FUZZY PAIRWISE STRONGLY (r, s)-SEMICONTINUOUS MAPPINGS

EUN PYO LEE and SEUNG ON LEE

(Received December 1, 2004)

Submitted by K. K. Azad

Abstract

We define (T_i, T_j) -fuzzy strongly (r, s)-semiclosures and (T_i, T_j) -fuzzy strongly (r, s)-semiinteriors. By these concepts, we characterize fuzzy pairwise strongly (r, s)-semicontinuous mappings, fuzzy pairwise strongly (r, s)-semiopen mappings and fuzzy pairwise strongly (r, s)-semiclosed mappings in smooth bitopological spaces.

1. Introduction

The concept of fuzzy sets was introduced by Zadeh [13] in his classical paper. Using the concept of fuzzy sets, Chang [2] introduced fuzzy topological spaces and several other authors continued the investigation of such spaces. Chattopadhyay et al. [4] and Ramadan [10] introduced new definition of smooth topological spaces as a generalization of fuzzy topological spaces. Kandil [6] introduced and studied the notion of fuzzy bitopological spaces as a natural generalization of fuzzy topological spaces. Lee et al. [8] introduced and studied the concept of smooth bitopological spaces as a generalization of smooth topological spaces and Kandil's fuzzy bitopological spaces.

2000 Mathematics Subject Classification: 54A40.

Key words and phrases: (T_i, T_j) -fuzzy strongly (r, s)-semiclosures, (T_i, T_j) -fuzzy strongly (r, s)-semiinteriors, fuzzy pairwise strongly (r, s)-semicontinuous mappings.

© 2005 Pushpa Publishing House

In this paper, we introduce $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy strongly (r, s)-semiclosures and $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy strongly (r, s)-semiinteriors. By these notions, we characterize fuzzy pairwise strongly (r, s)-semicontinuous mappings, fuzzy pairwise strongly (r, s)-semiopen mappings and fuzzy pairwise strongly (r, s)-semiclosed mappings in smooth bitopological spaces.

2. Preliminaries

Let I be the unit interval [0, 1] of the real line and $I_0 = (0, 1]$. For a set X, I^X denotes the collection of all mappings from X to I. A member μ of I^X is called a *fuzzy set* of X. By $\widetilde{0}$ and $\widetilde{1}$ we denote constant mappings on X with values 0 and 1, respectively. For any $\mu \in I^X$, μ^c denotes the complement $\widetilde{1} - \mu$. All other notations are the standard notations of fuzzy set theory.

A Chang's fuzzy topology on X [2] is a family T of fuzzy sets in X which satisfies the following properties:

- (1) $\tilde{0}$, $\tilde{1} \in T$.
- (2) If $\mu_1, \mu_2 \in T$, then $\mu_1 \wedge \mu_2 \in T$.
- (3) If $\mu_k \in T$ for each k, then $\vee \mu_k \in T$.

The pair (X, T) is called a *Chang's fuzzy topological space*.

A system (X, T_1, T_2) consisting of a set X with two Chang's fuzzy topologies T_1 and T_2 on X is called a *Kandil's fuzzy bitopological space* [6].

A smooth topology on X [4, 10] is a mapping $\mathcal{T}: I^X \to I$ which satisfies the following properties:

- (1) $\mathcal{T}(\widetilde{0}) = \mathcal{T}(\widetilde{1}) = 1.$
- (2) $\mathcal{T}(\mu_1 \wedge \mu_2) \geq \mathcal{T}(\mu_1) \wedge \mathcal{T}(\mu_2)$.

(3)
$$\mathcal{T}(\vee \mu_k) \geq \wedge \mathcal{T}(\mu_k)$$
.

The pair (X, \mathcal{T}) is called a *smooth topological space*.

A system $(X, \mathcal{T}_1, \mathcal{T}_2)$ consisting of a set X with two smooth topologies \mathcal{T}_1 and \mathcal{T}_2 on X is called a *smooth bitopological space*. Throughout this paper the indices i, j take values in $\{1, 2\}$ and $i \neq j$.

Let (X, \mathcal{T}) be a smooth topological space. Then it is easy to see that for each $r \in I_0$, an r-cut

$$\mathcal{T}_r = \{ \mu \in I^X \mid \mathcal{T}(\mu) \ge r \}$$

is a Chang's fuzzy topology on X.

Let (X, T) be a Chang's fuzzy topological space and $r \in I_0$. Then the map $T^r: I^X \to I$ defined by

$$T^{r}(\mu) = \begin{cases} 1 & \text{if } \mu = \widetilde{0}, \ \widetilde{1}, \\ r & \text{if } \mu \in T - \{\widetilde{0}, \ \widetilde{1}\}, \\ 0 & \text{otherwise} \end{cases}$$

becomes a smooth topology.

