Far East Journal of Mathematical Sciences (FJMS)
Volume 59, Number 1, 2011, Pages 65-72
Published Online: December 2011
Available online at http://pphmj.com/journals/fjms.htm Published by Pushpa Publishing House, Allahabad, INDIA

ZERO-DIVISOR GRAPH IN COMMUTATIVE RINGS WITH DECOMPOSABLE ZERO IDEAL

A. Abbasi and Sh. Habibi
Department of Pure Mathematics
Faculty of Mathematical Sciences
University of Guilan
P. O. Box 41335-19141, Rasht, Iran
e-mail: aabbasi@guilan.ac.ir

Abstract

In this paper, we study some graph properties of zero-divisor graph of a commutative ring R where the zero ideal is decomposable. It is obtained that the girth is 3 and the diameter of the zero-divisor is greater than or equal to 2 for $n \geq 2$. It is also obtained the conditions that the zerodivisor graph is not planar.

1. Introduction

Let R be a commutative ring with nonzero identity and let $Z(R)$ be the set of zero-divisors of R. Let $\Gamma(R)$ be the graph of nonzero zero-divisors of R, in the sense that the vertices of $\Gamma(R)$ are all elements of $Z(R)^{*}=Z(R)-\{0\}$. For all x, $y \in Z(R)^{*}$, the vertices x and y are said to be adjacent if $x y=0$. Note that $\Gamma(R)$ is empty if and only if R is an integral domain. For all vertices x, y in $\Gamma(R)$, let $d(x, y)$ be the length of shortest path between x and y. Note that $d(x, x)=0$ and $d(x, y)=\infty$ if there is no such path. The diameter of $\Gamma(R)$ is denoted by
$\operatorname{diam}(\Gamma(R))$ and defined by $\sup \left\{d(x, y) \mid x, y \in Z(R)^{*}\right\}$. The girth of $\Gamma(R)$, denoted by $\operatorname{gr}(\Gamma(R)$), is the length of shortest cycle in $\Gamma(R)$. We note that $\operatorname{gr}(\Gamma(R))=\infty$ if there is no cycle in the zero-divisor graph. The degree of the vertex x of $\Gamma(R)$, denoted by $\operatorname{deg}(x)$, is the number of all edges incident with x. Graph $\Gamma(R)$ is called to be connected if there is a path between each pair of its vertices x and y. We will say that $\Gamma(R)$ is bipartite if the vertex set of $\Gamma(R)$ may be partitioned into two disjoint sets V_{1} and V_{2} in such a way that each edge of the graph joins a vertex in V_{1} to a vertex in V_{2}. The graph $\Gamma(R)$ is called to be complete bipartite if it is bipartite and each vertex in V_{1} is adjacent to all vertices in V_{2} and vice versa. It is called that $\Gamma(R)$ is a star graph if it is complete bipartite with $\left|V_{1}\right|=1$.

A graph is said to be planar if it can be drawn in the plane so that its edges intersect only at their ends. A subdivision of a graph is a graph obtained from it by replacing edges with pairwise internally-disjoint paths. A remarkably simple characterization of planar graphs was given by Kuratowski in 1930. Kuratowski’s theorem says that a graph is planar if and only if it contains no subdivision of K_{5} or $K_{3,3}$ (see [9, Section 9.1]).

The concept of zero-divisor graphs in a commutative ring R was introduced by Beck [7], and then further studied in [3] and [5]. There are so many published articles connected to algebraic theoretic properties of R and graph theoretic properties of $\Gamma(R)$ (see for example, [12], [11], [7] and so on). Anderson and Livingston showed in [3, Theorem 2.4] that, for any commutative ring $R, \Gamma(R)$ is connected. Mulay has shown in [12] that, if $\Gamma(R)$ contains a cycle, then it contains a cycle of length less than or equal to four. In this paper, we continue studying the interplay between $\Gamma(R)$ and R. It is known that $\operatorname{diam}(\Gamma(R))=1,2$ or 3 and $\operatorname{gr}(\Gamma(R))=3,4$ or ∞ (see [3] and [4]).

