Jm Universal Journal of Mathematics and Mathematical Sciences
. Volume 1, Number 1, 2012, Pages 41-55
y q'p \ Published Online: December 2011

—¢ Available online at http://pphmj.com/journals/ujmms.htm
LLLUL&B.’[D - A
e Published by Pushpa Publishing House, Allahabad, INDIA

EXISTENCE AND MULTIPLICITY OF SYMMETRIC
POSITIVE SOLUTIONS FOR THREE-POINT
BOUNDARY VALUE PROBLEM

Zheng Wu and Lianglong Wang*

School of Mathematical Science
Anhui University

Hefei, 230039, P. R. China
e-mail: wangll@ahu.edu.cn

Abstract

This paper is concerned with the existence and multiplicity of
symmetric positive solutions for the following second-order three-
point boundary value problem:

u(t) + a(t) f(t, u) =0, 0<t<l

Ut =u-1), u(O)-u@) = u(%),
where a : (0, 1) — [0, ) is symmetric on (0, 1) and may be singular

at t=0 and t=1 f:[0,1]x[0, ©)— [0, o) is continuous and
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f(,, u) is symmetric on [0, 1] for all u [0, ). By using Leggett-
Williams’ fixed point theorem, sufficient conditions are obtained that
guarantee the existence of at least three symmetric positive solutions
to the above boundary value problem. As applications, three examples
are given to illustrate the main results and their differences.

1. Introduction

The existence and multiplicity of positive solutions for second-order
nonlinear boundary value problem have been studied by many authors using
the fixed point theorems, see [1-3] and the references therein.

In this paper, the existence of symmetric positive solutions for the
following second-order three-point boundary value problems (BVP):

w(t)+at) f(t, ut) =0, 0<t<l, (L1)

u(t) = u—t), u(0)—u)= u(%) (1.2)

is studied, where a: (0, 1) — [0, o) is symmetric on (0,1) and may be
singular at t =0 and t =1, f :[0,1]x[0, ) — [0, ) is continuous and

f (-, u) is symmetric on [0, 1] for all u € [0, «).

The three-point boundary value problems for ordinary differential
equations arise in a variety of applied mathematics and physics. For instance,
the vibrations of a guy wire of uniform cross-section and composed of N
parts of different densities can be set up as a multi-point BVP; also, many
problems in the theory of elastic stability can be handled by multi-point
problems (see [4]).

The existence and multiplicity of positive solutions for nonlinear second-
order three-point boundary value problem has been studied by many authors
by applying the Leray-Schauder continuations theorem, nonlinear alternative
of Leray-Schauder, coincidence degree theory, or Krasnoselskii’s fixed point
theorem and so on. For example, see [5-14] and the references therein.
Recently, Henderson and Thompson [15] and Li and Zhang [16] studied
the multiple symmetric positive and nonnegative solutions of second-order



Existence and Multiplicity of Symmetric Positive Solutions ... 43

ordinary differential equations. Yao [17] considered the existence and
iterations of n symmetric positive solutions for a singular two-point boundary
value problem. Kosmatov [18] obtained sufficient conditions for the
existence of positive solutions for an m-point boundary value problem.

Very recently, Sun [19] studied the existence of symmetric positive
solutions to the BVP (1.1)-(1.2) by using Krasonselskii’s fixed-point
theorem. Motivated by the papers mentioned above, in this paper, we
investigate the BVP (1.1)-(1.2) and provide sufficient conditions for the
existence of at least three symmetric positive solutions of BVP (1.1)-(1.2).

This paper is organized as follows: In the next section, we present some
necessary definitions and preliminary lemmas that will be used to prove our
main results. In Section 3, we discuss the existence of at least three
symmetric positive solutions for the BVP (1.1)-(1.2). Finally, some examples
are given to illustrate our main results in Section 4.

2. Preliminaries

In this section, we provide some background material from the theory of
cones in Banach spaces, in order that this paper be self-contained. We also
state a fixed point theorem due to Leggett and Williams [20] for multiple
fixed points of a cone preserving operator.

Definition 2.1. Let E be a real Banach space. Then a nonempty convex
closed set P — E is said to be a cone provided that

(1) au e P forall u e P andall a >0 and
(2) u, —u € P implies u = 0.

Note that every cone P — E induces an ordering in E given by x <y if
y—-xeP.