Hence, we obtain that if $(X, \mathcal{T}_1, \mathcal{T}_2)$ is a smooth bitopological space and $r, s \in I_0$, then $(X, (\mathcal{T}_1)_r, (\mathcal{T}_2)_s)$ is a Kandil's fuzzy bitopological space. Also, if $(X, \mathcal{T}_1, \mathcal{T}_2)$ is a Kandil's fuzzy bitopological space and $r, s \in I_0$, then $(X, (\mathcal{T}_1)^r, (\mathcal{T}_2)^s)$ is a smooth bitopological space.

Definition 2.1 [8]. Let (X, \mathcal{T}) be a smooth topological space. For each $r \in I_0$ and for each $\mu \in I^X$, the *fuzzy r-closure* is defined by

$$\mathcal{T}\text{-Cl}(\mu, r) = \bigwedge \{ \rho \mid \mu \leq \rho, \, \mathcal{T}(\rho^c) \geq r \}$$

and the *fuzzy r-interior*

$$\mathcal{T}$$
-Int(μ , r) = $\bigvee \{ \rho \mid \mu \geq \rho, \mathcal{T}(\rho) \geq r \}$.

Lemma 2.2 [8]. For a fuzzy set μ of a smooth topological space (X, \mathcal{T})

and $r \in I_0$, we have

- (1) \mathcal{T} -Int(μ , r)^c = \mathcal{T} -Cl(μ ^c, r).
- (2) \mathcal{T} -Cl(μ , r)^c = \mathcal{T} -Int(μ ^c, r).

Definition 2.3 [7]. Let μ be a fuzzy set of a smooth bitopological space $(X, \mathcal{T}_1, \mathcal{T}_2)$ and $r, s \in I_0$. Then μ is said to be

- (1) a $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy strongly (r, s)-semiopen set if there is a \mathcal{T}_i -fuzzy (r, s)-open set ρ in X such that $\rho \leq \mu \leq \mathcal{T}_i$ -Int $(\mathcal{T}_i$ -Cl $(\rho, s), r)$,
- (2) a $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy strongly (r, s)-semiclosed set if there is a \mathcal{T}_i -fuzzy (r, s)-closed set ρ in X such that \mathcal{T}_i -Cl $(\mathcal{T}_i$ -Int $(\rho, s), r) \leq \mu \leq \rho$.

3. Fuzzy Pairwise Strongly (r, s)-semicontinuous Mappings

Definition 3.1. Let $(X, \mathcal{T}_1, \mathcal{T}_2)$ be a smooth bitopological space and $r, s \in I_0$. For each $\mu \in I^X$, the $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy strongly (r, s)-semiclosure is defined by

$$(\mathcal{T}_i, \mathcal{T}_i)$$
-ssCl (μ, r, s)

 $= \bigwedge \{ \rho \in I^X \mid \mu \leq \rho, \ \rho \ \text{is} \ (\mathcal{T}_i, \ \mathcal{T}_j) \text{-fuzzy strongly} \ (r, \ s) \text{-semiclosed} \}$ and the $(\mathcal{T}_i, \ \mathcal{T}_j)$ -fuzzy strongly $(r, \ s)$ -semiclosed by

$$(\mathcal{T}_i, \mathcal{T}_j)$$
-ssInt (μ, r, s)

$$=\bigvee\{\rho\in I^X\,|\,\mu\geq\rho,\,\rho\text{ is }(\mathcal{T}_i,\,\mathcal{T}_j)\text{-fuzzy strongly}(r,\,s)\text{-semiopen}\}.$$

Obviously, we have that $(\mathcal{T}_i,\mathcal{T}_j)$ -ssCl(μ,r,s) is the smallest $(\mathcal{T}_i,\mathcal{T}_j)$ -fuzzy strongly (r,s)-semiclosed set which contains μ and $(\mathcal{T}_i,\mathcal{T}_j)$ -ssCl(μ,r,s) = μ for any $(\mathcal{T}_i,\mathcal{T}_j)$ -fuzzy strongly (r,s)-semiclosed set μ . Also, we have that $(\mathcal{T}_i,\mathcal{T}_j)$ -ssInt(μ,r,s) is the greatest $(\mathcal{T}_i,\mathcal{T}_j)$ -fuzzy strongly (r,s)-semiopen set which is contained in μ and $(\mathcal{T}_i,\mathcal{T}_j)$ -ssInt(μ,r,s) = μ for any $(\mathcal{T}_i,\mathcal{T}_j)$ -fuzzy strongly (r,s)-semiopen set μ .

Also, we have the following results:

$$(1) \ (\mathcal{T}_i, \, \mathcal{T}_j) \text{-ssCl}(\widetilde{0}, \, r, \, s) = \widetilde{0}, \, (\mathcal{T}_i, \, \mathcal{T}_j) \text{-ssCl}(\widetilde{1}, \, r, \, s) = \widetilde{1}.$$

(2)
$$(\mathcal{T}_i, \mathcal{T}_j)$$
-ssCl $(\mu, r, s) \ge \mu$.

(3)
$$(\mathcal{T}_i, \mathcal{T}_j)$$
-ssCl $(\mu \lor \rho, r, s) \ge (\mathcal{T}_i, \mathcal{T}_j)$ -ssCl $(\mu, r, s) \lor (\mathcal{T}_i, \mathcal{T}_j)$ -ssCl (ρ, r, s) .

