Far East Journal of Mathematical Sciences (FJMS)
Volume 59, Number 2, 2011, Pages 127-137
Published Online: December 2011
Available online at http://pphmj.com/journals/fjms.htm Published by Pushpa Publishing House, Allahabad, INDIA

MATCHING NUMBER AND EDGE COVERING NUMBER ON KRONECKER PRODUCT OF P_{n}

Thanin Sitthiwirattham
Department of Mathematics
Faculty of Applied Science
King Mongkut's University of Technology North Bangkok
Bangkok 10800, Thailand
Centre of Excellence in Mathematics
CHE, Sri Ayutthaya Road
Bangkok 10400, Thailand
e-mail: tst@kmutnb.ac.th

Abstract

Let $\alpha^{\prime}(G)$ and $\beta^{\prime}(G)$ be the matching number and edge covering number, respectively. The Kronecker product $G_{1} \otimes G_{2}$ of graphs of G_{1} and G_{2} has vertex set $V\left(G_{1} \otimes G_{2}\right)=V\left(G_{1}\right) \times V\left(G_{2}\right)$ and edge set $E\left(G_{1} \otimes G_{2}\right)=\left\{\left(u_{1} v_{1}\right)\left(u_{2} v_{2}\right) \mid u_{1} u_{2} \in E\left(G_{1}\right)\right.$ and $\left.v_{1} v_{2} \in E\left(G_{2}\right)\right\}$. In this paper, let G be a simple graph of order m, we prove that $$
\alpha^{\prime}\left(P_{n} \otimes G\right)=\max \left\{n \alpha^{\prime}(G), m\left\lfloor\frac{n}{2}\right]\right\}
$$ and $$
\beta^{\prime}\left(P_{n} \otimes G\right)=\min \left\{n \beta^{\prime}(G), m\left\lceil\frac{n}{2}\right\rceil\right\} .
$$ © 2011 Pushpa Publishing House 2010 Mathematics Subject Classification: 05C69, 05C70, $05 C 76$. Keywords and phrases: Kronecker product, matching number, edge covering number. This research is supported by the Centre of Excellence in Mathematics, Commission on Higher Education, Thailand.

1. Introduction

In this paper, graphs must be simple graphs which can be trivial graphs. Let G_{1} and G_{2} be graphs. Then the Kronecker product of graphs G_{1} and G_{2}, denoted by $G_{1} \otimes G_{2}$, is the graph that $V\left(G_{1} \otimes G_{2}\right)=V\left(G_{1}\right) \times V\left(G_{2}\right)$ and $E\left(G_{1} \otimes G_{2}\right)=\left\{\left(u_{1} v_{1}\right)\left(u_{2} v_{2}\right) \mid u_{1} u_{2} \in E\left(G_{1}\right)\right.$ and $\left.v_{1} v_{2} \in E\left(G_{2}\right)\right\}$.

In [1], there are some properties about Kronecker product of graphs. We recall here.

Proposition 1.1. Let $H=G_{1} \otimes G_{2}=(V(H), E(H))$. Then
(i) $n(V(H))=n\left(V\left(G_{1}\right) n\left(V\left(G_{2}\right)\right)\right)$,
(ii) $n(E(H))=2 n\left(E\left(G_{1}\right) n\left(E\left(G_{2}\right)\right)\right)$,
(iii) for every $(u, v) \in V(H), d_{H}((u, v))=d_{G_{1}}(u) d_{G_{2}}(v)$.

Note that for any graph G, we have $G_{1} \otimes G_{2} \cong G_{2} \otimes G_{1}$.
Theorem 1.2. Let G_{1} and G_{2} be connected graphs. Then the graph $H=G_{1} \otimes G_{2}$ is connected if and only if G_{1} or G_{2} contains an odd cycle.

Theorem 1.3. Let G_{1} and G_{2} be connected graphs with no odd cycle. Then $G_{1} \otimes G_{2}$ has exactly two connected components.

Next we get that general form of graph of Kronecker product of P_{n} and any simple graph.

