Far East Journal of Mathematical Sciences (FJMS)
Volume 59, Number 1, 2011, Pages 103-112
Published Online: December 2011
Available online at http://pphmj.com/journals/fjms.htm Published by Pushpa Publishing House, Allahabad, INDIA

ON DIVISOR PARTITIONS

Neville Robbins

Mathematics Department
San Francisco State University
San Francisco, CA 94132
U. S. A.
e-mail: nrobbins@sfsu.edu

Abstract

If n is a natural number, let $p^{*}(n)$ denote the number of partitions of n all of whose parts are divisors of n. We obtain some formulas for $p^{*}(n)$ when n has few divisors.

1. Introduction

If n is a natural number, let $p^{*}(n)$ denote the number of partitions of n all of whose parts are divisors of n. This function appears to have been previously only scarcely investigated, in spite of a paper by Gupta with a somewhat misleading title. (See [1].) It is known that $p^{*}(n)$ is the coefficient of x^{n} in the series expansion of $\prod_{d \mid n}\left(1-x^{d}\right)^{-1}$. (See [2].) Using this identity, T. D. Noe wrote a Mathematica program to generate a table of $p^{*}(n)$ for $1 \leq n \leq 1000$. (See [2].) Unlike other partition functions, the value
of $p^{*}(n)$ depends on the prime factorization of n. Using counting techniques and specialized summation identities, we obtain formulas for $p^{*}(n)$ when n has 5 or fewer divisors, or satisfies other restrictions.

2. Preliminaries

The notation $a^{m} b^{n} c^{r}$ will represent the partition consisting of $m a^{\prime}$ s, $n b$'s, and $r c^{\prime} s$, where $a>b>c$. However, $\left(q^{m}\right)^{n}$ will represent n copies of q^{m} (ordinary exponential notation):

$$
\begin{align*}
& \sum_{k=1}^{n} k=\frac{n(n+1)}{2} \tag{1}\\
& \sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6} \tag{2}
\end{align*}
$$

Remarks. (1) and (2) are well-known summation formulas that are easily proven by induction on n.

3. The Main Results

Theorem 1. If q is prime, then $p^{*}(q)=2$.
Proof. The only divisor partitions of q are q and 1^{q}.
Theorem 2. If q is prime, then $p^{*}\left(q^{2}\right)=q+2$.
Proof. Aside from the trivial partition q^{2}, each divisor partition of q^{2} has the form $q^{k} 1^{q^{2}-k q}$, where $0 \leq k \leq q$. Thus we have

$$
p^{*}\left(q^{2}\right)=1+\sum_{k=0}^{q} 1=1+(q+1)=q+2 .
$$

Remarks. Theorem 1 and a slightly weaker version of Theorem 2 are stated in [2].

Theorem 3. If q is prime, then $p^{*}\left(q^{3}\right)=1+\frac{(q+1)\left(q^{2}+2\right)}{2}$.
Proof. Aside from the trivial partition q^{3}, each divisor partition of q^{3} has the form $\left(q^{2}\right)^{j} q^{k} 1^{m}$, where $0 \leq j \leq q$ and $j q^{2}+k q+m=q^{3}$, so that $0 \leq k \leq q^{2}-q j$. Therefore, we have

$$
\begin{aligned}
p^{*}\left(q^{3}\right) & =1+\sum_{j=0}^{q} \sum_{k=0}^{q^{2}-q j} 1=1+\sum_{j=0}^{q}\left(q^{2}-q j+1\right)=1+(q+1)\left(q^{2}+1\right)-q \sum_{j=0}^{q} j \\
& =1+(q+1)\left(q^{2}+1\right)-\frac{q^{2}(q+1)}{2}=1+\frac{(q+1)\left(q^{2}+2\right)}{2} .
\end{aligned}
$$

Theorem 4. If q is prime, then $p^{*}\left(q^{4}\right)=1+\left(\frac{q+1}{12}\right)\left(2 q^{5}+q^{4}+3 q^{3}+\right.$ $6 q^{2}+12$).

