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Abstract

Let a'(G) and B'(G) be the matching number and edge covering
number, respectively. The Kronecker product G; ® G, of graphs of
G; and G, has vertex set V(G; ® G,) =V (Gy) xV(G,) and edge
set E(Gy ® Gp) = {(upvy) (Uv2)|ugup € E(Gy) and vv, € E(Gp)}
In this paper, let G be a simple graph of order m, we prove that

a'(P, ®G) = max{na’(G), m{%J}

and
B(P,®G)= min{nﬁ’(G), m[%]}
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1. Introduction

In this paper, graphs must be simple graphs which can be trivial graphs.
Let G; and G, be graphs. Then the Kronecker product of graphs G; and

G,, denoted by G; ® G,, is the graph that V(G; ® G,) =V (Gy) xV(G,)
and E(G; ® Gp) = {(upvy) (Uvz)|ugup € E(Gy) and vyv, e E(Gy)}.

In [1], there are some properties about Kronecker product of graphs. We
recall here.

Proposition 1.1. Let H =G ® G, = (V(H), E(H)). Then
(i) n(V(H)) = n(V(G)n(V (G2))),

(i) n(E(H)) = 2n(E(G)n(E(Gy))),

(iii) for every (u, v) e V(H), dyy ((u, v)) = dg, (u)dg, (V).

Note that for any graph G, we have G; ® G, = G, ® G;.

Theorem 1.2. Let G; and G, be connected graphs. Then the graph

H = G; ® G5 is connected if and only if G; or G, contains an odd cycle.

Theorem 1.3. Let G; and G, be connected graphs with no odd cycle.

Then G; ® G, has exactly two connected components.

Next we get that general form of graph of Kronecker product of P, and
any simple graph.
Proposition 1.4. Let G be a connected graph of order m. Then the graph
of
n-1
R®G is [ JH;
i=1
where V(H;) =W; UW; 4 fori=1,2,..,n-3 W; =(i, 1), (i, 2), ..., (i, m);
E(H;) = {(i, u)(i +1, v)/uv € E(G)}. Moreover, if G has no odd cycle, then

for each H; has exactly two connected components isomorphic to G.
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Example.
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Figure 1. The graphs of P; ® G; and P; ® G,.

Next, we give the definitions about some graph parameters. A subset of
the edge set E of G is said to be matching or an independent edge set of G, if
no two distinct edges in M have a common vertex. A matching M is
maximum matching in G if there is no matching M’ of G with [M'| >|M |.
The cardinality of maximum matching of G is called the matching number of
G, denoted by o'(G).

An edge of graph G is said to cover the two vertices incident with it, and
an edge cover of a graph G is a set of edges covering all the vertices of G.
The minimum cardinality of an edge cover of a graph G is called the edge
covering number of G, denoted by B'(G).

By definitions of matching number, edge covering number, clearly that

o/(Py) = H and B/(P, ) = M

2. Matching Number of the Graph of B, ® G

We begin this section by giving the definition and theorem for
alternating path and augmenting path, Lemma 2.2 that shows character of
matching for each H;.
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Definition 2.1. Given a matching M, an M-alternating path is a path that
alternates between edges in M and edges not in M. An M-alternating path
whose endpoints are unsaturated by M is an M-augmenting path.

Theorem 2.1 [2]. A matching M in a graph G is a maximum matching in
G if and only if G has no M-augmenting path.

Next, we give Lemma 2.2 which shows character of matching for each
H;.

n-1
Lemma 2.2. Let B, ® G = | JH;. Then for each H;, o/(H;) = 2a(G).
i=1

Proof. Suppose G has no odd cycle, by Proposition 1.4, we get
Hi = 2G. So OL'(Hi) = 2(1’(G).

If G has odd cycle, then for each Hj, vertices (uj, v)eW; and
(U521, V) € Wisg have g (5, ¥) = dig (Uz, v) = dg(v). Let UllH_ -
P, ® (G —€) when €& is an edge in odd cycle and M be the maximum
matching of G. We get H; = 2(G — &), then

_ 20'(G)-1], if eisin M,
a'(Hj) =20/ (G -¢) = {

20/(G), otherwise.

When we add & comeback, we get a'(H;) = o/(H;) + 1. Hence o/(H;)
= 20'G. O

Next, we establish Theorem 2.3 for a matching number of B, ® G.

Theorem 2.3. Let G be a connected graph of order m. Then o'(R, ® G)

= max{na'(G), m[gJ}

Proof. Let V(P,)={uj,i=12,..,n}, V(G)= {vj, i=12,..,m},
Si = (U, vj) eV(P,®G)/j =12 .., m}, i=12 .., nandsince o'(R,)
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- L%J Let a'(G) = k, assume that the maximum matching of B,, G be

My = {uluz, UgUy, ..., UZLHJ u m , Mo =1{vjvj1/i =13 .., 2k -1},

respectively.

n-1
By Lemma 2.2, we have a'(Hj)=20/(G). Since P, ® G is [JH;
i=1
which have matching in Hq, Hs, ..., HZLnJ X a'(P, ® G) > na'(G).