Proposition 1.4. Let G be a connected graph of order m. Then the graph of

$$
P_{n} \otimes G \text { is } \bigcup_{i=1}^{n-1} H_{i}
$$

where $V\left(H_{i}\right)=W_{i} \cup W_{i+1}$ for $i=1,2, \ldots, n-1 ; W_{i}=(i, 1),(i, 2), \ldots,(i, m)$; $E\left(H_{i}\right)=\{(i, u)(i+1, v) / u v \in E(G)\}$. Moreover, if G has no odd cycle, then for each H_{i} has exactly two connected components isomorphic to G.

Example.

Figure 1. The graphs of $P_{3} \otimes G_{1}$ and $P_{3} \otimes G_{2}$.
Next, we give the definitions about some graph parameters. A subset of the edge set E of G is said to be matching or an independent edge set of G, if no two distinct edges in M have a common vertex. A matching M is maximum matching in G if there is no matching M^{\prime} of G with $\left|M^{\prime}\right|>|M|$. The cardinality of maximum matching of G is called the matching number of G, denoted by $\alpha^{\prime}(G)$.

An edge of graph G is said to cover the two vertices incident with it, and an edge cover of a graph G is a set of edges covering all the vertices of G. The minimum cardinality of an edge cover of a graph G is called the edge covering number of G, denoted by $\beta^{\prime}(G)$.

By definitions of matching number, edge covering number, clearly that $\alpha^{\prime}\left(P_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$ and $\beta^{\prime}\left(P_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$.

2. Matching Number of the Graph of $P_{n} \otimes G$

We begin this section by giving the definition and theorem for alternating path and augmenting path, Lemma 2.2 that shows character of matching for each H_{i}.

Definition 2.1. Given a matching M, an M-alternating path is a path that alternates between edges in M and edges not in M. An M-alternating path whose endpoints are unsaturated by M is an M-augmenting path.

Theorem 2.1 [2]. A matching M in a graph G is a maximum matching in G if and only if G has no M-augmenting path.

Next, we give Lemma 2.2 which shows character of matching for each H_{i}.

Lemma 2.2. Let $P_{n} \otimes G=\bigcup_{i=1}^{n-1} H_{i}$. Then for each $H_{i}, \alpha^{\prime}\left(H_{i}\right)=2 \alpha^{\prime}(G)$.
Proof. Suppose G has no odd cycle, by Proposition 1.4, we get $H_{i}=2 G$. So $\alpha^{\prime}\left(H_{i}\right)=2 \alpha^{\prime}(G)$.

If G has odd cycle, then for each H_{i}, vertices $\left(u_{i}, v\right) \in W_{i}$ and $\left(u_{i+1}, v\right) \in W_{i+1}$ have $d_{H_{i}}\left(\left(u_{i}, v\right)\right)=d_{H_{i}}\left(\left(u_{i+1}, v\right)\right)=d_{G}(v)$. Let $\bigcup_{i=1}^{n-1} \overline{H_{i}}=$ $P_{n} \otimes(G-\bar{e})$ when \bar{e} is an edge in odd cycle and M be the maximum matching of G. We get $\overline{H_{i}}=2(G-\bar{e})$, then

$$
\alpha^{\prime}\left(\overline{H_{i}}\right)=2 \alpha^{\prime}(G-\bar{e})= \begin{cases}2\left[\alpha^{\prime}(G)-1\right], & \text { if } \bar{e} \text { is in } M, \\ 2 \alpha^{\prime}(G), & \text { otherwise }\end{cases}
$$

When we add \bar{e} comeback, we get $\alpha^{\prime}\left(H_{i}\right)=\alpha^{\prime}\left(\overline{H_{i}}\right)+1$. Hence $\alpha^{\prime}\left(H_{i}\right)$ $=2 \alpha^{\prime} G$.

Next, we establish Theorem 2.3 for a matching number of $P_{n} \otimes G$.
Theorem 2.3. Let G be a connected graph of order m. Then $\alpha^{\prime}\left(P_{n} \otimes G\right)$ $=\max \left\{n \alpha^{\prime}(G), m\left\lfloor\frac{n}{2}\right\rfloor\right\}$.