(4)
$$(\mathcal{T}_i, \mathcal{T}_j)$$
-ssCl $((\mathcal{T}_i, \mathcal{T}_j)$ -ssCl $(\mu, r, s), r, s) = (\mathcal{T}_i, \mathcal{T}_j)$ -ssCl (μ, r, s) .

$$(5) \ (\mathcal{T}_i, \ \mathcal{T}_j)\text{-ssInt}(\widetilde{0}, \ r, \ s) = \widetilde{0}, \ (\mathcal{T}_i, \ \mathcal{T}_j)\text{-ssInt}(\widetilde{1}, \ r, \ s) = \widetilde{1}.$$

(6)
$$(\mathcal{T}_i, \mathcal{T}_i)$$
-ssInt $(\mu, r, s) \leq \mu$.

(7)
$$(\mathcal{T}_i, \mathcal{T}_j)$$
-ssInt $(\mu \land \rho, r, s) \le (\mathcal{T}_i, \mathcal{T}_j)$ -ssInt $(\mu, r, s) \land (\mathcal{T}_i, \mathcal{T}_j)$ -ssInt (ρ, r, s) .

$$(8)\ (\mathcal{T}_i,\ \mathcal{T}_j)\text{-ssInt}((\mathcal{T}_i,\ \mathcal{T}_j)\text{-ssInt}(\mu,\ r,\ s),\ r,\ s) = (\mathcal{T}_i,\ \mathcal{T}_j)\text{-ssInt}(\mu,\ r,\ s).$$

Theorem 3.2. For a fuzzy set μ of a smooth bitopological space $(X, \mathcal{T}_1, \mathcal{T}_2)$ and $r, s \in I_0$, we have

(1)
$$((\mathcal{T}_i, \mathcal{T}_i)\text{-ssInt}(\mu, r, s))^c = (\mathcal{T}_i, \mathcal{T}_i)\text{-ssCl}(\mu^c, r, s)$$
.

(2)
$$((\mathcal{T}_i, \mathcal{T}_i)\operatorname{-ssCl}(\mu, r, s))^c = (\mathcal{T}_i, \mathcal{T}_i)\operatorname{-ssInt}(\mu^c, r, s).$$

Proof. (1) Note that $(\mathcal{T}_i, \mathcal{T}_j)$ -ssInt(μ , r, s) $\leq \mu$ and $(\mathcal{T}_i, \mathcal{T}_j)$ -ssInt(μ , r, s) is a $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy strongly (r, s)-semiopen set. So $\mu^c \leq ((\mathcal{T}_i, \mathcal{T}_j)$ -ssInt(μ , r, s)) c and $((\mathcal{T}_i, \mathcal{T}_j)$ -ssInt(μ , r, s)) c is a $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy strongly (r, s)-semiclosed set of X. Thus

$$\begin{split} (\mathcal{T}_i,\,\mathcal{T}_j)\text{-ssCl}(\mu^c,\,r,\,s) &\leq (\mathcal{T}_i,\,\mathcal{T}_j)\text{-ssCl}(((\mathcal{T}_i,\,\mathcal{T}_j)\text{-ssInt}(\mu,\,r,\,s))^c,\,r,\,s) \\ &= ((\mathcal{T}_i,\,\mathcal{T}_j)\text{-ssInt}(\mu,\,r,\,s))^c. \end{split}$$

Conversely, note that $\mu^c \leq (\mathcal{T}_i, \mathcal{T}_j)$ -ssCl (μ^c, r, s) and $(\mathcal{T}_i, \mathcal{T}_j)$ -ssCl (μ^c, r, s) is a $(\mathcal{T}_i, \mathcal{T}_j)$ -fuzzy strongly (r, s)-semiclosed set. So $((\mathcal{T}_i, \mathcal{T}_j)$ -

 $\operatorname{ssCl}(\mu^c, r, s))^c \le \mu$ and $((\mathcal{T}_i, \mathcal{T}_j)\operatorname{-ssCl}(\mu^c, r, s))^c$ is a $(\mathcal{T}_i, \mathcal{T}_j)\operatorname{-fuzzy}$ strongly $(r, s)\operatorname{-semiopen}$ set of X. Thus

$$\begin{split} ((\mathcal{T}_i,\,\mathcal{T}_j)\text{-ssCl}(\boldsymbol{\mu}^c,\,r,\,s))^c &= (\mathcal{T}_i,\,\mathcal{T}_j)\text{-ssInt}(((\mathcal{T}_i,\,\mathcal{T}_j)\text{-ssCl}(\boldsymbol{\mu}^c,\,r,\,s))^c,\,r,\,s) \\ &\leq (\mathcal{T}_i,\,\mathcal{T}_j)\text{-ssInt}(\boldsymbol{\mu},\,r,\,s) \end{split}$$

and hence $((\mathcal{T}_i, \mathcal{T}_i)\text{-ssInt}(\mu, r, s))^c \leq (\mathcal{T}_i, \mathcal{T}_i)\text{-ssCl}(\mu^c, r, s)$.