Definition 2.2. A map o is said to be a nonnegative continuous concave
functional on E if o : P — [0, o) is continuous and

atx+ (1L -t)y) > ta(x) + (1 - t)aly),
forall x, ye Pand 0 <t <1
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Definition 2.3. An operator is called completely continuous if it is
continuous and maps bounded sets into pre-compact sets.

Definition 2.4. The function u is said to be symmetric on [0, 1] if
ut)=ul-t), telo,1].

Definition 2.5. The function u is called a symmetric positive solution of
the BVP (1.1)-(1.2) if u is symmetric and positive on [0, 1] and satisfies the

differential equation (1.1) with the boundary value condition (1.2).

Definition 2.6. For numbers 0 < a < b and o nonnegative continuous
concave functional on E, define convex sets P, and P(a, a, b), respectively,

by
P={yeP:|y[<r}
and
P(a,, &, b) ={y e Pra<a(y) |y <b}

To obtain multiple symmetric positive solutions of BVP (1.1)-(1.2), the
following fixed point theorem of Leggett and Williams will be fundamental.

Theorem 2.1 [20]. Let A: P, — P. be a completely continuous and o
be a nonnegative continuous concave functional on P such that a(x) < | x|

for all x e P,. Suppose there exist 0 < d < a < b < ¢ such that

(C1) {xeP(a,ab):a(x)>a}=d, and o(Ax)>a, for xe
P(a, a, b),

(C2) || Ax| < d, for x e Py, and
(C3) a(Ax) > a, for x € P(a, &, c) with || Ax| > b.
Then A has at least three fixed points X;, X, and X3 satisfying

[ x| <d,a<a(x)and | x3|>d with a(xz) < a.
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We shall consider the Banach space C[0, 1] endowed with the norm

= t)|. Denot
|u] = max|u(t)|. Denote

C*[0,1] = {u e C[0,1] : u(t) > 0, t € [0, 1]}.

Lemma 2.1 [19]. Let y € C[0, 1] be symmetric on [0, 1]. Then the three-
point BVP

u't)+y(t)=0, 0<t<l, (2.2)

u(t) = ul—t), u(0)—u)= u@ 2.2)

has a unique symmetric solution
1
uv) = [ Gt 9)y(s)ds, (23)

where G(t, s) = Gy(t, s) + Go(s), here

S 1
tl-s), 0<t<s<] 1—5, OSSSE,
s1-t), 0<s<t<l], 1+s 1 _. 4

2 2 7

Lemma 2.2 [19]. Let t, s €[0, 1]. Then G(t, s) satisfies %G(s, s) <
G(t, s) < G(s, s).
Lemma 2.3 [19]. Let y € C*[0, 1]. Then the unique symmetric solution

u(t) of BVP (2.1)-(2.2) is nonnegative on [0, 1], and if y(t) # 0; then
u(t) >0, te|0, 1]

Lemma 2.4 [19]. Let y € C*[0, 1]. Then the unique symmetric solution
u(t) of BVP (2.1)-(2.2) satisfies

. 3
[in,u®) = Z]u . (2.4)
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We assume the following conditions throughout the paper:

(H1) a:(0,1) — [0, +o0) is continuous, symmetric on (0, 1) and
1
0< J.OG(S, s)a(s)ds < +oo.

(Hy) f :[0,1]x[0, ©) — [0, ) is continuous and f (-, u) is symmetric
on [0, 1] forall u € [0, ).
Denote
P ={u e C"[0,1]: u(t) is symmetric, concave on [0, 1]

. 3
and tg?(l)?l]u(t) > Z" ulf}.

Obviously, P is a positive cone in C[0, 1]. Define an operator A: P —
Cl[0, 1] by

(Au)(t) = j ;G(t, s)a(s) f (s, u(s))ds, te[0,1]. (2.5)

It is easy to see that the BVP (1.1)-(1.2) has a solution u = u(t) if and only if
u is a fixed point of the operator A defined by (2.5).

Lemma 2.5 [19]. Suppose that (H;) and (H,) hold. Then A is

completely continuous and A(P) < P.
3. Main Results
We shall use the following notation:

: f(t, x) © : f(t, x)
= lim sup max ——=, f~ = lim sup max ——=
Xx—>+0 te[0,1] X x—>+o  te[0,1] X

§0
and

A= U:G(s, s)a(s)dsj_l.
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Let the nonnegative continuous concave functional o : P — [0, o) be
defined by

u)= min u(t), YueP.
o(u) Ostsl() <

Obviously, %" ufl < afu)<|ul.