Proof. Let $V\left(P_{n}\right)=\left\{u_{i}, i=1,2, \ldots, n\right\}, V(G)=\left\{v_{j}, j=1,2, \ldots, m\right\}$, $S_{i}=\left\{\left(u_{i}, v_{j}\right) \in V\left(P_{n} \otimes G\right) / j=1,2, \ldots, m\right\}, i=1,2, \ldots, n$ and since $\alpha^{\prime}\left(P_{n}\right)$
$=\left\lfloor\frac{n}{2}\right\rfloor$. Let $\alpha^{\prime}(G)=k$, assume that the maximum matching of P_{n}, G be $M_{1}=\left\{u_{1} u_{2}, u_{3} u_{4}, \ldots, u_{2}\left|\frac{n}{2}\right|_{-1}{ }_{2}{ }_{2}\left[\frac{n}{2}\right\rfloor\right\}, \quad M_{2}=\left\{v_{j} v_{j+1} / j=1,3, \ldots, 2 k-1\right\}$,
respectively.
By Lemma 2.2, we have $\alpha^{\prime}\left(H_{i}\right)=2 \alpha^{\prime}(G)$. Since $P_{n} \otimes G$ is $\bigcup_{i=1}^{n-1} H_{i}$ which have matching in $H_{1}, H_{3}, \ldots, H_{2\left\lfloor\frac{n}{2}\right\rfloor-1}, \alpha^{\prime}\left(P_{n} \otimes G\right) \geq n \alpha^{\prime}(G)$.

By definition of matching, we get another matching of $P_{n} \otimes G$ is the set of edges such that incident with vertices in S_{i} and $S_{i+1}, i=1,3, \ldots, 2\left\lfloor\frac{n}{2}\right\rfloor-1$. So $\alpha^{\prime}\left(P_{n} \otimes G\right) \geq m\left\lfloor\frac{n}{2}\right\rfloor$.

Hence $\alpha^{\prime}\left(P_{n} \otimes G\right) \geq \max \left\{n \alpha^{\prime}(G), m\left\lfloor\frac{n}{2}\right]\right\}$.

Figure 2. The matching M when $n \alpha^{\prime}(G)>m\left\lfloor\frac{n}{2}\right\rfloor$ and n is odd.

If $n \alpha^{\prime}(G)>m\left\lfloor\frac{n}{2}\right\rfloor$, suppose that $\alpha^{\prime}\left(P_{n} \otimes G\right)>n \alpha^{\prime}(G)$, then there exists a matching M is an augmenting path. That is not true because each vertices in $P_{n} \otimes G$ always incident with edges in

$$
\begin{aligned}
M= & {\left[\bigcup_{i=1,3,2\left\lfloor\frac{n}{2}\right\rfloor-1}\left\{\left(u_{i}, v_{j}\right)\left(u_{i+1}, v_{j+1}\right) / j=1,3, \ldots, 2 k-1\right\}\right] } \\
& \cup\left[\begin{array}{l}
\bigcup_{i=1,3, \ldots, 2\left\lfloor\frac{n}{2}\right\rfloor-1}\left\{\left(u_{i}, v_{j}\right)\left(u_{i+1}, v_{j-1}\right) / j=2,4, \ldots, 2 k\right\}
\end{array}\right]
\end{aligned}
$$

and another edges which are not in M :

$$
\begin{aligned}
N= & {\left[\bigcup_{i=2,4,2\left\lfloor\frac{n}{2}\right\rfloor}\left\{\left(u_{i}, v_{j}\right)\left(u_{i+1}, v_{j+1}\right) / j=1,3, \ldots, 2 k-1\right\}\right] } \\
& \cup\left[\bigcup_{i=2,4,2\left\lfloor\frac{n}{2}\right\rfloor}\left\{\left(u_{i}, v_{j}\right)\left(u_{i+1}, v_{j-1}\right) / j=2,4, \ldots, 2 k\right\}\right]
\end{aligned}
$$

so the endpoints of M are saturated by M.

Figure 3. The matching M when $n \alpha^{\prime}(G)<m\left\lfloor\frac{n}{2}\right\rfloor$ and n is odd.
If $n \alpha^{\prime}(G)<m\left\lfloor\frac{n}{2}\right\rfloor$, suppose that $\alpha^{\prime}\left(P_{n} \otimes G\right)>m\left\lfloor\frac{n}{2}\right\rfloor$, it is not true because every S_{i} have $\left|S_{i}\right|=m$. Hence $\alpha^{\prime}\left(P_{n} \otimes G\right)=\max \left\{n \alpha^{\prime}(G), m\left[\left.\frac{n}{2} \right\rvert\,\right\}\right.$.

