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Abstract 

If n is a natural number, let ( )np∗  denote the number of partitions of 

n all of whose parts are divisors of n. We obtain some formulas for 

( )np∗  when n has few divisors. 

1. Introduction 

If n is a natural number, let ( )np∗  denote the number of partitions of n 

all of whose parts are divisors of n. This function appears to have been 
previously only scarcely investigated, in spite of a paper by Gupta with a 

somewhat misleading title. (See [1].) It is known that ( )np∗  is the coefficient 

of nx  in the series expansion of ( )∏ |
−−nd

dx .1 1  (See [2].) Using this 

identity, T. D. Noe wrote a Mathematica program to generate a table of 

( )np∗  for .10001 ≤≤ n  (See [2].) Unlike other partition functions, the value 
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of ( )np∗  depends on the prime factorization of n. Using counting techniques 

and specialized summation identities, we obtain formulas for ( )np∗  when n 

has 5 or fewer divisors, or satisfies other restrictions. 

2. Preliminaries 

The notation rnm cba  will represent the partition consisting of ,sam ′  

,sbn ′  and ,scr ′  where .cba >>  However, ( )nmq  will represent n copies 

of mq  (ordinary exponential notation): 

( )∑
=

+=
n

k

nnk
1

,2
1  (1) 

( ) ( )∑
=

++=
n

k

nnnk
1

2 .6
121  (2) 

Remarks. (1) and (2) are well-known summation formulas that are easily 
proven by induction on n. 

3. The Main Results 

Theorem 1. If q is prime, then ( ) .2=∗ qp  

Proof. The only divisor partitions of q are q and .1q  � 

Theorem 2. If q is prime, then ( ) .22 +=∗ qqp  

Proof. Aside from the trivial partition ,2q  each divisor partition of 2q  

has the form ,1
2 kqqkq −  where .0 qk ≤≤  Thus we have 
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Remarks. Theorem 1 and a slightly weaker version of Theorem 2 are 
stated in [2]. 

Theorem 3. If q is prime, then ( ) ( ) ( ) .2
211

2
3 ++

+=∗ qqqp  

Proof. Aside from the trivial partition ,3q  each divisor partition of 3q  

has the form ( ) ,12 mkj qq  where qj ≤≤0  and ,32 qmkqjq =++  so that 

.0 2 qjqk −≤≤  Therefore, we have 
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Theorem 4. If q is prime, then ( ) ( +++⎟
⎠
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⎝
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11 qqqqqp  

).126 2 +q  

Proof. Aside from the trivial partition ,4q  each divisor partition of 4q  

has the form ( ) ( ) ,123 rmkj qqq  where qj ≤≤0  and +++ mqkqjq 23  

,4qr =  so that qjqk −≤≤ 20  and .0 23 kqjqqm −−≤≤  Therefore, 
we have 
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The conclusion follows if we simplify, and make use of identities (1) and  
(2).  � 
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Before deriving the formula for ( ),pqp∗  where p and q are distinct 

primes, we will need the following lemma: 

Lemma 1. Let p, q be positive integers such that ( ) .1, =qp  Then 
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Proof. Consider the set of lattice points (a, b), where 11 −≤≤ qa  and 

.11 −≤≤ pb  The total number of these lattice points is ( ) ( ).11 −− qp  Let 

line L  have the equation: .pxqy =  Therefore, L  does not pass through any 

lattice point. Now, if (a, b) is a lattice point below ,L  then (b, a) is a 
corresponding point above .L� Thus there are equally many lattice points 
above and below .L� The conclusion now follows.  � 

Theorem 5. If p and q are distinct primes, then 

( ) ( ) ( ) .2
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+=∗ qppqp  

Proof. The divisor partitions of pq are pq, pq  and ,1hjiqp  where 

,pqhjqip =++  so that 10 −≤≤ qi  and ( ).iqpjq −≤  Therefore, we 

have 
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If we let iqk −=  and then invoke Lemma 1, we get 
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The conclusion now follows.  � 



On Divisor Partitions 107 

We conclude by obtaining formulas for ( )np∗  in several cases, where n 

has 6 divisors. 

Theorem 6. If q is an odd prime, then 
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Proof. 4q has 4 divisor partitions that are all multiples of q, namely: 4q, 

( ) ( ) .,2,2 422 qqqq  There are also 6 types of divisor partitions, where some 

of the parts may be 1, 2 or 4, namely: 

Type (i) cbaq 1243  Type (ii) ( ) cbaqq 1242  Type (iii) cbaq 1242  

Type (iv) ( ) cbaq 1242  Type (v) cbaq 124  Type (vi) cba 124  

In each case, we have ,24 jqcba =++  where ,41 ≤≤ j  namely 1=j  in 

Types (i) and (ii), 2=j  in Types (iii) and (iv), 3=j  in Type (v), and 

4=j  in Type (vi). For a given value of j, the number of corresponding 

divisor partitions of 4q is 
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The conclusion now follows. � 
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A more convenient version of Theorem 6 is given by Theorem 6a below: 

Theorem 6a. If q is an odd prime, then 
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Proof. This follows directly from Theorem 6.  � 

Our final theorem concerns a formula for ( ),2 2qp∗  where q is an odd 

prime. We need two preliminary lemmas. 

Lemma 2. If q is an odd prime, and n is the number of divisor partitions 

of 22q  of the form ( ) ( ) ,12212 dcba qqq  then 
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( ) ( ) ( ) .48
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Lemma 3. If q is an odd prime, and m is the number of divisor partitions 

of 22q  of the form ( ) ,122 dcba qq  then 
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Theorem 7. If q is an odd prime, then 
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than or equal to ,2q  namely, 22q  and ( ) .2 2q  Therefore, ( ) =∗ 22qp  
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2 and 3. � 



Neville Robbins 112 

References 

 [1] H. Gupta, Partitions of n into divisors of m, Indian J. Pure Applied Math. 6 
(1975), 1276-1286. 

 [2] N. Sloane, Online Encyclopedia of Integer Sequences, A018818. 