Proof. Aside from the trivial partition q^{4}, each divisor partition of q^{4} has the form $\left(q^{3}\right)^{j}\left(q^{2}\right)^{k} q^{m} 1^{r}$, where $0 \leq j \leq q$ and $j q^{3}+k q^{2}+m q+$ $r=q^{4}$, so that $0 \leq k \leq q^{2}-q j$ and $0 \leq m \leq q^{3}-j q^{2}-k q$. Therefore, we have

$$
\begin{aligned}
p^{*}\left(q^{4}\right) & =1+\sum_{j=0}^{q} \sum_{k=0}^{q^{2}-q j} \sum_{m=0}^{q^{3}-q^{2} j-q k} 1=1+\sum_{j=0}^{q} \sum_{k=0}^{q^{2}-q j}\left(q^{3}+1-q^{2} j-q k\right) \\
& =1+\sum_{j=0}^{q}\left\{\left(q^{3}+1-q^{2} j\right)\left(q^{2}+1-q j\right)-q \sum_{k=0}^{q^{2}-q j} k\right\} \\
& =1+\sum_{j=0}^{q}\left\{\left(q^{3}+1-q^{2} j\right)\left(q^{2}+1-q j\right)-\frac{1}{2} q\left(q^{2}-q j\right)\left(q^{2}+1-q j\right)\right\} .
\end{aligned}
$$

The conclusion follows if we simplify, and make use of identities (1) and (2).

Before deriving the formula for $p^{*}(p q)$, where p and q are distinct primes, we will need the following lemma:

Lemma 1. Let p, q be positive integers such that $(p, q)=1$. Then

$$
\sum_{j=1}^{q-1}\left[\frac{j p}{q}\right]=\frac{1}{2}(p-1)(q-1)
$$

Proof. Consider the set of lattice points (a, b), where $1 \leq a \leq q-1$ and $1 \leq b \leq p-1$. The total number of these lattice points is $(p-1)(q-1)$. Let line \mathcal{L} have the equation: $q y=p x$. Therefore, \mathcal{L} does not pass through any lattice point. Now, if (a, b) is a lattice point below \mathcal{L}, then (b, a) is a corresponding point above \mathcal{L}. Thus there are equally many lattice points above and below \mathcal{L}. The conclusion now follows.

Theorem 5. If p and q are distinct primes, then

$$
p^{*}(p q)=2+\frac{(p+1)(q+1)}{2} .
$$

Proof. The divisor partitions of $p q$ are $p q, q^{p}$ and $p^{i} q^{j} 1^{h}$, where $i p+j q+h=p q$, so that $0 \leq i \leq q-1$ and $j q \leq p(q-i)$. Therefore, we have

$$
p^{*}(p q)-2=\sum_{i=0}^{q-1}\left[\left(\frac{p}{q}\right)(q-i)\right] \quad 1=\sum_{i=0}^{q-1}\left(1+\sum_{j=1}^{\left[\left(\frac{p}{q}\right)(q-i)\right]} 1\right)=q+\sum_{i=0}^{q-1} \sum_{j=1}^{\left[\left(\frac{p}{q}\right)(q-i)\right]} 1 .
$$

If we let $k=q-i$ and then invoke Lemma 1 , we get

$$
\begin{aligned}
& p^{*}(p q)-2=q+\sum_{k=1}^{q}\left[\frac{p k}{q}\right] \\
& j=1 \\
&=q+\sum_{k=1}^{q}\left[\frac{p k}{q}\right]=q+p+\sum_{k=1}^{q-1}\left[\frac{p k}{q}\right] \\
&=q+\frac{(p-1)(q-1)}{2}=\frac{(p+1)(q+1)}{2} .
\end{aligned}
$$

The conclusion now follows.

We conclude by obtaining formulas for $p^{*}(n)$ in several cases, where n has 6 divisors.