3. Edge Covering Number of the Graph of $P_{n} \otimes G$

We begin this section by giving Lemma 3.1 that shows a relation of matching number and edge covering number and Lemma 3.2 that shows character of edge cover number for each H_{i}.

Lemma 3.1 [2]. Let G be a simple graph of order n. Then $\alpha^{\prime}(G)+\beta^{\prime}(G)$ $=n$.

Lemma 3.2. Let $P_{n} \otimes G=\bigcup_{i=1}^{n-1} H_{i}$. Then for each $H_{i}, \beta^{\prime}\left(H_{i}\right)=2 \beta^{\prime}(G)$.

Proof. Suppose G has no odd cycle, by Proposition 1.4, we get $H_{i}=2 G$. So $\beta^{\prime}\left(H_{i}\right)=2 \beta^{\prime}(G)$.

If G has odd cycle, then for each $\left(u_{i+1}, v\right) \in W_{i}, \quad\left(u_{i+1}, v\right) \in W_{i+1}$ in $V\left(H_{i}\right)$ we have $d_{H_{i}}\left(\left(u_{i}, v\right)\right)=d_{H_{i}}\left(u_{i+1}, v\right)=d_{G}(v)$. Let $\bigcup_{i=1}^{n-1} \overline{H_{i}}=$ $\operatorname{Pn} \otimes(G-\bar{e})$ when \bar{e} is an edge in odd cycle and C be the minimum edge covering set of G. We get $\overline{H_{i}}=2(G-\bar{e})$, then

$$
\begin{aligned}
\beta\left(\overline{H_{i}}\right) & =2 \beta(G-\bar{e}) \\
& = \begin{cases}2[\beta(G)+2], & \text { if } \bar{e}=x y \in C \text { with } d(x)>1 \text { and } d(y)>1, \\
2[\beta(G)-1], & \text { if } \bar{e}=x y \in C \text { with } d(x) \geq 1 \text { or } d(y) \geq 1, \\
2 \beta(G), & \text { otherwise. }\end{cases}
\end{aligned}
$$

When we add \bar{e} comeback, in the case $\beta^{\prime}(G-\bar{e})=\beta^{\prime}(G)-1$, we get $\beta^{\prime}\left(H_{i}\right)=\beta^{\prime}\left(\overline{H_{i}}\right)+1$. And in the case $\beta^{\prime}(G-\bar{e})=\beta^{\prime}(G)+2$, we get $\bar{e}=$ $x y \in C$ of G replace edges $u x, y v$ (edge cover of $G-\bar{e})$, so $\beta^{\prime}(G-\bar{e})$ $=\beta^{\prime}(G)-2$.

Hence $\beta^{\prime}\left(H_{i}\right)=2 \beta^{\prime}(G)$.
Next, we establish Theorem 3.3 for a minimum edge covering number of $P_{n} \otimes G$.

Theorem 3.3. Let G be a connected graph of order m. Then $\beta^{\prime}\left(P_{n} \otimes G\right)$ $\left.=\min \left\{n \beta^{\prime}(G), m \left\lvert\, \frac{n}{2}\right.\right\rceil\right\}$.

Proof. Let $V\left(P_{n}\right)=\left\{u_{i}, i=1,2, \ldots, n\right\}, V(G)=\left\{v_{j}, j=1,2, \ldots, m\right\}$, $S_{i}=\left\{\left(u_{i}, v_{j}\right) \in V\left(P_{n} \otimes G\right) / j=1,2, \ldots, m\right\}, i=1,2, \ldots, n$ and since $\beta^{\prime}\left(P_{n}\right)$ $=\left\lceil\frac{n}{2}\right\rceil$. Let $\beta^{\prime}(G)=k$, assume that the maximum matching of G be M_{2},
and minimum edge covering set of P_{n}, G be

$$
\begin{aligned}
& C_{1}= \begin{cases}\left\{u_{1} u_{2}, u_{3} u_{4}, \ldots, u_{n-1} u_{n}\right\}, & \text { where } n \text { is even, } \\
\left\{u_{1} u_{2}, u_{3} u_{4}, \ldots, u_{n-2} u_{n-1}, u_{n-1} u_{n}\right\}, & \text { where } n \text { is odd, }\end{cases} \\
& C_{2}=M_{2} \cup\left\{v_{j} v / j=2 k+1,2 k+2, \ldots, m \text { and } v\right. \text { is some endvertex }
\end{aligned}
$$