By definition of matching, we get another matching of R, ® G is the set

of edges such that incident with vertices in Sj and Sj 4,1 =13, .., ZL%J -1

So o(P, ® G) > mH

Hence o'(P, ® G) > max{na’(G), m —J}
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Figure 2. The matching M when na/(G) > mFJ and n is odd.
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2

a matching M is an augmenting path. That is not true because each vertices in
P, ® G always incident with edges in

If na'(G) > mPJ, suppose that o'(P, ® G) > na/(G), then there exists

M=l ) U V)i =1 3 e 2k -1

. n
i=1,3, 2{5 J—l

U U vy i=2 4.2

. n
i=13,..., 2{§J—1

and another edges which are not in M:

N=l U v i)/ = 13 k-1

. n
i=2,4, ZEJ

U U v i v/ i =24, 263,

. n
i=2,4, ZLEJ

so the endpoints of M are saturated by M.
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Figure 3. The matching M when na/(G) < m[%J and n is odd.

If na'(G) < mEJ suppose that o'(P, ® G) > mL%J it is not true

because every S;j have | Sj | = m. Hence o/(P, ® G) = max{noc'(G), mL%J}

O

3. Edge Covering Number of the Graph of P, ® G

We begin this section by giving Lemma 3.1 that shows a relation of
matching number and edge covering number and Lemma 3.2 that shows
character of edge cover number for each H;.

Lemma 3.1 [2]. Let G be a simple graph of order n. Then o'(G) + B'(G)
=n.

n-1
Lemma 3.2. Let B, ® G = | JH;. Then for each H;, B'(H;) = 2p'(G).

i=1
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Proof. Suppose G has no odd cycle, by Proposition 1.4, we get
Hi = 2G. So B'(Hi) = ZB'(G).

If G has odd cycle, then for each (uj 1, V) eW;, (Ujs1,V)eWjy

in V(H;j) we have dy ((Uj, V) =dy (Ui, V) = dg (V). Let rDlH_iz
i-1

Pn ® (G —€) when € is an edge in odd cycle and C be the minimum edge

covering set of G. We get H_I = 2(G - @), then

B(Hi) = 2B(G - &)
2[B(G)+2], if e =xyeC withd(x)>1and d(y)>1,
=32[B(G)-1], ife=xyeCwithd(x)>1ord(y)=>1,
23(G), otherwise.

When we add & comeback, in the case B'(G —€)=p'(G) -1, we get
B'(H;) = B'(Hj)+1. And in the case P'(G —&)=p'(G)+2, we get & =
xy € C of G replace edges ux, yv (edge cover of G —€), so B'(G — @)
=p'(G)-2.

Hence B'(H;j) = 2p'(G). O

Next, we establish Theorem 3.3 for a minimum edge covering number of

P, ®G.

Theorem 3.3. Let G be a connected graph of order m. Then B'(P, ® G)

- min{nB'(G), m[g]}

Proof. Let V(P,)=1{u;,i=12,..,n}, V(G)= {vj, i=12,..,m},
Si = (u;, vj) eV(P, ®G)/j =12, .., m}i=12 ..,n andsince B'(P,)

= E-‘ Let B'(G) = k, assume that the maximum matching of G be M,,
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and minimum edge covering set of P,, G be

. {{uluz, Uy, ..., Un_qUn where n is even,
1 =

{ujuy, UsUy, ..., Un_oUp_1, Un_qUn},  Where n is odd,
C, =M, U {vjv/j =2k +1, 2k + 2, ..., m and v is some endvertex

of matching in M, }, respectively.

n-1
By Lemma 3.2, we have B'(H;j) = 2p'(G). Since P, ® G is ( HiJ

i=1
which have edge cover in Hy, Hj, ..., Hz[”] X B' (R, ® G) < np'(G).
Since definition of edge cover, we get another edge cover of P, ® G is
set of edges, such that incident with vertices in S; and Sj,;, 1=13, ..,
n

2(%] ~1. S0 B'(P, ® G) < mk—l.

Hence B'(P, ® G) < min{nB’(G), m[ﬂ}
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Figure 4. The edge cover when np'(G) < m(%w and n is odd.
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If np'(G) < m(%} suppose that B'(P, ® G) < np'(G), then there exist

edges xy in edge covering of each Hq, Hg, ..., Hz{nl R which is endvertex
s

x and y incident with another edges in edge covering of each Hq, Hg, ...,

H rn7 . itnotimpossible.
zu_l

f s
L ] ® ® [ ] ® s
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Figure 5. The edge cover when np'(G) > m[gw and n is odd.

If np'(G) > m[g-‘ suppose that B'(R, ® G) > m[g-‘ that is not true

because every S; have | S; | = m.

Hence B'(P, ® G) = min{nB’(G), m{%—‘} O

By Theorem 2.3 and Lemma 3.1, we can also show that

a'(P, ®G)+p'(RP, ®G)=mn
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max{noc'(G),

p(P ®G)

n

me} +B'(P, ®G)=mn

mn — max{noc’(G), mEJ}

mn + min{—na’(G), —m[%J}

min{n(m - a'(Q)), m(n —[

min{nB'(G), m[ﬂ}
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