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Abstract

In this paper, motivated by Ciarlet’s research work on the two-dimensional non-
linear shell model of Koiter’s type, we propose a new two-dimensional linear
shell model of Koiter’s type, in which the flexural part is different from the clas-
sical two-dimensional linear Koiter’s shell model. As the thickness of the shell
goes to zero, using the corresponding Korn’s inequality, we obtain a justifica-
tion of the two-dimensional linear shell model of Koiter’s type by the method

of the asymptotic analysis.

1. Introduction

There are various methods to study the elastic shell, one of the known
methods is the method of the asymptotic analysis: Under the mechanical and

geometrical assumptions with the shell thickness as “small” parameter, how to

© 2012 Pushpa Publishing House

2010 Mathematics Subject Classification: 35L05, 73C02.

Keywords and phrases: linear shell model of Koiter’s type, asymptotic analysis.

The project is supported by the National Natural Science Foundation of China (No. 10671075;
No. 10771039).

Received July 16, 2011



212 Li-ming Xiao

infer a rational two-dimensional shell model from the three-dimensional shell
model and to mathematically justify the obtained two-dimensional shell model
in a rational way (for example, Koiter’s shell model)? In this paper, we use

the method of the asymptotic analysis to justify modified Koiter’s shell model.

In [3], Ciarlet and Lods considered a family of linearly elastic shells with
thickness 2¢, clamped along their entire lateral face, the family of linearly
elastic shells have the same middle surface S which is “uniformly elliptic” in
the sense that the two principal radii of curvature of S are either both positive
or both negative at all points of S. Let the field i(e) = (u;(g)), ui(e)(i = 1,2,3)
denote the three covariant components of the displacement of the points of the
shell given by the equations of three-dimensional elasticity. It has been shown
in [3] that, if the applied body force density is O(1) with respect to &, the field
il(e) = (u;(g)) converges to a limit i as € — 0, in which # is independent of
the transverse variable and satisfies the two-dimensional equations of a “mem-
brane shell” (for details, see [3]). In [4], Ciarlet et al. considered a family of
linearly elastic shells with thickness 2¢, all having the same middle surface
S = @@) C R, where w C R? is a bounded and connected open set with a
Lipschitz-continuous boundary, and @ € C3(w; R?). The shells are clamped
on a portion of their lateral face, whose middle line is @(yo), where 7y is any
portion of dw with length yy > 0. Ciarlet et al. made an essential geometrical
assumption on the middle surface S and on the set g, which states that the

space of inextensional displacements

Vi(w) = {if = () € H (w) x H'(w) X H*(w);
ni = 0yn3 = 0 on yo, Yep(ip) = 0 in w}

contains non-zero functions, where y,(7) are the components of the linearized
change of metric tensor for the middle surface S. It showed in [4] that, if the
applied body force density is O(&?) with respect to &, the field ii(e) = (u;(¢))
converges to a limit iZ as € — 0, in which # is independent of the transverse
variable and satisfies the two-dimensional equations of a “flexural shell” (for
details, see [4]). In [5], Ciarlet and Lods considered, as in [3] and [4], a family
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of linearly elastic shells with thickness 2¢, all having the same middle surface
S = @) c R, where w C R? is a bounded and connected open set with a
Lipschitz-continuous boundary, and @ € C3(w; R?). The shells are clamped
on a portion of their lateral face, whose middle line is @(yg), where vy is a
portion of dw with length yo > 0. For all £ > 0, let u? be the covariant compo-
nents of the displacement u?g"¢ of the points of the shell, derived by solving
the three-dimensional problem; let {7 be the covariant components of the dis-
placement £¢@ of the points of the middle surface S, derived by solving the
two-dimensional linear Koiter’s shell model. Making the same assumptions
as in [3], Ciarlet and Lods proved that the fields 2%9 ffg ufg’i’sdxﬁ and {¥d' have
the same principal part as € — 0; with the same assumptions as in [4], they
also proved that the same fields again have the same principal part as € — 0,
thus they verified the two-dimensional linear Koiter’s shell model for “mem-

brane” and “flexural” shells (for details, see [5]).