(2) Similar to (1).

Definition 3.3 [7]. Let $f:(X, \mathcal{T}_1, \mathcal{T}_2) \to (Y, \mathcal{U}_1, \mathcal{U}_2)$ be a mapping from a smooth bitopological space X to a smooth bitopological space Y and $r, s \in I_0$. Then f is called a *fuzzy pairwise* (r, s)-continuous ((r, s)-open and (r, s)-closed, respectively) mapping if the induced mapping $f:(X, \mathcal{T}_1) \to (Y, \mathcal{U}_1)$ is a fuzzy r-continuous (r-open and r-closed, respectively) mapping and the induced mapping $f:(X, \mathcal{T}_2) \to (Y, \mathcal{U}_2)$ is a fuzzy s-continuous (s-open and s-closed, respectively) mapping.

Definition 3.4 [7]. Let $f:(X, \mathcal{T}_1, \mathcal{T}_2) \to (Y, \mathcal{U}_1, \mathcal{U}_2)$ be a mapping from a smooth bitopological space X to a smooth bitopological space Y and $r, s \in I_0$. Then f is called

- (1) fuzzy pairwise strongly (r, s)-semicontinuous if $f^{-1}(\mu)$ is a $(\mathcal{T}_1, \mathcal{T}_2)$ -fuzzy strongly (r, s)-semiopen set of X for each \mathcal{U}_1 -fuzzy r-open set μ of Y and $f^{-1}(\nu)$ is a $(\mathcal{T}_2, \mathcal{T}_1)$ -fuzzy strongly (s, r)-semiopen set of X for each \mathcal{U}_2 -fuzzy s-open set ν of Y,
- (2) fuzzy pairwise strongly (r, s)-semiopen if $f(\rho)$ is a $(\mathcal{U}_1, \mathcal{U}_2)$ -fuzzy strongly (r, s)-semiopen set of Y for each \mathcal{T}_1 -fuzzy r-open set ρ of X and $f(\lambda)$ is a $(\mathcal{U}_2, \mathcal{U}_1)$ -fuzzy strongly (s, r)-semiopen set of Y for each \mathcal{T}_2 -fuzzy s-open set λ of X,
- (3) fuzzy pairwise strongly (r, s)-semiclosed if $f(\rho)$ is a $(\mathcal{U}_1, \mathcal{U}_2)$ -fuzzy strongly (r, s)-semiclosed set of Y for each \mathcal{T}_1 -fuzzy r-closed set ρ

of X and $f(\lambda)$ is a $(\mathcal{U}_2, \mathcal{U}_1)$ -fuzzy strongly (s, r)-semiclosed set of Y for each \mathcal{T}_2 -fuzzy s-closed set λ of X.

Theorem 3.5. Let $f:(X, \mathcal{T}_1, \mathcal{T}_2) \to (Y, \mathcal{U}_1, \mathcal{U}_2)$ be a mapping and $r, s \in I_0$. Then the following statements are equivalent:

- (1) f is a fuzzy pairwise strongly (r, s)-semicontinuous mapping.
- (2) For each fuzzy set ρ of X, $f((\mathcal{T}_1, \mathcal{T}_2)\text{-ssCl}(\rho, r, s)) \leq \mathcal{U}_1\text{-Cl}(f(\rho), r)$ and $f((\mathcal{T}_2, \mathcal{T}_1)\text{-ssCl}(\rho, s, r)) \leq \mathcal{U}_2\text{-Cl}(f(\rho), s)$.
- (3) For each fuzzy set μ of Y, $(\mathcal{T}_1, \mathcal{T}_2)\text{-ssCl}(f^{-1}(\mu), r, s) \leq f^{-1}(\mathcal{U}_1 \text{Cl}(\mu, r))$ and $(\mathcal{T}_2, \mathcal{T}_1)\text{-ssCl}(f^{-1}(\mu), s, r) \leq f^{-1}(\mathcal{U}_2\text{-Cl}(\mu, s))$.
- (4) For each fuzzy set μ of Y, $f^{-1}(\mathcal{U}_1\text{-Int}(\mu, r)) \leq (\mathcal{T}_1, \mathcal{T}_2)\text{-ssInt}(f^{-1}(\mu), r, s)$ and $f^{-1}(\mathcal{U}_2\text{-Int}(\mu, s)) \leq (\mathcal{T}_2, \mathcal{T}_1)\text{-ssInt}(f^{-1}(\mu), s, r)$.

