβ). That equation (3.5) has a unique

solution ~ξ ∈ VM(ω) is then a consequence of (3.7) combined with assumption

(3.2).

For brevity, denote

BM(~ξ, ~η) =
∫
ω

aαβστγστ(~ξ)γαβ(~η)
√

ady, (3.8)

Bcl
F (~ξ, ~η) =

1
3

∫
ω

aαβστρcl
στ(~ξ)ρ

cl
αβ(~η)

√
ady, (3.9)

L(~η) =
∫
ω
{

∫ 1

−1
f i(x)dx3}ηi

√
ady, (3.10)

‖L‖ = {
∑

i

‖

∫ 1

−1
f idx3‖

2
0,ω}

1/2, (3.11)

‖~η‖VM(ω) =

{∑
α

‖ηα‖
2
1,ω + ‖η3‖

2
0,ω

}1/2

. (3.12)

Note that the space Vk(ω) is contained in the space VM(ω). By assumption

(3.4) (note that xε1 = x1, xε2 = x2, xε3 = εx3, y = (x1, x2)), the solution ~ξε of

(3.1) also satisfies

BM(~ξε, ~η) + ε2Bcl
F (~ξε, ~η) = L(~η) for all ~η ∈ Vk(ω). (3.13)

Hence, taking ~η = ~ξε in (3.13) concludes

1
c2 ‖
~ξε‖2VM(ω) +

1
3

∑
α,β

‖ερcl
αβ(~ξ

ε)‖20,ω ≤ c0‖L‖‖~ξε‖VM(ω).
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From the above inequality, we can conclude that the family (~ξε)ε>0 is bounded

in VM(ω) and the families (ερcl
αβ(~ξ

ε))ε>0 are bounded in L2(ω); there exists

a subsequence (again by (~ξε)ε>0 for convenience) and there exist functions
~̃ξ ∈ VM(ω) and ρ−1

αβ ∈ L2(ω) such that

~ξε ⇀ ~̃ξ in VM(ω), (3.14)

ερcl
αβ(~ξ

ε)⇀ ρ−1
αβ in L2(ω). (3.15)

(→ and⇀ denote strong and weak convergences, respectively.)

Fix ~η ∈ VK(ω) in (3.13) and let ε → 0; from the weak convergence (3.14)

and (3.15), we get BM(~̃ξ, ~η) = L(~η).

Because the space VK(ω) is dense in VM(ω), we conclude that BM(~̃ξ, ~η) =

L(~η) for all ~η ∈ VM(ω). Therefore,

~̃ξ = ~ξ,

where ~ξ ∈ VM(ω) is the unique solution to the membrane shell equation (3.5).

Because the solution to the membrane shell equation (3.5) is unique, the

weak convergence ~ξε ⇀ ~ξ in VM(ω) holds for the whole family (~ξε)ε>0.

By inequalities (3.2) and (3.7), the following strong convergence

~ξε → ~ξ in VM(ω),

is equivalent to the convergence

BM(~ξε − ~ξ, ~ξε − ~ξ)→ 0,

which can be established from the following relations,

0 ≤ BM(~ξε − ~ξ, ~ξε − ~ξ) = BM(~ξε, ~ξε) − 2BM(~ξε, ~ξ) + BM(~ξ, ~ξ),

BM(~ξε, ~ξε) ≤ L(~ξε),
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BM(~ξε, ~ξ)→ BM(~ξ, ~ξ), L(~ξε)→ L(~ξ),

BM(~ξ, ~ξ) = L(~ξ).

The proof is completed.

Theorem 3.3. Assume that length γ0 > 0, and that the space of inexten-

sional displacements

VF(ω) = {~η ∈ VK(ω); γαβ(~η) = 0 in ω}

is not equal to {~o}, assume that there exist functions f i(x) ∈ L2(Ω) such that

f i,ε(xε) = ε2 f i(x) (3.16)

for all x = (x1, x2, x3) ∈ Ω = ω × (−1, 1), where (xε1, x
ε
2) = (x1, x2) = y, xε3 =

εx3. We denote by ~ξ ∈ VF(ω) the unique solution to the two-dimensional

flexural shell equations

1
3

∫
ω

aαβστρστ(~ξ)ραβ(~η)
√

ady =
∫
ω
{

∫ 1

−1
f i(x)dx3}ηi

√
ady (3.17)

for all ~η = (ηi) ∈ VF(ω).

Denote by ~ξε ∈ VK(ω) the solution to the two-dimensional shell equations

(3.1) of Koiter’s type.

Then,

ξεα → ξα in H1(ω)(α = 1, 2),

ξε3 → ξ3 in H2(ω),

as ε→ 0.