In this paper, motivated by Ciarlet’s work on the two-dimensional nonlin-
ear shells model of Koiter’s type (see [6]), we propose a new two-dimensional
linear shells model of Koiter’s type in which the flexural part is different from
the classical two-dimensional linear Koiter’s shell model. By establishing the
corresponding Korn’s inequality, we prove that the new two-dimensional lin-
ear shell model of Koiter’s type is asymptotically equivalent to the classical
two-dimensional linear Koiter’s shell model when the thickness of the shell

goes to zero.

Throughout this paper, we assume that i, j, k, - - - take their values in the set
{1,2,3}; @, B, 0,7, - - - take their values in the set {1, 2}; the summation conven-
tion with respect to repeated indices and exponents is used. We shall denote
by @-b and @x b the scalar and exterior products of &, b € R?, respectively, and
denote by |d| the Euclidean norm of @ € R3. Let w be a bounded open con-
nected subset of R? with a Lipschitz-continuous boundary 7, the set w being
locally on one side of y. Let y = (y,) denote a generic point in @, the closure
of w, and 8, = (8/0ye)(@ = 1,2), 0ag = 8*/0ya0y.
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Let§ : @ » R3 be a C3 injective mapping such that the two vectors
do(y) = c’)aé)(y) are linearly independent at any given point y € @, dy(y)(@ =
1,2) constitute a covariant basis for the tangent plane to the surface S = é(w)
at the point 5()/), and the two vectors @*(y)(a = 1,2) defined by

a*(y) - dg(y) = o
constitute a contravariant basis for the same tangent plane. Let

() = B) = ar(y) X da(y)

ld1(y) x d(y)|
For the surface S, the metric tensor in covariant or contravariant components
(aqp) or (a®¥), the curvature tensor in covariant or mixed components (bop) or
(b@), and the Christoffel symbols I') ;, are defined, respectively, by (whenever

no confusion arises, we drop the dependence on the variable y € w)

dop =y - dg, aP =3 &, (1.1)
bop = @ - Opda, U = dP7 - by, (1.2)

and
75 = a7 - Opda. (1.3)

It is easy to see that
Aap = dpa, a = aﬂa’

bap = bgar T35 =T,

The area element of S is +/ady, where
a = det(aqp). (1.4)

All the functions defined in (1.1)-(1.4) are at least continuous over the set @.
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Then, there exists a constant ag such that
0<ap=<aly), Yyew. (1.5)

Let yo denote a measurable subset of the boundary y of w with length yy > 0.
For more details about these geometrical preliminaries, we refer the reader to
[1, Chapter 2]. Given any differentiable field 7 = (i) : @ — R?, define the
vectors d, (1) = Ba(§ + 1;d") and the functions anp(if) = do (i) - dg(i).

If the two vectors d,(77)(y) are linearly independent at each point y € @,
they thus constitute the covariant basis of the tangent plane to the deformed
surface (4 + n:id)(@) at the point @+ n:id)(y), y € @, of this deformed surface,
and the functions a.s(7f) are the covariant components of the metric tensor of
the same deformed surface. If the two vectors d,(7}) are linearly independent
in w, the vector . R

25(if) = 6_1)1(77) X ﬁz(ﬁ)
|d1 (i7) x d@(77)]
is then normal to the deformed surface (§+n,~d’i )(w) at the point (§+n,~d’i )y), y €
w, of this deformed surface, and the functions b,g(77) = @3 (7f) - 0,dp(if) are the
covariant components of the curvature tensor of the same deformed surface.