Proof. (1) \Rightarrow (2) Let ρ be any fuzzy set of X. Then \mathcal{U}_1 -Cl $(f(\rho), r)$ is \mathcal{U}_1 -fuzzy r-closed and \mathcal{U}_2 -Cl $(f(\rho), s)$ is \mathcal{U}_2 -fuzzy s-closed in Y. Since f is a fuzzy pairwise strongly (r, s)-semicontinuous mapping, $f^{-1}(\mathcal{U}_1$ -Cl $(f(\rho), r)$) is $(\mathcal{T}_1, \mathcal{T}_2)$ -fuzzy strongly (r, s)-semiclosed and $f^{-1}(\mathcal{U}_2$ -Cl $(f(\rho), s)$) is $(\mathcal{T}_2, \mathcal{T}_1)$ -fuzzy strongly (s, r)-semiclosed in X. Thus

$$\begin{split} (\mathcal{T}_1,\ \mathcal{T}_2)\text{-ssCl}(\rho,\ r,\ s) &\leq (\mathcal{T}_1,\ \mathcal{T}_2)\text{-ssCl}(f^{-1}(\mathcal{U}_1\text{-Cl}(f(\rho),\ r)),\ r,\ s) \\ &= f^{-1}(\mathcal{U}_1\text{-Cl}(f(\rho),\ r)) \end{split}$$

and

$$\begin{split} (\mathcal{T}_2,\,\mathcal{T}_1)\text{-ssCl}(\rho,\,s,\,r) &\leq (\mathcal{T}_2,\,\mathcal{T}_1)\text{-ssCl}(f^{-1}(\mathcal{U}_2\text{-Cl}(f(\rho),\,s)),\,s,\,r) \\ &= f^{-1}(\mathcal{U}_2\text{-Cl}(f(\rho),\,s)). \end{split}$$

Hence

$$f((\mathcal{T}_1,\,\mathcal{T}_2)\text{-ssCl}(\rho,\,r,\,s)) \leq ff^{-1}(\mathcal{U}_1\text{-Cl}(f(\rho),\,r)) \leq \mathcal{U}_1\text{-Cl}(f(\rho),\,r)$$

and

$$f((\mathcal{T}_2, \mathcal{T}_1)\operatorname{-ssCl}(\rho, s, r)) \le ff^{-1}(\mathcal{U}_2\operatorname{-Cl}(f(\rho), s)) \le \mathcal{U}_2\operatorname{-Cl}(f(\rho), s).$$

 $(2) \Rightarrow (3)$ Let μ be any fuzzy set of Y. Then

$$f((\mathcal{T}_1, \mathcal{T}_2)\text{-ssCl}(f^{-1}(\mu), r, s)) \le \mathcal{U}_1\text{-Cl}(ff^{-1}(\mu), r) \le \mathcal{U}_1\text{-Cl}(\mu, r)$$

and

$$f((\mathcal{T}_2,\,\mathcal{T}_1)\text{-ssCl}(f^{-1}(\boldsymbol{\mu}),\,s,\,r)) \leq \mathcal{U}_2\text{-Cl}(ff^{-1}(\boldsymbol{\mu}),\,s) \leq \mathcal{U}_2\text{-Cl}(\boldsymbol{\mu},\,s).$$

Thus

$$(\mathcal{T}_1, \mathcal{T}_2)$$
-ssCl $(f^{-1}(\mu), r, s) \le f^{-1}f((\mathcal{T}_1, \mathcal{T}_2)$ -ssCl $(f^{-1}(\mu), r, s))$
 $\le f^{-1}(\mathcal{U}_1$ -Cl $(\mu, r))$

and

$$\begin{split} (\mathcal{T}_2,\,\mathcal{T}_1)\text{-ssCl}(f^{-1}(\boldsymbol{\upmu})\!,\,s,\,r) &\leq f^{-1}f((\mathcal{T}_2,\,\mathcal{T}_1)\text{-ssCl}(f^{-1}(\boldsymbol{\upmu})\!,\,s,\,r)) \\ &\leq f^{-1}(\mathcal{U}_2\text{-Cl}(\boldsymbol{\upmu},\,s)). \end{split}$$

 $(3) \Rightarrow (4)$ Let μ be any fuzzy set of Y. Then

$$(\mathcal{T}_1, \mathcal{T}_2)$$
-ssCl $(f^{-1}(\mu)^c, r, s) \le f^{-1}(\mathcal{U}_1$ -Cl $(\mu^c, r))$

and

$$(\mathcal{T}_2, \mathcal{T}_1)$$
-ssCl $(f^{-1}(\mu)^c, s, r) \le f^{-1}(\mathcal{U}_2$ -Cl (μ^c, s)).

By Theorem 3.2,

$$\begin{split} f^{-1}(\mathcal{U}_1\text{-}\mathrm{Int}(\upmu,\,r)) &= f^{-1}(\mathcal{U}_1\text{-}\mathrm{Cl}(\upmu^c,\,r))^c \, \leq (\mathcal{T}_1,\,\mathcal{T}_2)\text{-}\mathrm{ssCl}(f^{-1}(\upmu)^c,\,r,\,s)^c \\ &= (\mathcal{T}_1,\,\mathcal{T}_2)\text{-}\mathrm{ssInt}(f^{-1}(\upmu),\,r,\,s) \end{split}$$

and

$$\begin{split} f^{-1}(\mathcal{U}_2\text{-}\mathrm{Int}(\mu,\,s)) &= f^{-1}(\mathcal{U}_2\text{-}\mathrm{Cl}(\mu^c,\,s))^c \, \leq (\mathcal{T}_2,\,\mathcal{T}_1)\text{-}\mathrm{ssCl}(f^{-1}(\mu)^c,\,s,\,r)^c \\ &= (\mathcal{T}_2,\,\mathcal{T}_1)\text{-}\mathrm{ssInt}(f^{-1}(\mu),\,s,\,r). \end{split}$$