An ideal I of ring R is called decomposable if there is an integer n such that $I=\mathfrak{q}_{0} \bigcap \cdots \bigcap \mathfrak{q}_{n}$, where for all $0 \leq i \leq n, \mathfrak{q}_{i}$ is a \mathfrak{p}_{i}-primary and \mathfrak{p}_{i} is a prime ideal of R. A decomposition $I=\bigcap_{i=0}^{\infty} \mathfrak{q}_{i}$ is called minimal if $\bigcap_{i \neq j} \mathfrak{q}_{i} \not \subset \mathfrak{q}_{j}$ for all $0 \leq j \leq n$ and that $\mathfrak{p}_{i} \neq \mathfrak{p}_{j}$ for all $i \neq j$.

Throughout, R is a commutative ring with $1 \neq 0, Z(R)^{*}$ is the set of nonzero zero-divisors, $\operatorname{Nil}(R)$ is the ideal of nilpotent elements of R and the zero ideal of R is decomposable.

2. Some Properties of Zero-divisor Graph

Let the zero ideal of R has a minimal primary decomposition as $\bigcap_{i=0}^{n} \mathfrak{q}_{i}$, where \mathfrak{q}_{i} is a \mathfrak{p}_{i}-primary for all $0 \leq i \leq n$. Then $\operatorname{Nil}(R)=\bigcap_{i=0}^{n} \mathfrak{p}_{i}$ and $Z(R)=\bigcup_{i=0}^{n} \mathfrak{p}_{i}$. There is $x_{i} \in \bigcap_{j \neq i} \mathfrak{q}_{j}$ and $x_{i} \notin \mathfrak{q}_{i}$ for all $0 \leq i \leq n$ such that $\mathfrak{p}_{i}=\sqrt{0:_{R} x_{i}}$. Let \mathfrak{p}_{0} be a minimal ideal of R.

Proposition 2.1. With the above notation, the subgraph H of $\Gamma(R)$ with the vertex set $\left\{x_{i} \mid 0 \leq i \leq n\right\}$ is a complete graph K_{n+1}.

Proof. If 0 is a primary ideal, then H trivially is K_{1}. So, let $n \geq 1$ and let $0 \leq i, \quad j \leq n$ such that $i \neq j$. Since $x_{i} \in \bigcap_{j \neq i} \mathfrak{q}_{j}$, we have

$$
x_{i} x_{j} \in\left(\bigcap_{j \neq i} \mathfrak{q}_{j}\right) \cap \mathfrak{q}_{i}=0
$$

This completes the proof.
Corollary 2.2. With the above notation, if $n \geq 4$, then $\Gamma(R)$ is not planar.
Proof. Since K_{5} is not planar, the result follows from [9, Proposition 9.1.10].
We are going to study the graph properties of $\Gamma(R)$ in the case of $0=\bigcap_{i=0}^{n} \mathfrak{q}_{i}$. If $n=0$, then 0 is a primary ideal.

Proposition 2.3. Suppose that the zero ideal of R is \mathfrak{p}-primary. Then
(i) If $|\mathfrak{p}|=1$, then $\Gamma(R)$ is empty.
(ii) If $|\mathfrak{p}|=2$, then $\operatorname{diam}(\Gamma(R))=0$ and $\operatorname{gr}(\Gamma(R))=\infty$.
(iii) If $|\mathfrak{p}|=3$, then $\operatorname{diam}(\Gamma(R))=1$ and $\operatorname{gr}(\Gamma(R))=\infty$.
(iv) If $|\mathfrak{p}| \geq 4$, then $1 \leq \operatorname{diam}(\Gamma(R)) \leq 2$ and $\operatorname{gr}(\Gamma(R))=3$ or ∞.

