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Abstract

The aim of this paper is to introduce and to study the concept of

‘Complete homogeneity and reversibility’ in L-topological spaces. Here

we characterize all L-topological spaces which are minimum or

maximum with respect to an L-topological property.

1. Introduction

In [9] we studied lattice structure of the set of all L-topologies on a

given set X and proved that the lattice of L-topologies is not

complemented. A related problem is to determine which subfamilies of

L-topologies do possess minimum (maximum) and minimal (maximal)

elements with respect to an L-topological property. In [10] Larson

characterized all spaces which are minimum or maximum with respect to
a topological property by introducing completely homogeneous topological
spaces. In [12] Rajagopalan and Wilansky proved that a topological space
is minimal or maximal for some topological property if and only if it is
reversible. Here we investigate the concept ‘Complete homogeneity and

reversibililty’ in general L-setup and L-topology.
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2. Preliminaries

Let X be a nonempty ordinary set and ( ).,,, ′∧∨≤= LL  be a fuzzy

lattice, i.e., a complete completely distributive lattice with smallest

element 0 and largest element ( )101 ≠  and with an order-reversing

involution ( ).Laaa ∈′→  L is therefore a continuous lattice [4]. We

identify the constant function with value ∝ by .∝  The fundamental

definitions of L- fuzzy set theory and L-fuzzy topology are assumed to be

familiar to the reader in the sense of Chang [3] and Goguen [5]. Here we

call L-fuzzy subsets as L-subsets and a crisp subset F  of xL  is called an

L-topology if

  (i) ,1,0 F∈

 (ii) ,, FF ∈∧⇒∈ gfgf

(iii) F∈∝f  for each .F∈⇒∈∝ ∝∝∈ fVA A

Members of F  are called L-opensets.

Definition 2.1. Let θ be a function from a set X to a set Y and f be an

L-subset in Y. Then the inverse image of f, written as ,1f−θ  is an L-subset

in X whose membership function is given by ( ) ( ) ( )( )xfxf θ=θ−1  for all x

in X. Conversely, let g be an L-subset in X. Then the image of g, written

as ( ),gθ  is an L-subset in Y, whose membership function is given by

( ) ( ) { ( ) ( )} ( )




 ∅≠θθ∈

=θ
−−

.

yyzzg
yg

otherwise,0

if;sup 11

Definition 2.2. A function θ from an L-topological space ( )F,X  to

an L-topological space ( )G,Y  is L-continuous if and only if the inverse

image of each G  open L-subset in Y is F open L-subset in X. An

L-homeomorphism is an L-continuous one to one map of an L-topological

space ( )F,X  onto an L-topological space ( )G,Y  such that the inverse of

the map is also L-continuous.
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3. Reversibility and Complete Homogeneity in L-topology

In [12] Rajagopalan and Wilansky unified the notion of minimal and
maximal topologies by introducing reversible topological spaces. In [10]
Larson studied subfamilies of topologies possessing minimal and
maximal elements and characterized all spaces which are minimum and
maximum with respect to a topological property. Here we introduce in an
analogous way the concept of complete homogeneity and reversibility in
the general set up of L-sets and L-topology.

Definition 3.1. An L-topological space ( )F,X  is called reversible if it

has no strictly stronger (weaker) L-topology F ′  such that ( )F,X  and

( )F ′,X  are L-homeomorphic.

Lemma 3.2. An L-topological space ( )F,X  is reversible if and only if

each L-continuous one to one map of the space onto itself is an
L-homeomorphism.

Theorem 3.3. If X is any finite set and F  is any L-topology on X,

then ( )F,X  is reversible.

Proof of Theorem 3.3 is easy.