(4) \Rightarrow (1) Let μ be any \mathcal{U}_1 -fuzzy r-open set and ν be any \mathcal{U}_2 -fuzzy s-open set of Y. Then \mathcal{U}_1 -Int(μ , r) = μ and \mathcal{U}_2 -Int(ν , s) = ν . Thus

$$f^{-1}(\mu) = f^{-1}(\mathcal{U}_1 - \operatorname{Int}(\mu, r)) \le (\mathcal{T}_1, \mathcal{T}_2) - \operatorname{ssInt}(f^{-1}(\mu), r, s) \le f^{-1}(\mu)$$

and

$$f^{-1}(v) = f^{-1}(\mathcal{U}_2 - \text{Int}(v, s)) \le (\mathcal{T}_2, \mathcal{T}_1) - \text{ssInt}(f^{-1}(v), s, r) \le f^{-1}(v).$$

So $f^{-1}(\mu) = (\mathcal{T}_1, \mathcal{T}_2)$ -ssInt $(f^{-1}(\mu), r, s)$ and $f^{-1}(\nu) = (\mathcal{T}_2, \mathcal{T}_1)$ -ssInt $(f^{-1}(\nu), s, r)$. Hence $f^{-1}(\mu)$ is a $(\mathcal{T}_1, \mathcal{T}_2)$ -fuzzy strongly (r, s)-semiopen set and $f^{-1}(\nu)$ is a $(\mathcal{T}_2, \mathcal{T}_1)$ -fuzzy strongly (s, r)-semiopen set of X. Therefore f is a fuzzy pairwise strongly (r, s)-semicontinuous mapping.

Theorem 3.6. Let $f:(X, \mathcal{T}_1, \mathcal{T}_2) \to (Y, \mathcal{U}_1, \mathcal{U}_2)$ be a mapping and $r, s \in I_0$. Then the following statements are equivalent:

- (1) f is a fuzzy pairwise strongly (r, s)-semiopen mapping.
- (2) For each fuzzy set ρ of X, $f(\mathcal{T}_1\text{-Int}(\rho, r)) \leq (\mathcal{U}_1, \mathcal{U}_2)\text{-ssInt}(f(\rho), r, s)$ and $f(\mathcal{T}_2\text{-Int}(\rho, s)) \leq (\mathcal{U}_2, \mathcal{U}_1)\text{-ssInt}(f(\rho), s, r)$.
- (3) For each fuzzy set μ of Y, \mathcal{T}_1 -Int $(f^{-1}(\mu), r) \leq f^{-1}((\mathcal{U}_1, \mathcal{U}_2)$ -ssInt (μ, r, s)) and \mathcal{T}_2 -Int $(f^{-1}(\mu), s) \leq f^{-1}((\mathcal{U}_2, \mathcal{U}_1)$ -ssInt (μ, s, r)).

Proof. (1) \Rightarrow (2) Let ρ be any fuzzy set of X. Clearly, \mathcal{T}_1 -Int(ρ , r) is \mathcal{T}_1 -fuzzy r-open and \mathcal{T}_2 -Int(ρ , s) is \mathcal{T}_2 -fuzzy s-open in X. Since f is a fuzzy pairwise strongly (r, s)-semiopen mapping, $f(\mathcal{T}_1$ -Int(ρ , r)) is $(\mathcal{U}_1, \mathcal{U}_2)$ -fuzzy strongly (r, s)-semiopen and $f(\mathcal{T}_2$ -Int(ρ , s)) is $(\mathcal{U}_2, \mathcal{U}_1)$ -fuzzy strongly (s, r)-semiopen in Y. Thus

$$f(\mathcal{T}_1\text{-}\mathrm{Int}(\rho,r)) = (\mathcal{U}_1,\mathcal{U}_2)\text{-}\mathrm{ssInt}(f(\mathcal{T}_1\text{-}\mathrm{Int}(\rho,r)),r,s) \leq (\mathcal{U}_1,\mathcal{U}_2)\text{-}\mathrm{ssInt}(f(\rho),r,s)$$
 and

$$f(\mathcal{T}_2\text{-}\mathrm{Int}(\rho,s)) = (\mathcal{U}_2,\,\mathcal{U}_1)\text{-}\mathrm{ssInt}(f(\mathcal{T}_2\text{-}\mathrm{Int}(\rho,s)),\,s,\,r) \leq (\mathcal{U}_2,\,\mathcal{U}_1)\text{-}\mathrm{ssInt}(f(\rho),\,s,\,r).$$