Proof. We note that $Z(R)=\operatorname{Nil}(R)=\mathfrak{p}$.
(i) In this case, $\mathfrak{p}=0$ and R is an integral domain.
(ii) This is trivial.
(iii) Let $|\mathfrak{p}|=3$. Then we may assume that $\mathfrak{p}=\{0, x, y\}$. This implies that $x y=0$.
(iv) This immediately follows from [1, Theorem 2.2] and [4, Theorem 2.3]. Because in the last statement $\operatorname{gr}(\Gamma(R)) \neq 4$.

If the zero ideal of R is \mathfrak{p}-primary with $|\mathfrak{p}| \leq 5$, then $\Gamma(R)$ is planar. Let $|\mathfrak{p}|=6$. If $\Gamma(R)=K_{5}$, then it is not planar and if $\Gamma(R) \neq K_{5}$, then it is planar.

Theorem 2.4. Let zero ideal of R be \mathfrak{p}-primary with $\mathfrak{p} \notin \operatorname{Max}(R)$ and $|\mathfrak{p}| \geq 7$. Then $\Gamma(R)$ is not planar.

Proof. Since $\mathfrak{p} \in \operatorname{Ass}(R)$, there is a nonzero $x \in R$ such that $\mathfrak{p}=\left(0:_{R} x\right)$. It is easy to see that by non-maximality of $\mathfrak{p}, R x$ is infinite. Let y_{1}, y_{2}, y_{3} be disjoint elements of \mathfrak{p}. Then nonzero elements of $R x$ are adjacent to y_{1}, y_{2}, y_{3}. So, a subdivision of $\Gamma(R)$ is isomorphic to $K_{3,3}$ and the proposition follows from [9, Theorem 9.1.7 and Proposition 9.1.10].

Proposition 2.5. Let zero ideal of R be \mathfrak{p}-primary with $|\mathfrak{p}| \geq 7$ and $|R / \mathfrak{p}| \geq 4$. Then $\Gamma(R)$ is not planar.

Proof. Suppose that $\bar{u}_{1}, \bar{u}_{2}, \bar{u}_{3} \in R / \mathfrak{p}$ are nonzero disjoint elements. Then $u_{1} x$, $u_{2} x$ and $u_{3} x$ are disjoint, where $\mathfrak{p}=\left(0:_{R} x\right)$. There are distinct elements v_{1}, v_{2}, v_{3} $\in \mathfrak{p}$ which are adjacent to $u_{1} x, u_{2} x, u_{3} X$ as required.

For the case $n=1$, we have the following.
Theorem 2.6. Let R be a non-integral domain commutative ring and $0=\mathfrak{q}_{0} \cap \mathfrak{q}_{1}$ be a primary decomposition of zero ideal. Then the following hold:
(i) Let \mathfrak{p}_{1} be not minimal. If $\left|\mathfrak{p}_{0}\right|=2$, then $\Gamma(R)$ is a star graph and if $\left|\mathfrak{p}_{0}\right| \geq 3$, then $\operatorname{gr}(\Gamma(R))=3$.
(ii) Let \mathfrak{p}_{1} be minimal. If $\mathfrak{p}_{0} \cap \mathfrak{p}_{1}=0$, then $\Gamma(R)$ is a complete bipartite graph. So, if $\left|\mathfrak{p}_{i}\right| \geq 3$, then $\operatorname{gr}(\Gamma(R))=4$.