Assume that we are given a family of shells, each having the same middle
surface § = 5(6), whose thickness 2& > 0 is arbitrarily small. Then, for
each £ > 0, the reference configuration of the shell is the set @(ﬁs), where

QO = wx [—&, €],

O(y, x5) = b(y) + X5d3(y), (1.6)

for all (y,x5) € w X [—¢&, &]. Let x* = (x{) denote a generic point in the set
Q° (note that x{, = y,), and let 67 = d/0x7. Then for & > 0 small enough, the

mapping 6:0° 5 Ris injective and the three vectors
(") = 9:6(x")

are linearly independent (see Theorem 3.1-1 in [1]). They then form the co-
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variant basis at the point @(xg) € @(ﬁg), while the three vectors g-¢(x®) de-

fined by the relations

() - F(x%) = 4

form the contravariant basis at the same point @(xs). Let vy be a subset of
v = dw such that length yo > 0. Each shell is then subjected to a bound-
ary condition of place along the portion @(yo X [—¢, €]) of its lateral face
@(y X [—¢, g]); this means that its displacement field vanishes on the set
@()/o X [—¢, €]). Each shell is subjected to applied body forces in its inte-
rior ©(Q°), and to applied surface forces on its "upper" and "lower" faces
@(Fi) and @(F‘E ), where I'; = w X {+¢€} and I'? = w X {—¢}. There forces are
given by their contravariant components f¢ € L?(Q) and k"¢ € L*(I' |JT?).
Finally, the elastic material constituting the shell is assumed to be a St. Venant-
Kirchhoff material, the same for each shell. Hence the material is character-
ized by its two Lame constants 4 > 0 and u > 0, which are independent of ¢.
For each & > 0, the unknown is the vector field i#® = (uf) : Q° - R3, where
the functions u? : Q° — R denote the covariant components of the displace-
ment field of the shell. This means that, for each x* € Q°, the displacement
vector of the point @(x‘g) is uf (x%)@4(x°). A two-dimensional nonlinear shell
model, based on a priori assumptions of geometrical and mechanical natures,
has been proposed by Koiter for modelling nonlinearly elastic shells. In the
model, the unknown g,f =) w—o R?, whose components &t w— R?
are covariant components of the displacement field of the surface S, should be

a stationary point of the energy j; defined by

Ji(ﬁ) = % fw aaﬁa-TGaﬂ(ﬁ)GO"r(ﬁ) ‘/ady

i 1.7
42 [, a7 Rag DR ) Nady = [, piem; Nady,

where .
Gaﬁ(ﬁ) = E(a(lﬁ(ﬁ’) - a(zﬁ),
Raﬁ(ﬁ) = baﬁ(fi) - ba,B,

respectively, denote the covariant components of the change of metric tensor
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and the change of curvature tensor associated with a displacement field 7;d@’ of

the surface S, and

&
pi,s — / fi,&dx? + h?:E + hi_,s, (1.8)
—&

where 1 = B4 (-, +¢&), h** = h**(-, —&). But the functions b,s(7f), and thus the
functions R,s(if), are not defined at those points of @, where the two vectors
d, (1) are linearly dependent, for the denominator |@(77) X d>(7f)| = \/@,
where a(if) = det(ap(7})), vanishes at those points. In order to circumvent this
difficulty, Ciarlet proposed to replace the components R,z(77) of the “exact”

change of curvature tensor by the functions

R
Va

After this replacement, the unknown vector field 5‘9 =) : w— R?,

RE4(7) = —=0ap(@ + mid)[d1 (i) X @2(i7)] — bap. (1.9)

where the functions £ : @ — R are again the covariant components of the
displacement field ff&’i of the surface S, should be a stationary point of the

energy j° defined by

Jh) = 5 [, a7 Gap(iDG oo (i) Vady

3 , _ . (1.10)
+% fw aaﬁ(TTRfyﬁ(ng'T(ﬁ) \/ady - fw P \/Edy

In other words, the unknown 58 = (&7) satisfies the following variational

problem p®(w):