(2) \Rightarrow (3) Let μ be any fuzzy set of Y. Then

$$f(\mathcal{T}_1\text{-}\mathrm{Int}(f^{-1}(\mu),\,r)) \leq (\mathcal{U}_1,\,\mathcal{U}_2)\text{-}\mathrm{ssInt}(ff^{-1}(\mu),\,r,\,s) \leq (\mathcal{U}_1,\,\mathcal{U}_2)\text{-}\mathrm{ssInt}(\mu,\,r,\,s)$$
 and

$$f(\mathcal{T}_2\text{-}\mathrm{Int}(f^{-1}(\mu),\,s)) \leq (\mathcal{U}_2,\,\mathcal{U}_1)\text{-}\mathrm{ssInt}(ff^{-1}(\mu),\,s,\,r) \leq (\mathcal{U}_2,\,\mathcal{U}_1)\text{-}\mathrm{ssInt}(\mu,\,s,\,r).$$

Thus we have

$$\mathcal{T}_1\text{-}\mathrm{Int}(f^{-1}(\mu),\ r) \leq f^{-1}f(\mathcal{T}_1\text{-}\mathrm{Int}(f^{-1}(\mu),\ r)) \leq f^{-1}((\mathcal{U}_1,\ \mathcal{U}_2)\text{-}\mathrm{ssInt}(\mu,\ r,\ s))$$
 and

$$\mathcal{T}_2$$
-Int $(f^{-1}(\mu), s) \le f^{-1}f(\mathcal{T}_2$ -Int $(f^{-1}(\mu), s)) \le f^{-1}((\mathcal{U}_2, \mathcal{U}_1)$ -ssInt (μ, s, r)).

(3) \Rightarrow (1) Let ρ be any \mathcal{T}_1 -fuzzy r-open set and λ be any \mathcal{T}_2 -fuzzy s-open set of X. Then \mathcal{T}_1 -Int(ρ , r) = ρ and \mathcal{T}_2 -Int(λ , s) = λ . Thus

$$\rho = \mathcal{T}_1\text{-}\mathrm{Int}(\rho,\,r) \leq \mathcal{T}_1\text{-}\mathrm{Int}(f^{-1}f(\rho),\,r) \leq f^{-1}\big((\mathcal{U}_1,\,\mathcal{U}_2)\text{-}\mathrm{ssInt}(f(\rho),\,r,\,s)\big)$$
 and

$$\lambda = \mathcal{T}_2 \operatorname{-Int}(\lambda, s) \le \mathcal{T}_2 \operatorname{-Int}(f^{-1}f(\lambda), s) \le f^{-1}((\mathcal{U}_2, \mathcal{U}_1) \operatorname{-ssInt}(f(\lambda), s, r)).$$

Hence we have

$$f(\rho) \leq ff^{-1}((\mathcal{U}_1,\ \mathcal{U}_2)\text{-ssInt}(f(\rho),\ r,\ s)) \leq (\mathcal{U}_1,\ \mathcal{U}_2)\text{-ssInt}(f(\rho),\ r,\ s) \leq f(\rho)$$
 and

$$f(\lambda) \leq ff^{-1}((\mathcal{U}_2, \, \mathcal{U}_1) \operatorname{-ssInt}(f(\lambda), \, s, \, r)) \leq (\mathcal{U}_2, \, \mathcal{U}_1) \operatorname{-ssInt}(f(\lambda), \, s, \, r) \leq f(\lambda).$$

Thus $f(\rho) = (\mathcal{U}_1, \mathcal{U}_2)$ -ssInt $(f(\rho), r, s)$ and $f(\lambda) = (\mathcal{U}_2, \mathcal{U}_1)$ -ssInt $(f(\lambda), s, r)$. Hence $f(\rho)$ is a $(\mathcal{U}_1, \mathcal{U}_2)$ -fuzzy strongly (r, s)-semiopen set and $f(\lambda)$ is a $(\mathcal{U}_2, \mathcal{U}_1)$ -fuzzy strongly (s, r)-semiopen set of Y. Therefore f is a fuzzy pairwise strongly (r, s)-semiopen mapping.

Theorem 3.7. Let $f: (X, \mathcal{T}_1, \mathcal{T}_2) \to (Y, \mathcal{U}_1, \mathcal{U}_2)$ be a mapping and $r, s \in I_0$. Then f is fuzzy pairwise strongly (r, s)-semiclosed if and only if for each fuzzy set ρ of X, $(\mathcal{U}_1, \mathcal{U}_2)$ -ssCl $(f(\rho), r, s) \leq f(\mathcal{T}_1$ -Cl $(\rho, r))$ and $(\mathcal{U}_2, \mathcal{U}_1)$ -ssCl $(f(\rho), s, r) \leq f(\mathcal{T}_2$ -Cl (ρ, s)).