Theorem 3.1. Suppose (Hj), (H,) hold. If the following conditions are
satisfied:

(H3) f2< A and f° <nA, ne[0, 1) (particularly, £ = f* =0),

. 4
(Hy4) there exists a constant a > 0, b > 3@ such that

F(t, x) > %Aa, (s, x) € [0, 1 x [, b],

then the BVP (1.1)-(1.2) has at least three symmetric positive solutions.

Proof. First, from f® <nA, me[0,1), there exists a real number
N > b, suchthat f(s, x) < nAx, for (s, x) € [0, 1] x [N, o). Take

c2 max{N,%},

where M = max{f(s, x): (s, x) € [0, 1]x[0, N]}. Now choose u € P,.
Thus,

0 < (AU)(t) = j;G(t, s)a(s) f (s, u(s))ds

j u(s) [<N G(t, s)a(s) f(s, u(s))ds

* I u(s)|>N Glt. )als) (s, u(s)ds
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< J R G(s, s)a(s) f(s, u(s))ds

+] ey O VAT uls)ds

<

J o) SN G(s, s)a(s)Mds

+ I W) N G(s, s)a(s)nAxds
< I:G(s, s)a(s)(M + nAx)ds
1
<(M + nAc)IOG(s, s)a(s)ds
= Ac(n + %M:G(s, s)a(s)ds

M
= — | <
c(n+ C)_c.

Then || Au| <c, i.e, Au e P;. Hence

A: 50 - P. (3.1)
Let

Then |ug | = %a <b, a(u)= %a >a. Thus ug € {u e P(a, a, b) : a(u)
> a}, we obtain
{ueP(a,ab):oau)>a}+d. (3.2)
For u € P(a, a, b), we have

au)>a, |ul=b and a>u(t)>b, te[0,1],
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then

o(Au) = min (Au)(t)

= min IlG(t, s)a(s) f(s, u(s))ds
0<t<1J0

> %Orgtigl.[:G(s, s)a(s) f (s, u(s))ds

> %x %AaI;G(s, s)a(s)ds = a. (3.3)

This shows that condition (C1) of Theorem 2.1 is satisfied.

Second, from 10 < A, there exists a real number d € (0, a) such that

f(s, x) < Ax for (s, x) € [0,1]x [0, d]. Forevery u e P, |u| <d,

0 < (Au)(t) = f :G(t, s)a(s) f (s, u(s))ds
1
< .[oG(S’ s)a(s) f (s, u(s))ds
1
< IOG(S, s)a(s)Au(s)ds

1
< Au ||IOG(5, s)a(s)ds = Juf<d, 0<t<L.
Then
[Au|<|uf<d, VuePy. (3.4)
This shows that condition (C2) of Theorem 2.1 is satisfied.

We finally show that (C3) of Theorem 2.1 also holds. For u e
P(a, &, ¢) and || Au|| > b, we have

a(Au)z S| Au|z Sb>a (35)
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So, condition (C3) of Theorem 2.1 is satisfied. Therefore, the BVP (1.1)-
(1.2) has at least three symmetric positive solutions uq, u,, uz satisfying

[u | <d,a<a(uy), and |[uz | >d with a(us) < a.
The proof is completed. O

Theorem 3.2. Suppose (H7), (H»,) hold. In addition, assume that there

exist numbers a, b, ¢, d with 0<d <a< %a <b <c such that the
following conditions are satisfied:
(Hs) f(s, x) < Ac for (s, x) € [0, 1] x [0, c],

(Hg) f(s, x) < Ad for (s, x) € [0, 1] x [0, d],
(Hy) (s x)> %Aa for (s, %) e [0, 1] x [a, b].

Then the BVP (1.1)-(1.2) has at least three symmetric positive solutions
Uy, Uy, Uz satisfying

Ju | <d,a<a(u,), and |ug|>d with a(uz) < a.

Proof. First, Vu e P, we have 0 < u < ¢ and then by (Hs),

0 < (Au)(t) = f :G(t, s)a(s) f (s, u(s))ds
1
< .[oG(S’ s)a(s) f (s, u(s))ds

1
< ACJOG(S, s)a(s)ds = c.

Therefore, | Au| <c, i.e., Au e P;. Hence,

A:P, > P.. (3.6)
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Let
2
ug(t) = —%a(t - %) - %a.