& e ww) = {if = () € w?P(w); 7= 8,77 = 0 on yol(p > 2),
£ [, a7 G o (E)(Glg(E)ip) Vady + 5 [, a™PTTRG (E9)((R,p) (£°)if) vady

= J,, p"°miNady
(1.11)

for all 77 = (n;) € w(w), where

1 1
Gap(i) = 5 (aap(il) = dap) = S (i + Npla + @ NmlaTlnp),

, =2, 1
Gaop(©if = 5 i + Npja + a"" [Empiamnp + EnipMmlla]s
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(Rsp) O = ~00p(@ + &) - [d1(E) X 02(7;a))]
+01 (") X @r(E)] + Jzdapmid) - [d1(E) X @),

for arbitrary fields 5 = (&) and 77 = (1;) in the space wz’f’(a))(p > 2). For

simplicity, we consider the case when surface force vanishes, i.e.,
. & .
e _ 1, 7..€
pe= [ rea
—&

Remark 1.1. Compared with functions R,(77), by formal linearization
with respect to 7j the functions Rgﬁ(ﬁ) do not reduce to the covariant compo-
nents pop(77) of the linearized change of curvature tensor of the middle surface

for the shell. As is easily checked by direct computation they satisfy

pfjﬁ(ﬁ) = [R(‘I,B(ﬁ)]lm = pa,B(ﬁ) + bafﬁa(rt)’(r‘r(ﬁ),

where the functions y.(7) are the covariant component of the linearized change
of metric tensor, p,-(77) are the covariant components of the linearized change

of curvature tensor.
The linearized model equations of (1.11) are

& e w(w) = (i = (1) € w*P(w); 7 = 8,77 = 0 on yo)(p > 2)

such that

& [l a7y oo (@ Yyap(i) Nady + 5 [, aPT sl (E sl Vady
= [, p"*niVady

for all 7 = (1;) € w(w). The functions pfylﬁ(ﬁ’) represent the modified lin-
ear change of curvature tensor of the middle surface for the shell. Replac-
ing pup(77) by pfég(ﬁ) in the linear Koiter’s shell model, we get a new two-
dimensional linear shell model of Koiter’s type, which is the linear counter-
part of the famed linear Koiter’s shell model (porposed by Koiter in 1970, the

reader is referred to [8]),

& = (&) € Viw) = (i = (1) € H'(w) x H' (w) x H*(w); n; = 8,173 = 0 on )
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such that

& [, a7 Yo (@) yop(i) Nady + 5 [, a7l (E)pSl(i) Vady
= [, p"°ni Vady,

for all 77 = (1;) € Vi(w), where a®°™ are the contravariant components of the

two-dimensional elasticity tensor of the middle surface,

&
P = / fedxs, (1.12)

—&

1 g~
7048(77) = 5(8,37705 + 5077,3) - raﬂrla' - ba,8773, (113)
paﬁ(ﬁ) = 6aﬁ773 - rgﬁaa'rh - bgba'ﬁn3 + bg(aﬂna' - FE(TUT) (1.14)
+b5(Batte = T310) + (Babf + Ty bF — T5b )0,

P = pap(i) + bapa” Yor(i). (1.15)

2. Korn’s Inequality

Similar to Theorem 2.1 in [2] (also see [1]), we have the following Theo-

rem 2.1 (its proof is just a modification of Theorem 2.1 in [2]).

Theorem 2.1. (Inequality of Korn’s type without Boundary conditions):
Let w be a domain in R: and § € C 3(@; R®) be an injective mapping such that

the two vectors @, = 0,0 are linearly independent at all points of w.