Proof. (i) There is a minimal ideal \mathfrak{q} of R such that $\mathfrak{q} \subset \mathfrak{p}$. This forces $\mathfrak{q}=\mathfrak{p}_{0}$. Hence, $\operatorname{Nil}(R)=\mathfrak{p}_{0} \subset \mathfrak{p}_{1}=Z(R)$. If $\left|\mathfrak{p}_{0}\right|=2$ and x is the nonzero element of \mathfrak{p}_{0}, then for all $y, z \in \mathfrak{p}_{1} \backslash \mathfrak{p}_{0}, y z \neq 0$. So, for all $y \in \mathfrak{p}_{1}$, it must be $y x=0$. This shows that $\Gamma(R)$ is a star graph. If $\left|\mathfrak{p}_{0}\right| \geq 3$, then the statement follows by [1, Theorem 2.12].
(ii) Assume that $V_{1}=\mathfrak{p}_{0} \backslash\{0\}$ and $V_{2}=\mathfrak{p}_{1} \backslash\{0\}$. For all $x, y \in Z(R)$ with $x y=0$, there is no the case $x, y \in \mathfrak{p}_{i}(i=0,1)$. Because $x, y \in \mathfrak{p}_{i}$ implies that $0=x y \in \mathfrak{p}_{j}$ for $j \neq i$. Therefore, $x \in \mathfrak{p}_{j}$ or $y \in \mathfrak{p}_{j}$. So, there is a nonzero element in $\mathfrak{p}_{0} \cap \mathfrak{p}_{1}$. This shows that $\Gamma(R)$ is bipartite. Let us now, $x, y \in Z(R)^{*}$ with $x \in V_{1}$ and $y \in V_{2}$. Then $x y \in \mathfrak{p}_{0} \cap \mathfrak{p}_{1}=0$. So, $\Gamma(R)$ is a complete bipartite graph. It is clear that in all complete bipartite graphs $K_{r, s}$ with $r, s \geq 2$, the girth is 4 .

Example 2.7. (1) Consider the idealization $R=\mathbb{Z}(+) \mathbb{Z}_{2}$. It is easy to see that $\operatorname{Nil}(R)=\{(0,0),(0,1)\}$ is a prime ideal, say, \mathfrak{p}_{0}. Moreover,

$$
\mathbb{Z}(R)=\left\{(n, \bar{s}) \mid n \text { is even and } \bar{s} \in \mathbb{Z}_{2}\right\}
$$

is a prime ideal, say \mathfrak{p}_{1}. On the other hand,

$$
0=\mathfrak{p}_{0} \cap \mathfrak{q}
$$

where $\mathfrak{q}=\{(m, 0)|4| m\}$ is \mathfrak{p}_{1}-primary. By Theorem $2.6, \Gamma(R)$ is a star graph.
(2) In $R=\mathbb{Z}_{3} \times \mathbb{Z}_{3}$, we can compute that $\operatorname{Nil}(R)=\{(0,0)\}$,

$$
\begin{aligned}
& Z(R)=\{(0,0),(0,1),(1,0),(0,2),(2,0)\}, \\
& \mathfrak{p}_{0}=\{(0,0),(0,1),(0,2)\} \text { and } \mathfrak{p}_{1}=\{(0,0),(1,0),(2,0)\} .
\end{aligned}
$$

Note that $\mathfrak{p}_{0} \cap \mathfrak{p}_{1}=0$ and $\mathfrak{p}_{0} \cup \mathfrak{p}_{1}=Z(R)$. It is easy to see that $\Gamma(R)$ is complete bipartite.

Theorem 2.8. Let $0=\mathfrak{q}_{0} \cap \mathfrak{q}_{1}$ be a minimal primary decomposition with $\mathfrak{p}_{i}=\sqrt{\mathfrak{q}_{i}}, \mathfrak{p}_{0} \subseteq \mathfrak{p}_{1}$ and $\left|\mathfrak{p}_{0}\right| \geq 7$. Then $\Gamma(R)$ is not planar.

Proof. There are nonzero $x, t \in R$, where $\mathfrak{p}_{0}=0:_{R} x$ and $\mathfrak{p}_{1}=0:_{R} t$. The elements x, t and $x+t$ are disjoint and nonzero. There exist nonzero elements v_{1}, v_{2}, v_{3} in \mathfrak{p}_{0} adjacent to $x, t, x+t$. So, a subdivision graph of $\Gamma(R)$ is isomorphic to $K_{3,3}$.