Proof. Let ρ be any fuzzy set of X. Clearly, \mathcal{T}_1 -Cl(ρ , r) is a \mathcal{T}_1 -fuzzy r-closed set and \mathcal{T}_2 -Cl(ρ , s) is a \mathcal{T}_2 -fuzzy s-closed set of X. Since f is a fuzzy pairwise strongly (r,s)-semiclosed mapping, $f(\mathcal{T}_1$ -Cl(ρ , r)) is a $(\mathcal{U}_1, \mathcal{U}_2)$ -fuzzy strongly (r,s)-semiclosed set and $f(\mathcal{T}_2$ -Cl(ρ , s)) is a

 $(\mathcal{U}_2, \mathcal{U}_1)$ -fuzzy strongly (s, r)-semiclosed set of Y. Thus we have

$$(\mathcal{U}_1,\,\mathcal{U}_2)\text{-ssCl}(f(\rho),\,r,\,s) \leq (\mathcal{U}_1,\,\mathcal{U}_2)\text{-ssCl}(f(\mathcal{T}_1\text{-Cl}(\rho,\,r)),\,r,\,s) = f(\mathcal{T}_1\text{-Cl}(\rho,\,r))$$
 and

$$(\mathcal{U}_2, \mathcal{U}_1)$$
-ssCl $(f(\rho), s, r) \le (\mathcal{U}_2, \mathcal{U}_1)$ -ssCl $(f(\mathcal{T}_2\text{-Cl}(\rho, s)), s, r) = f(\mathcal{T}_2\text{-Cl}(\rho, s))$.

Conversely, let ρ be any \mathcal{T}_1 -fuzzy r-closed set and λ be any \mathcal{T}_2 -fuzzy s-closed set of X. Then \mathcal{T}_1 -Cl $(\rho, r) = \rho$ and \mathcal{T}_2 -Cl $(\lambda, s) = \lambda$. Thus

$$(\mathcal{U}_1,\ \mathcal{U}_2)\text{-ssCl}(f(\rho),\ r,\ s) \leq f(\mathcal{T}_1\text{-Cl}(\rho,\ r)) = f(\rho) \leq (\mathcal{U}_1,\ \mathcal{U}_2)\text{-ssCl}(f(\rho),\ r,\ s)$$
 and

$$(\mathcal{U}_2, \mathcal{U}_1)$$
-ssCl $(f(\lambda), s, r) \le f(\mathcal{T}_2$ -Cl (λ, s)) = $f(\lambda) \le (\mathcal{U}_2, \mathcal{U}_1)$ -ssCl $(f(\lambda), s, r)$.

So $f(\rho) = (\mathcal{U}_1, \mathcal{U}_2)$ -ssCl $(f(\rho), r, s)$ and $f(\lambda) = (\mathcal{U}_2, \mathcal{U}_1)$ -ssCl $(f(\lambda), s, r)$. Hence $f(\rho)$ is a $(\mathcal{U}_1, \mathcal{U}_2)$ -fuzzy strongly (r, s)-semiclosed set and $f(\lambda)$ is a $(\mathcal{U}_2, \mathcal{U}_1)$ -fuzzy strongly (s, r)-semiclosed set of Y. Therefore f is a fuzzy pairwise strongly (r, s)-semiclosed mapping.

References

- [1] K. K. Azad, On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82 (1981), 14-32.
- [2] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190.
- [3] K. C. Chattopadhyay and S. K. Samanta, Fuzzy topology: fuzzy closure operator, fuzzy compactness and fuzzy connectedness, Fuzzy Sets and Systems 54 (1993), 207-212.
- [4] K. C. Chattopadhyay, R. N. Hazra and S. K. Samanta, Gradation of openness: fuzzy topology, Fuzzy Sets and Systems 49 (1992), 237-242.
- [5] R. N. Hazra, S. K. Samanta and K. C. Chattopadhyay, Fuzzy topology redefined, Fuzzy Sets and Systems 45 (1992), 79-82.
- [6] A. Kandil, Biproximities and fuzzy bitopological spaces, Simon Stevin 63 (1989), 45-66.
- [7] E. P. Lee, (T_i, T_j) -fuzzy α -(r, s)-semiopen sets and fuzzy pairwise α -(r, s)-semicontinuous mappings, Bull. Korean Math. Soc. 39 (2002), 653-663.
- [8] E. P. Lee, Y.-B. Im and H. Han, Semiopen sets on smooth bitopological spaces, Far East J. Math. Sci. (FJMS) 3 (2001), 493-511.

- [9] S. J. Lee and E. P. Lee, Fuzzy strongly r-semicontinuous maps, Commun. Korean Math. Soc. 18 (2003), 341-353.
- [10] A. A. Ramadan, Smooth topological spaces, Fuzzy Sets and Systems 48 (1992), 371-375.
- [11] S. Sampath Kumar, Semi-open sets, semi-continuity and semi-open mappings in fuzzy bitopological spaces, Fuzzy Sets and Systems 64 (1994), 421-426.
- [12] T. H. Yalvac, Semi-interior and semi-closure of a fuzzy set, J. Math. Anal. Appl. 132 (1988), 356-364.
- [13] L. A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965), 338-353.

Department of Mathematics Seonam University Namwon 590-711, Korea e-mail: eplee@seonam.ac.kr

Department of Mathematics Chungbuk National University Cheongju 361-763, Korea e-mail: solee@chungbuk.ac.kr