Proof. From the inequality (3.7), Theorem 2.3, and the definition of the

space VF(ω), we can conclude that there exists a unique solution to the two-

dimensional flexural shell equations (3.17).
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Based on the notation (3.8)-(3.12), we denote

‖~η‖VK (ω) = {
∑
α

‖ηα‖
2
1,ω + ‖η3‖

2
2,ω}

1/2,

BF(~ξ, ~η) =
1
3

∫
ω

aαβστρστ(~ξ)ραβ(~η)
√

ady.

From Theorem 2.3, there exists a positive constant c1 such that

‖~η‖VK (ω) ≤ c1{
∑
α,β

‖γαβ(~η)‖20,ω +
∑
α,β

‖ρcl
αβ(~η)‖

2
0,ω}

1/2 (3.18)

for all ~η ∈ VK(ω).

By assumptions (3.16), the solution ~ξε to the two-dimensional shell equa-

tions (3.1) also satisfies

1
ε2 BM(~ξε, ~η) + Bcl

F (~ξε, ~η) = L(~η) (3.19)

for all ~η ∈ Vk(ω).

Taking ~η = ~ξε in (3.19) and combining inequalities (3.18) and (3.7), we

obtain (without loss of generality, we may suppose ε ≤ 1):

c2‖~ξ
ε‖2VK (ω) ≤

∑
α,β

‖
1
ε
γαβ(~ξε)‖20,ω +

1
3

∑
α,β

‖ρcl
αβ(~ξ

ε)‖20,ω ≤ c0‖L‖‖~ξε‖VK (ω),

where c0, c2 are positive constants. Hence, we can select a subsequence, still

by (~ξε)ε>0 for convenience, and there exists a function ~̃ξ ∈ VK(ω) such that

~ξε ⇀ ~̃ξ in VK(ω), (3.20)

γαβ(~ξε)→ 0 in L2(ω). (3.21)

From the weak convergence (3.20), we can conclude that γαβ(~ξε)⇀ γαβ(~̃ξ)

in L2(ω). Hence, γαβ(~̃ξ) = 0 by (3.21), and thus ~̃ξ ∈ VF(ω). Fix ~η ∈ VF(ω) in
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(3.19) and let ε→ 0; then the weak convergence (3.20) yields Bcl
F (~̃ξ, ~η) = L(~η).

Since ~̃ξ, ~η ∈ VF(ω) and

ρcl
αβ(~η) = ραβ(~η) + bαβaστγστ(~η),

Bcl
F (~̃ξ, ~η) = 1

3

∫
ω aαβστρcl

στ(~̃ξ)ρ
cl
αβ(~η)

√
ady

= 1
3

∫
ω aαβστρστ(~̃ξ)ραβ(~η)

√
ady = BF(~̃ξ, ~η).

We have BF(~̃ξ, ~η) = L(~η), thus ~̃ξ = ~ξ, where ~ξ ∈ VF(ω) is the unique

solution to the two-dimensional flexural shell equations (3.17).

The weak convergence (3.20) holds for the whole family (~ξε)ε>0.

By inequality (3.18) combined with the strong convergence (3.21) and the

relations γαβ(~ξ) = 0, the following strong convergence

~ξε → ~ξ in VK(ω),

is equivalent to the convergence

Bcl
F (~ξε − ~ξ, ~ξε − ~ξ)→ 0,

which can be verified from the relations

0 ≤ Bcl
F (~ξε − ~ξ, ~ξε − ~ξ) = Bcl

F (~ξε, ~ξε) − 2Bcl
F (~ξε, ~ξ) + Bcl

F (~ξ, ~ξ),

Bcl
F (~ξε, ~ξε) ≤ L(~ξε),

Bcl
F (~ξε, ~ξ)→ Bcl

F (~ξ, ~ξ), L(~ξε)→ L(~ξ),

Bcl
F (~ξ, ~ξ) = L(~ξ).

The proof is completed.

The method used in this paper is similar to that used in [5]. Since the two-
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dimensional linear shell model considered in this paper is different from the

classical two-dimensional linear Koiter’s shells model considered in [5] (the

difference is the flexural part), it is necessary to establish the new Korn’s in-

equality on the new two-dimensional linear shell model of Koiter’s type before

the asymptotic analysis.

In fact, from Theorem 3.2 and Theorem 3.3 in this paper and the conclu-

sions of Theorem 2.1 and Theorem 2.2 in [5], we have proved that the new

two-dimensional linear shell model of Koiter’s type is asymptotically equiva-

lent to the classical two-dimensional linear Koiter’s shells model considered in

[5], this is a justification of the new two-dimensional linear shell model (3.1)

of Koiter’s type.
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