Theorem 6. If q is an odd prime, then

$$
\begin{aligned}
p^{*}(4 q)= & 4+2\left(1+\left[\frac{q}{4}\right]\right)\left(1+\left[\frac{q}{2}\right]-\left[\frac{q}{4}\right]\right) \\
& +2\left(1+\left[\frac{q}{2}\right]\right)\left(1+q-\left[\frac{q}{2}\right]\right) \\
& +\left(1+\left[\frac{3 q}{4}\right]\right)\left(1+\left[\frac{3 q}{2}\right]-\left[\frac{3 q}{4}\right]\right)+(1+q)^{2}
\end{aligned}
$$

Proof. $4 q$ has 4 divisor partitions that are all multiples of q, namely: $4 q$, $(2 q)^{2},(2 q) q^{2}, q^{4}$. There are also 6 types of divisor partitions, where some of the parts may be 1,2 or 4 , namely:

Type (i) $q^{3} 4^{a} 2^{b} 1^{c}$ Type (ii) (2q) $q 4^{a} 2^{b} 1^{c}$ Type (iii) $q^{2} 4^{a} 2^{b} 1^{c}$
Type (iv) (2q)4 $4^{a} b^{c}$ Type (v) $q 4^{a} 2^{b} 1^{c}$ Type (vi) $4^{a} 2^{b} 1^{c}$
In each case, we have $4 a+2 b+c=j q$, where $1 \leq j \leq 4$, namely $j=1$ in Types (i) and (ii), $j=2$ in Types (iii) and (iv), $j=3$ in Type (v), and $j=4$ in Type (vi). For a given value of j, the number of corresponding divisor partitions of $4 q$ is

$$
\begin{aligned}
& {\left[\frac{j q}{4}\right]\left[\frac{j q}{2}\right]-2 a } \\
& \sum_{a=0} \sum_{b=0}^{\left[\frac{j q}{4}\right]} 1=\sum_{a=0}^{\left[\frac{j q}{4}\right]}\left(1+\left[\frac{j q}{2}\right]-2 a\right)=\sum_{a=0}^{4}\left(1+\left[\frac{j q}{2}\right]\right)-2 \sum_{a=0}^{a} a \\
&=\left(1+\left[\frac{j q}{4}\right]\right)\left(1+\left[\frac{j q}{2}\right]\right)-\left[\frac{j q}{4}\right]\left(1+\left[\frac{j q}{4}\right]\right) \\
&=\left(1+\left[\frac{j q}{4}\right]\right)\left(1+\left[\frac{j q}{2}\right]-\left[\frac{j q}{4}\right]\right) .
\end{aligned}
$$

The conclusion now follows.

A more convenient version of Theorem 6 is given by Theorem 6a below:
Theorem 6a. If q is an odd prime, then

$$
p^{*}(4 q)=\left\{\begin{array}{l}
35 m^{2}+41 m+16 \text { if } q=4 m+1 \\
35 m^{2}+76 m+45 \text { if } q=4 m+3
\end{array}\right.
$$

Proof. This follows directly from Theorem 6.
Our final theorem concerns a formula for $p^{*}\left(2 q^{2}\right)$, where q is an odd prime. We need two preliminary lemmas.

Lemma 2. If q is an odd prime, and n is the number of divisor partitions of $2 q^{2}$ of the form $\left(q^{2}\right)^{1}(2 q)^{a} q^{b} 2^{c} 1^{d}$, then

$$
n=\frac{1}{48}(q+1)(q+3)\left(2 q^{2}+q+9\right)
$$

Proof. By the hypothesis, we have $a(2 q)+b q+2 c+d=q^{2}$, so we have $0 \leq a \leq \frac{q-1}{2}, 0 \leq b \leq q-2 a, 0 \leq c \leq\left[\frac{q^{2}-(2 a+b) q}{2}\right]$. Therefore, we have

$$
n=\sum_{a=0}^{\frac{q-1}{2}} \sum_{b=0}^{q-2 a} \sum_{c=0}^{\left[\frac{q^{2}-(2 a+b) q}{2}\right]} 1=\sum_{a=0}^{\frac{q-1}{2}} \sum_{b=0}^{q-2 a}\left(1-q a+\left[\frac{q^{2}-b q}{2}\right]\right) .
$$