Remark 2.9. Considering the notation of Theorem 2.8, let x, t be not nilpotent elements. Then the result holds for $\left|\mathfrak{p}_{0}\right| \geq 4$. Because in that case, $x+t \notin \mathfrak{p}_{0}$.

Corollary 2.10. Suppose that \mathfrak{p}_{0} and \mathfrak{p}_{1} are minimal prime ideals of R with $\mathfrak{p}_{0} \cap \mathfrak{p}_{1}=0$. If $\left|\mathfrak{p}_{i}^{*}\right| \geq 3$, then $\Gamma(R)$ is not planar.

Proof. It immediately follows from Theorem 2.6(ii).
Theorem 2.11. Let $n \geq 2$ and $0=\mathfrak{q}_{0} \cap \mathfrak{q}_{1} \cap \cdots \cap \mathfrak{q}_{n}$ be a minimal primary decomposition of zero ideal such that $\sqrt{\mathfrak{q}_{i}}=\mathfrak{p}_{i}=\sqrt{0:_{R} x_{i}}$ for $0 \leq i \leq n$. Then $g r(\Gamma(R))=3$.

Proof. By Proposition 2.1, the subgraph with vertex set $\left\{x_{i} \mid 0 \leq i \leq n\right\}$ is a complete graph. Now, for the case of $n \geq 2$, the cycle $x_{0}---x_{1}---x_{2}---x_{0}$ exists.

Theorem 2.12. Let $n \geq 2$ and $0=\mathfrak{q}_{0} \cap \mathfrak{q}_{1} \cap \cdots \cap \mathfrak{q}_{n}$ be a minimal primary decomposition. Let for $0 \leq k \leq n, \mathfrak{p}_{0}, \ldots, \mathfrak{p}_{k}$ be the only minimal ideals of R such that $\left|\bigcap_{i=0}^{k} \mathfrak{p}_{k}\right| \geq 7$. Then $\Gamma(R)$ is not planar.

Proof. There are nonzero elements $s_{i} \in R$ provided $\mathfrak{p}_{i}=\left(0:_{R} s_{i}\right)$. For every $k+1 \leq j \leq n$ (if $k<n$), there is $0 \leq i \leq k$ that $\mathfrak{p}_{i} \subseteq \mathfrak{p}_{j}$. Since $\left|\bigcap_{i=0}^{k} \mathfrak{p}_{k}\right| \geq 7$, one can see that there are disjoint elements $t_{1}, t_{2}, t_{3} \in \bigcap_{i=0}^{k} \mathfrak{p}_{k}$ distinct to $s_{i_{1}}$, $s_{i_{2}}, s_{i_{3}}$ for $\left\{i_{1}, i_{2}, i_{3}\right\} \subseteq\{0, \ldots, n\}$. It is clear that $t_{1}, t_{2}, t_{3} \in \operatorname{Nil}(R)$ adjacent to $s_{i_{1}}, s_{i_{2}}, s_{i_{3}}$. So, there exists a subdivision graph of $\Gamma(R)$ isomorphic to $K_{3,3}$.

Proposition 2.13. Let $\operatorname{Nil}(R)=0$. Then $d\left(x_{i}\right)=\left|\mathfrak{q}_{i}\right|-1$ for all $0 \leq i \leq n$.
Proof. By the hypothesis, for all $0 \leq i \leq n$, one has $x_{i} \notin \mathfrak{p}_{i}$. So, $\left(0:_{R} x_{i}\right)=\mathfrak{q}_{i}$ by [6, Lemma 4.4]. Hence, $d\left(x_{i}\right)$ is the number of nonzero elements of \mathfrak{q}_{i}.