Givenif = () € H'(w) x H'(w) X H*(w), let yop(if) € L*(w), pap(if) €
L?(w) denote the covariant components of the linearized change of metric ten-

sors and linearized change of curvature tensors associated with the displace-

ment fields n;d@’ (from yop(iD), pap(f) € L*(w) it concludes that pfég(ﬁ) € L*(w)).
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. .. 2
Then, there exists a positive constant cy = co(w, 0) such that

1/2
{me@+Mﬂ@}
¢ 1/2
< co {Z 17allG o, + 17311F o + 2 YapDIG e + 22 Ipff,ﬁ(ﬁ)lé,w}
a aB B

for all ij = (17;) € H'(w) x H' (w) x H*(w).
Since pg’ﬁ(ﬁ') = Pap(if) + bapa” Yo (1)), it is easy to see that

7&,3(77) = pfjﬁ(ﬁ) =0 &= 'Y(kﬁ(ﬁ) = paﬁ(ﬁ) =0,

for all 77 = (1) € H'(w) x H'(w) x H*(w).
Similar to the proof of Theorem 2.3 in [2], we also get the following the-

orem.

Theorem 2.2. (Infinitesimal Rigid Displacement Lemma): Let the map-

ping 6: @ — R be assumed as in Theorem 2.1. Then, we have the following:

(a) Letij = (;) € H'(w) x H'(w) x H*(w) be such that
Yap(iD) = plp(iD) = 0 in w.

Then, the vector field n;d' : @ — R3 is an infinitesimal rigid displacement, in

the sense that there exist two vectors C, d € R3 such that

N

M@ (y) = e+ d x 8(y) forall y € @.

(b) Let yg be a dy-measurable subset of y = dw that satisfies length yy > 0,

and let 0, be the outer normal derivative operator along .
Then,

=) € H (w) x H (w) x H*(w),
ni = 0yn3 = 0 on vy, —i7=0inw.
Yap(i}) = pf,lﬂ(ﬁ) =0in w.
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Based on Theorem 2.1 and Theorem 2.2, we can conclude the following

Theorem 2.3 (its proof is similar to Theorem 2.4 in [2]).

Theorem 2.3. (Inequality of Korn’s type with Boundary conditions): Let
the mapping 6 : @ — R3 be assumed as in Theorem 2.1, and let Yo be a

dy-measurable subset of y = dw that satisfies length yy > 0, the space Vi(w)
be defined by

Vi(w) = {if = () € H'(w) x H' (w) x H*(w); 7; = dy13 = 0 on yo}.

. ., . 2
Then, there exists a positive constant ¢, = c1(w, Yo, 0) such that

(el + lInsl3 )12
a

< ell) a5 + 2 105N 1
aB ap

for all ij € Vi(w).
3. Asymptotic Analysis

Based on Theorem 2.3, we conclude the following existence and unique-

ness theorem from the Lax-Milgram theorem.

Theorem 3.1. Suppose that the mapping 6: @w—> Ris given as in
Theorem 2.1, let yy be a dy-measurable subset of vy = Ow that satisfies length
vo > 0, and let the space Vi(w) be defined by

Vi(w) = {if = (7:) € H'(w) x H' (w) x HX(w); 7; = dyn3 = 0 on yo}.

Then, there exists a unique solution to the problem
& = (€) € Vi) = (if = (n) € H' () x H' () x H*(@); 1 = 8ym3 = 0 on o)

such that

o 3 o Pen
& [, a7y (E)yap() Nady + 5 [, a®PTTpl (€9)p5(i) Vady

. 3.1
= [ p**niVady for all if = (n;) € Vi(w). G-D
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In what follows we will discuss the asymptotic analysis of problem (3.1)
as € — 0. First, we discuss the relationship between the linear membrane shell

model and the linear shell model (3.1) of Koiter’s type.