Let $\sum_{b=0}^{q-2 a}\left(1-q a+\left[\frac{q^{2}-b q}{2}\right]\right)=S_{0}+S_{1}$, where S_{0}, S_{1} are the sums taken over even, odd values of b, respectively. Then

$$
S_{0}=\sum_{j=0}^{\frac{q-1}{2}-a}\left(1-q a+\frac{q^{2}-1}{2}-j q\right)=\sum_{j=0}^{\frac{q-1}{2}-a}\left(\frac{q^{2}+1}{2}-q a-q j\right)
$$

$$
\begin{aligned}
= & \sum_{j=0}^{\frac{q-1}{2}-a}\left(\frac{q^{2}+1}{2}-q a\right)-q \sum_{j=0}^{\frac{q-1}{2}-a} j=\left(\frac{q+1}{2}-a\right)\left(\frac{q^{2}+1}{2}-q a\right) \\
& -\frac{q}{2}\left(\frac{q-1}{2}-a\right)\left(\frac{q+1}{2}-a\right)=\left(\frac{q+1}{2}-a\right)\left(\frac{q^{2}+1}{2}-q a-\frac{q^{2}}{4}+\frac{q}{2}+\frac{q a}{2}\right) \\
= & \left(\frac{q+1}{2}-a\right)\left(\frac{q^{2}}{4}+\frac{q}{4}+\frac{2}{4}-\frac{q a}{2}\right) .
\end{aligned}
$$

Similarly, we have

$$
\begin{aligned}
S_{1} & =\sum_{j=0}^{\frac{q-1}{2}-a}\left(1-a q+\frac{q^{2}-q}{2}-j q\right) \\
& =\left(\frac{q+1}{2}-a\right)\left(1-a q+\frac{q^{2}-q}{2}\right)-\frac{q}{2}\left(\frac{q-1}{2}-a\right)\left(\frac{q+1}{2}-a\right) \\
& =\left(\frac{q+1}{2}-a\right)\left(\frac{q^{2}-q+4}{4}-\frac{a q}{2}\right)
\end{aligned}
$$

Now

$$
\begin{aligned}
& \sum_{b=0}^{q-2 a}\left(1-q a+\left[\frac{q^{2}-b q}{2}\right]\right)=S_{0}+S_{1}=\left(\frac{q+1}{2}-a\right)\left(\frac{q^{2}+3}{2}-a q\right) \\
= & \frac{(q+1)\left(q^{2}+3\right)}{4}-\left(\frac{2 q^{2}+q+3}{2}\right) a+q a^{2} \rightarrow n \\
= & \sum_{a=0}^{\frac{q-1}{2}}\left\{\frac{(q+1)\left(q^{2}+3\right)}{4}-\left(\frac{2 q^{2}+q+3}{2}\right) a+q a^{2}\right\} \\
= & \left(\frac{q+1}{2}\right)\left(\frac{(q+1)(q+3)}{4}-\frac{\left(2 q^{2}+q+3\right)}{2}\right)\left(\frac{(q+1)(q-1)}{8}+\left(\frac{q^{2}}{6}\right)\left(\frac{q-1}{2}\right)\left(\frac{q+1}{2}\right)\right)
\end{aligned}
$$

$$
=\frac{(q+1)(q+3)\left(2 q^{2}+q+9\right)}{48} .
$$

Lemma 3. If q is an odd prime, and m is the number of divisor partitions of $2 q^{2}$ of the form $(2 q)^{a} q^{b} 2^{c} 1^{d}$, then

$$
m=\frac{q+1}{12}\left(4 q^{3}+5 q^{2}+9 q+12\right)
$$

Proof. By the hypothesis, we have $a(2 q)+b q+2 c+d=2 q^{2}$, so that $0 \leq a \leq q, 0 \leq b \leq 2(q-a), 0 \leq c \leq\left[q^{2}-a q-\frac{b q}{2}\right]$. Therefore, we have

$$
m=\sum_{a=0}^{q} \sum_{b=0}^{2(q-a)} \sum_{c=0}^{\left[q^{2}-a q-\frac{b q}{2}\right]}=\sum_{a=0}^{q} \sum_{b=0}^{2(q-a)}\left(1+\left[q^{2}-a q-\frac{b q}{2}\right]\right) .
$$