Theorem 2.14. Suppose that $n \geq 1$. In the minimal decomposition

$$
0=\mathfrak{q}_{0} \cap \mathfrak{q}_{1} \cap \cdots \cap \mathfrak{q}_{n}
$$

with $\operatorname{Nil}(R) \neq 0$, we have $\operatorname{diam}(\Gamma(R)) \geq 2$.
Proof. Let $\operatorname{diam}(\Gamma(R)) \leq 1$. Since $n \geq 1$, it follows from [3, Theorem 2.3] that $\operatorname{diam}(\Gamma(R))=1$ and $\Gamma(R)$ is connected. This implies that $Z(R)^{2}=0$. So, $\mathfrak{p}_{n} \subset \operatorname{Nil}(R)=\bigcap_{i=0}^{n} \mathfrak{p}_{i}$. So, $\mathfrak{p}_{n} \subset \mathfrak{p}_{0}$, a contradiction.

Proposition 2.15. For every $0 \leq i \leq n$ and all nonzero elements $x, y \in \mathfrak{p}_{i}$, $d(x, y) \leq 2$.

Proof. If $x y=0$, then there is nothing to prove. Let $x y \neq 0$. Considering $\mathfrak{p}_{i}=\sqrt{0: x_{i}}$, there are $m, n \in \mathbb{N}$ such that $x^{n} x_{i}=y^{m} x_{i}=0$. Let m, n be the least integers with these properties. Then $x^{n} y^{m-1} x_{i}=x^{n-1} y^{m} x_{i}=0$. Hence, $x---x^{n-1} y^{m-1} x_{i}---y$ is a path with length 2.

Theorem 2.16. Let $Z(R)$ be an ideal of R. Then $\operatorname{diam}(\Gamma(R)) \leq 2$.
Proof. There is $0 \leq k \leq n$ where $Z(R)=\mathfrak{p}_{k}$. By Proposition 2.15, the proof is completed.

Corollary 2.17. Suppose that $Z(R)$ is an ideal. Then for all pairs (x, y) of zero-divisors of $R,(0:(x, y)) \neq 0$.

Corollary 2.18. Let $n \geq 1, \operatorname{Nil}(R) \neq 0$ and $Z(R)$ be an ideal of R. Then $\operatorname{diam}(\Gamma(R))=2$.

Proof. The result follows from Theorems 2.14 and 2.16.

References

[1] D. D. Anderson and A. Badawi, On the zero-divisor graph of a ring, Comm. Algebra 36 (2008), 3073-3092.
[2] D. F. Anderson, F. Frazier, A. Lauve and P. S. Livingston, The zero-divisor graph of a commutative ring II, Lecture Notes Pure Appl. Math., Marcel Dekker, New York, Basel, 2001, Vol. 202, pp. 61-72.
[3] D. F. Anderson and Ph. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), 434-447.
[4] D. F. Anderson and S. B. Mulay, On the diameter and girth of a zero-divisor graph, J. Pure Appl. Algebra 210 (2007), 543-550.
[5] D. D. Anderson and M. Naseer, Beck's coloring of a commutative ring, J. Algebra, 159 (1993), 500-514.
[6] M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, AddisonWesley Pub. Co., 1969.
[7] I. Beck, Coloring of a commutative ring, J. Algebra 116 (1988), 208-226.
[8] B. Bollbas, Graph Theory, Springer-Verlag, New York, 1997.
[9] J. Gross and J. Yellen, Graph Theory and its Applications, CRC Press, New York, 1999.
[10] J. A. Huckaba, Commutative Rings with Zero Divisors, Marcel Dekker, New York, Basel, 1988.
[11] T. G. Lucas, The diameter of a zero divisor graph, J. Algebra 301 (2006), 174-193.
[12] S. B. Mulay, Cycles and symmetries of zero-divisors, Comm. Algebra 30(7) (2002), 3533-3558.
[13] R. Y. Sharp, Steps in Commutative Algebra, Cambridge Univ. Press, 1990.