of matching in $\left.M_{2}\right\}$, respectively.
By Lemma 3.2, we have $\beta^{\prime}\left(H_{i}\right)=2 \beta^{\prime}(G)$. Since $P_{n} \otimes G$ is $\left(\bigcup_{i=1}^{n-1} H_{i}\right)$
which have edge cover in $H_{1}, H_{3}, \ldots, H_{2\left\lceil\frac{n}{2}\right\rceil-1}, \beta^{\prime}\left(P_{n} \otimes G\right) \leq n \beta^{\prime}(G)$.
Since definition of edge cover, we get another edge cover of $P_{n} \otimes G$ is set of edges, such that incident with vertices in S_{i} and $S_{i+1}, i=1,3, \ldots$, $2\left\lceil\frac{n}{2}\right\rceil-1$. So $\beta^{\prime}\left(P_{n} \otimes G\right) \leq m\left\lceil\frac{n}{2}\right\rceil$.

Hence $\beta^{\prime}\left(P_{n} \otimes G\right) \leq \min \left\{n \beta^{\prime}(G), m\left\lceil\frac{n}{2}\right\rceil\right\}$.

Figure 4. The edge cover when $n \beta^{\prime}(G)<m\left\lceil\frac{n}{2}\right\rceil$ and n is odd.

If $n \beta^{\prime}(G)<m\left\lceil\frac{n}{2}\right\rceil$, suppose that $\beta^{\prime}\left(P_{n} \otimes G\right)<n \beta^{\prime}(G)$, then there exist edges $x y$ in edge covering of each $H_{1}, H_{3}, \ldots, H_{2\left\lceil\frac{n}{2}\right\rceil-1}$, which is endvertex x and y incident with another edges in edge covering of each H_{1}, H_{3}, \ldots, $H_{2\left\lceil\frac{n}{2}\right\rceil-1}$, it not impossible.

Figure 5. The edge cover when $n \beta^{\prime}(G)>m\left\lceil\frac{n}{2}\right\rceil$ and n is odd.
If $n \beta^{\prime}(G)>m\left\lceil\frac{n}{2}\right\rceil$, suppose that $\beta^{\prime}\left(P_{n} \otimes G\right)>m\left\lceil\frac{n}{2}\right\rceil$, that is not true because every S_{i} have $\left|S_{i}\right|=m$.

Hence $\beta^{\prime}\left(P_{n} \otimes G\right)=\min \left\{n \beta^{\prime}(G), m\left\lceil\frac{n}{2}\right\rceil\right\}$.
By Theorem 2.3 and Lemma 3.1, we can also show that

$$
\alpha^{\prime}\left(P_{n} \otimes G\right)+\beta^{\prime}\left(P_{n} \otimes G\right)=m n
$$

$$
\begin{aligned}
& \max \left\{n \alpha^{\prime}(G), m\left\lfloor\frac{n}{2}\right\rfloor\right\}+\beta^{\prime}\left(P_{n} \otimes G\right)=m n \\
& \begin{aligned}
\beta^{\prime}\left(P_{n} \otimes G\right) & =m n-\max \left\{n \alpha^{\prime}(G), m\left\lfloor\frac{n}{2}\right\rfloor\right\} \\
& =m n+\min \left\{-n \alpha^{\prime}(G),-m\left\lfloor\frac{n}{2}\right\rfloor\right\} \\
& =\min \left\{n\left(m-\alpha^{\prime}(G)\right), m\left(n-\left\lfloor\frac{n}{2}\right\rfloor\right)\right\} \\
& =\min \left\{n \beta^{\prime}(G), m\left\lceil\left.\frac{n}{2} \right\rvert\,\right\} .\right.
\end{aligned}
\end{aligned}
$$

References

[1] Z. A. Bottreou and Y. Metivier, Some remarks on the Kronecker product of graph, Inform. Process. Lett. 8 (1998), 279-286.
[2] B. W. Douglus, Introduction to Graph Theory, Prentice-Hall, 2001.
[3] P. M. Weichsel, The Kronecker product of graphs, Proc. Amer. Math. Soc. 8 (1962), 47-52.