Definition 3.4 [3]. An element p of L is called prime if 1≠p  and

whenever Lba ∈,  with ,pba ≤∧  then pa ≤  or .pb ≤  The set of all

prime elements of L will be denoted by ( ).Lpr

Definition 3.5 (Warner and McLean [14]). The scott topology on L is
the topology generated by the sets of the form { },: ptLt ≤/∈  where

( ).Lprp ∈  Let ( )τ,X  be a topological space and ( ) LXf →τ,:  be a

function, where L has its scott topology. We say that f is scott continuous

if for every ( ) { }( ) .:, 1 τ∈≤/∈∈ − ptLtfLprp

The set ( )τω  of all scott continuous functions from a topological space

( )τ,X  to L with its scott topology is an L-topology called the induced

L-topology [1]. This induced L-topology is equivalent to topologically
generated spaces of Lowen [11] when [ ].1,0=L  Conversely for an

L-topology F  on X, ( )Fi  is the weak topology on X induced by all
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functions ,: LXf →  where F∈f  and L – with its scott topology. Then

we have

Theorem 3.6. If ( )τ,X  is a topological space, then ( )τ,X  is

reversible if and only if ( )( )τω,X  is reversible.

Theorem 3.7. If ( )τ,X  is a topological space such that ( )τ,X  is not

reversible, g is a scott continuous function from ( ) LX →τ,  such that g is

one-one and F  is the L-topology generated by { } { },: gAS A ∪τ∈χ=

where Aχ  is the characteristic function of A. Then F  is reversible and

( ) .τ=Fi

Proof. Suppose θ is a bijection on X such that θ is not an identity

map. Then ( ) .1 F∉θ− g  That is θ is not L-continuous. Thus every one to

one L-continuous map onto itself is an L-homeomorphism. Thus ( )F,X

is reversible.

Remark 3.8. There are non reversible L-topological spaces such that

its associated topology is reversible.

Definition 3.9. An L-topological space ( )F,X  is called completely

homogeneous if every one to one map of X onto itself is an

L-homeomorphism.

Theorem 3.10. If ( )F,X  is discrete, indiscrete or generated by

L-points with the same membership value, then ( )F,X  is completely

homogeneous.

Definition 3.11. An L-topological property is a class of L-topological

spaces which is closed under L-homeomorphism.

Theorem 3.12. Given an L-topological space ( )F,X  the following

conditions are equivalent:

(a) ( )F,X  is completely homogeneous.

(b) ( )F,X  is minimum p for some L-topological property p.

(c) ( )F,X  is maximum p for some L-topological property p.
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Proof. Suppose ( )F,X  is completely homogeneous. Define p by the

following: an L-topological space ( )G,Y  has property p if there exists one

to one, onto L-continuous mapping ( ) ( ).,,: FG XY →θ  Then ( )F,X  has

property p. Now assume F ′  is an L-topology on X which possesses

property p. Then there exists a one to one, onto L-continuous mapping

( ) ( );,,: FF XX →′θ  but then ( ) ( )FF ,,:1 XX →θ−  is L-continuous

since ( )F,X  is completely homogeneous. Hence the identity mapping

( ) ( )FF ,,:1 XXi →′=θ⋅θ−  is L-continuous and .FF ′⊆  Thus ( )F,X

is minimum for p. This proves (a) ⇒ (b).

Now to prove (b) ⇒ (a) assume ( )F,X  is minimum for some

L-topological property p. Let θ be a one to one mapping of X onto X.

Define ( ) ( ){ }.: FF ∈θ=θ gg  Then ( )θF  is an L-topology on X and

( ) ( )( )θ→θ FF ,,: XX  is an L-homeomorphism. Then ( )θF  is also

minimum for p; since p is an L-topological property which implies that

( ) FF ⊆θ  and ( ).FF θ⊆  Hence ( ) FF =θ  and ( ) ( )FF ,,: XX →θ  is

an L-homeomorphism. Thus ( )F,X  is completely homogeneous.

In a similar way we can show that (a) and (c) are equivalent.

Theorem 3.13. If ( )τ,X  is a topological space, then ( )τ,X  is

completely homogeneous if and only if ( )( )τω,X  is completely homogeneous.

Definition 3.14. An L-topology ( )F,X  is homogeneous if for any

Xyx ∈,  there exists an L-homeomorphism θ such that ( ) .yx =θ  Then

we have

Theorem 3.15. Every completely homogeneous L-topology is

hereditarily homogeneous.

Theorem 3.16. Every completely homogeneous L-topology is

hereditarily reversible.

Remark 3.17. Complete homogeneity implies reversibility but

reversibility need not imply complete homogeneity.
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