Let $\sum_{b=0}^{2(q-a)}\left(1+\left[q^{2}-a q-\frac{b q}{2}\right]\right)=S_{0}+S_{1}$, where S_{0}, S_{1} are the sums taken over even, odd values of b, respectively. Then

$$
\begin{aligned}
S_{0}= & \sum_{j=0}^{q-a}\left(1+q^{2}-a q-j q\right)=(q+1-a)\left(q^{2}+1-a q\right) \\
& -q \sum_{j=1}^{q-a} j=(q+1-a)\left(q^{2}+1-a q\right)-\frac{q}{2}(q-a)(q+1-a) \\
= & (q+1-a)\left(\frac{q^{2}+2-a q}{2}\right) .
\end{aligned}
$$

Also,

$$
\begin{aligned}
S_{1} & =\sum_{j=0}^{q-a-1}\left(1+\left[q^{2}-\frac{q}{2}\right]-a q-j q\right) \\
& =\sum_{j=0}^{q-a-1}\left(1+\frac{2 q^{2}-q-1}{2}-a q-j q\right)
\end{aligned}
$$

$$
\begin{aligned}
= & \sum_{j=0}^{q-a-1}\left(\frac{2 q^{2}-q+1}{2}-a q-j q\right)=(q-a)\left(\frac{2 q^{2}-q+1}{2}-a q\right) \\
& -q \sum_{j=1}^{q-a-1} j=(q-a)\left(\frac{2 q^{2}-q+1}{2}-a q\right)-\frac{q}{2}(q-a-1)(q-a) \\
= & \frac{q-a}{2}\left(q^{2}+1-a q\right) .
\end{aligned}
$$

Therefore, after simplifying, we have

$$
S_{0}+S_{1}=\frac{2 q^{3}+q^{2}+3 q+2}{2}-\left(\frac{4 q^{2}+q+3}{2}\right) a+q a^{2}
$$

This implies

$$
\begin{aligned}
m= & \sum_{a=0}^{q}\left\{\frac{2 q^{3}+q^{2}+3 q+2}{2}-\left(\frac{4 q^{2}+q+3}{2}\right) a+q a^{2}\right\} \\
= & (q+1)\left(\frac{2 q^{3}+q^{2}+3 q+2}{2}\right)-\left(\frac{4 q^{2}+q+3}{2}\right) \frac{q(q+1)}{2} \\
& +\frac{q^{2}(q+1)(2 q+1)}{6}
\end{aligned}
$$

After simplifying, we obtain $m=\frac{q+1}{12}\left(4 q^{3}+5 q^{2}+9 q+12\right)$.
Theorem 7. If q is an odd prime, then

$$
p^{*}\left(2 q^{2}\right)=2+\frac{q+1}{16}\left(6 q^{3}+9 q^{2}+16 q+25\right) .
$$

Proof. Note that $2 q^{2}$ has 2 divisor partitions with largest part greater than or equal to q^{2}, namely, $2 q^{2}$ and $\left(q^{2}\right)^{2}$. Therefore, $p^{*}\left(2 q^{2}\right)=$ $2+m+n$. The conclusion now follows, after simplification, from Lemmas 2 and 3.

References

[1] H. Gupta, Partitions of n into divisors of m, Indian J. Pure Applied Math. 6 (1975), 1276-1286.
[2] N. Sloane, Online Encyclopedia of Integer Sequences, A018818.