Then |ug | = %a <b, a(u)= %a >a. Thus ug € {u € P(a, a, b) : a(u)
> a}, we obtain
{ueP(a,ab):ou)>a} . (3.7)
For u € P(a, a, b), we have
a(u)>a, |ul<b, and a<u(t)<b,te]l0,1].
Then

a(Au) = or2ti21(Au)(t)
1
= min I G(t, s)a(s) f (s, u(s))ds
0<t<1J0

> %02321-‘-:6(8’ s)a(s) f (s, u(s))ds

> %x %Aaj:G(s, s)a(s)ds = a. (3.8)

This shows that condition (C1) of Theorem 2.1 is satisfied.

Second, Vu € Py, we have 0 <u < d and then by (Hg),

0 < (AU)(t) = j ;G(t, s)a(s) f (s, u(s))ds
1
< f (G(s. $)a(s) 1 (s, u(s)ds

1
< Ad JoG(S’ s)a(s)ds = d.



52 Zheng Wu and Lianglong Wang
Then
[Au|<|ul<d, YuebP;. (3.9
This shows that condition (C2) of Theorem 2.1 is satisfied.

We finally show that (C3) of Theorem 2.1 also holds. For u e
P(a, a, ¢) and | Au | > b, we have

a(Au)z S| Au|z Sb>a (3.10)

So, condition (C3) of Theorem 2.1 is satisfied. Therefore, the BVP (1.1)-
(1.2) has at least three positive solutions uq, Uy, us satisfying

Ju | <d,a<a(uy), and |uz]l>d with a(uz) < a.

The proof is completed. O
In a similar way, we can get the following result.

Theorem 3.3. Suppose (Hj), (H,) hold. In addition, assume that there
exist numbers a, b, ¢, d with 0 < d < a <b < c such that (Hs), (Hg) and

the following condition is satisfied:
(Hg) f(s, x) > %Aa for (s, x) € [0, 1] x [a, c],

then the BVP (1.1)-(1.2) has at least three symmetric positive solutions
Uy, Us, U3 satisfying

[u | <d,a<a(uy) and |ug|>d with a(uz) < a.
4. Examples

In this section, we present some examples to illustrate our main results in
Section 3.

Example 4.1 [19]. Consider the three-point BVP
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u’ +zﬁﬁbkmmﬁl—0ﬁﬁélj—0 1<t<l (4.1)
u(t) = u—1), u(0)—u()= u(%) 4.2)
Set a(t) = ;'285 e®, f(t,u)=(L+min(t,1-t))u%e™, then fO=f* =0,

thus condition (H3) holds. Furthermore, a direct computation shows that

A= %e‘8. Let a=5 b=8> %a. Then, for (t, s) e [0, 1] x[a, b], we
have f(t, x)> f(0, x) > (0, 8)— A 8> gAa, which implies that
condition (H,4) holds. Hence, by Theorem 3.1, the BVP (4.1)-(4.2) has at

least three symmetric positive solutions.
Remark 4.1. Sun [19] obtained that the BVP (4.1)-(4.2) has at least two
symmetric positive solutions by Example 4.1. In this paper, we investigate

that the BVP (4.1)-(4.2) has at least three symmetric positive solutions by the
same example.

Example 4.2. Consider the three-point BVP

1,
,, 168 ~ —5u
2025 t))u e =0, 1l<t<l 4.3)
u(t) =ul—1), u'(0)-u'(l) = u(%) (4.4)
768 —tu
Set a(t) = ——>e8 f(t,u)=(1+min(t, 1-t)u’e 8, then A =8.
2025
Set a=8, b= %x 16x2, c= 242 2, d= % Furthermore, a direct

computation shows that (Hs), (Hg), (H7) hold. Hence, by Theorem 3.2, the
BVP (4.3)-(4.4) has at least three symmetric positive solutions uj, Uy, Ug
satisfying

Ju | <d, a<a(uy), and |uz| >d with a(u3) < a.
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Example 4.3. Consider the three-point BVP

1
" 48 - . 2 —gu _
T (L + min(t, 1-t))u“e =0, 1<t<] (4.5)
1
Set a(t) = %68, f(t, u) - (1+ min(t, 1-— t))uze 8U, then A — %

Seta=8b=12,¢c=16,d = % Furthermore, a direct computation shows

that (Hs), (Hg), (Hg) hold. Hence, by Theorem 3.3, the BVP (4.5)-(4.6) has

at least three symmetric positive solutions uy, Uy, U3 satisfying

Ju | <d, a<auy) and |uz| > d with a(uz) < a.
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