Theorem 3.2. Assume thaty = yy and that there exists a positive constant
¢ such that

12 1/2
{Z 76llf , + I|773||§,w} <ed > s (32)
a B
for all i = (7;) € Vy(w), where the space Vy(w) is defined by
Vi) = (77 = (1) 110 € Hy(w), 13 € LX)} = Hy(w)xHy(@)xL*(w), (3.3)
and assume that there exist functions f' € L*(Q) independent of & such that
FiE(x®) = fi(x) forallx e Q =wx(~1,1). (3.4)

Let g? € Vy(w) denote the unique solution of the two-dimensional membrane

shell equation:

1
/ aP7Y 1 (€)Yap(i) Vady = / { / 1 fi(x)dx3}m; Vady (3.5)

forall ij = (n;) € Vy(w).

Finally, let 5‘9 = (&) € Vg (w) denote the solution of the two-dimensional
shell equations (3.1) of Koiter’s type. Then,

& — &y in H'(w)(a = 1,2), & — & in L(w) (3.6)

ase — 0.

Remark 3.1. In the case when the middle surface of the elastic shell is
elliptic, if the boundary y of w is of class C* and g € C5(w; R%), then inequality
(3.2) is satisfied.
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Proof. There exists a positive constant ¢ such that (the reader is referred

to Lemma 2.1 of Bernadou et al. in [7])

D liapl® < coa™ T Wietap (3.7
Q’B

for all y € w and all symmetric matrices (#,3). That equation (3.5) has a unique

solution 5 € Vy(w) is then a consequence of (3.7) combined with assumption
(3.2).

For brevity, denote

By, = /w a7y 2 (EYyap(if) Vady, (3.8)
BH(E,7) = % /w a7 pll (E)plls(i) Vady, (3.9)
win= [(f 1 FCodxs)mi Vady, (3.10)
=l / 1 fldxsllg )72, (3.11)

1/2
17lVyse) = {Znnauiw + ||n3||%,w} : (3.12)
a

Note that the space Vi(w) is contained in the space Vy(w). By assumption
(3.4) (note that x{ = x1, x5 = xp, x5 = &x3, y = (X1, x2)), the solution 5‘9 of
(3.1) also satisfies

Bu(€8,7) + e*BSL(E, i) = L(#) for all 7 € Vi(w). (3.13)

Hence, taking 77 = 5‘9 in (3.13) concludes

| - 1 > N
SIEM 0 + 3 D NP E NG < colLE NV, w)-
B
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From the above inequality, we can conclude that the family (5"3)5>0 is bounded
in Vy(w) and the families (sp;’ﬁ(é’e))g>o are bounded in L*(w); there exists
a subsequence (again by (.;?‘9)»0 for convenience) and there exist functions
5 € Vy(w) and p;},, € L*(w) such that

EFin Viw), (3.14)

epp(€) — pop in L(w). (3.15)
(— and — denote strong and weak convergences, respectively.)

Fix 77 € Vg(w) in (3.13) and let &€ — 0; from the weak convergence (3.14)
and (3.15), we get By/(&, i) = L().

Because the space Vg(w) is dense in Vjy(w), we conclude that BM(g, 7 =
L(1}) for all 7 € Vj;(w). Therefore,

&=¢,
where g? € Vy(w) is the unique solution to the membrane shell equation (3.5).

Because the solution to the membrane shell equation (3.5) is unique, the

weak convergence 58 — 5 in Vjs(w) holds for the whole family (5‘9)»0-

By inequalities (3.2) and (3.7), the following strong convergence
& SE in Vy(w),

is equivalent to the convergence

2, 2> 2

By -£& -8 -0,

which can be established from the following relations,

2 Ze

0< By -&E -8 =By,

= D 2,

&) - 2By(&,8) + By, &),

Bu(&,8) < L&),
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2> 2

Bu(@.&) — Bu(£.9), LE) - LE).
Bu(.é) = L©).
The proof is completed.

Theorem 3.3. Assume that length yvo > 0, and that the space of inexten-

sional displacements

Vi(w) = {ij € Vk(w); Yap() = 0 in w}

is not equal to {3}, assume that there exist functions f'(x) € L*(Q) such that
[P0 = £ 1) (3.16)

Sorall x = (x1,x2,x3) € Q = w X (=1, 1), where (x{,x5) = (x1,x2) = y, x5 =
ex3. We denote by 5’ € Vp(w) the unique solution to the two-dimensional

flexural shell equations

1 5 L
3 / a7 o (E)pap(if) Vady = / { / lf’(X)cixa}m Vady (3.17)

for allij = (n;) € Vr(w).

Denote by 56 € Vik(w) the solution to the two-dimensional shell equations
(3.1) of Koiter’s type.
Then,
& =& in H'(w)(a=1,2),

&-& in H(w),
as e — 0.
Proof. From the inequality (3.7), Theorem 2.3, and the definition of the

space Vr(w), we can conclude that there exists a unique solution to the two-

dimensional flexural shell equations (3.17).
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Based on the notation (3.8)-(3.12), we denote

lviecwr = £ allf, + 313},
(07

- 1 -
B = / AP o (s Vady.

w

From Theorem 2.3, there exists a positive constant ¢; such that

Vo < 10> IVap@DIG 0 + > loSpEDIG 1 (3.18)
af B

for all 77 € Vg(w).

By assumptions (3.16), the solution 5‘9 to the two-dimensional shell equa-

tions (3.1) also satisfies

1 =, =,
B+ BY(E, ) = L) (3.19)
for all 77 € Vi(w).

Taking 77 = 55 in (3.19) and combining inequalities (3.18) and (3.7), we
obtain (without loss of generality, we may suppose € < 1):

= 1 -, 1 -, -,
M < D= Yap @M + 3 D IEENR 0 < ol vy,
ap ap

where ¢, ¢, are positive constants. Hence, we can select a subsequence, still

by (58)8>0 for convenience, and there exists a function E € Vk(w) such that
& = in Vg(w), (3.20)

Yop(@®) = 0 in L(w). (3.21)

From the weak convergence (3.20), we can conclude that yaﬁ(?) — yaﬁ(g)

in L2(w). Hence, y,p(€) = 0 by (3.21), and thus & € Vr(w). Fix ij € Vp(w) in
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(3.19) and let € — 0; then the weak convergence (3.20) yields prl((f_), ) = L().
Since &, 7 € Vp(w) and
P = Pap(i) + bapa” Yo (i),

BIE D = § [, a7 pll (Epsls i) Vady

= % fw aaﬁ(TTpO"r(g)pa,B(ﬁ) \/ady = BF(?, 77)

We have Br(€,7) = L(if), thus & = &, where & € Vp(w) is the unique
solution to the two-dimensional flexural shell equations (3.17).

The weak convergence (3.20) holds for the whole family (55)8>0.

By inequality (3.18) combined with the strong convergence (3.21) and the

relations yaﬁ(g) = 0, the following strong convergence
£ — & in Vk(w),

is equivalent to the convergence

2> 2 =2

BHE -£& -5 -0,

which can be verified from the relations

2> 2

BSU(&, &) - 2BE, &) + BYE, D),

2, 2> 2 =2

0<BHE -E& -9

B(E®, &%) < L&),
BH(E,8) — BHE D), LE) - L),
BY (&) = L().
The proof is completed.

The method used in this paper is similar to that used in [5]. Since the two-
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dimensional linear shell model considered in this paper is different from the
classical two-dimensional linear Koiter’s shells model considered in [5] (the
difference is the flexural part), it is necessary to establish the new Korn’s in-
equality on the new two-dimensional linear shell model of Koiter’s type before

the asymptotic analysis.

In fact, from Theorem 3.2 and Theorem 3.3 in this paper and the conclu-
sions of Theorem 2.1 and Theorem 2.2 in [5], we have proved that the new
two-dimensional linear shell model of Koiter’s type is asymptotically equiva-
lent to the classical two-dimensional linear Koiter’s shells model considered in
[5], this is a justification of the new two-dimensional linear shell model (3.1)

of Koiter’s type.
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