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Abstract

In this paper, we study some graph properties of zero-divisor graph of a
commutative ring R where the zero ideal is decomposable. It is obtained
that the girth is 3 and the diameter of the zero-divisor is greater than or
equal to 2 for n > 2. It is also obtained the conditions that the zero-
divisor graph is not planar.

1. Introduction

Let R be a commutative ring with nonzero identity and let Z(R) be the set of

zero-divisors of R. Let I'(R) be the graph of nonzero zero-divisors of R, in the sense
that the vertices of T'(R) are all elements of Z(R)" = Z(R)-{0}. For all x,

y € Z(R)", the vertices x and y are said to be adjacent if xy = 0. Note that I'(R) is
empty if and only if R is an integral domain. For all vertices X, y in T'(R), let
d(x, y) be the length of shortest path between x and y. Note that d(x, x) = 0 and
d(x, y) = oo if there is no such path. The diameter of I'(R) is denoted by
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diam('(R)) and defined by sup{d(x, y)|x, y € Z(R)"}. The girth of I'(R),
denoted by gr(I'(R)), is the length of shortest cycle in T'(R). We note that
gr(I(R)) = oo if there is no cycle in the zero-divisor graph. The degree of the vertex
x of T(R), denoted by deg(x), is the number of all edges incident with x. Graph
['(R) is called to be connected if there is a path between each pair of its vertices x
and y. We will say that T'(R) is bipartite if the vertex set of I'(R) may be partitioned
into two disjoint sets V; and V, in such a way that each edge of the graph joins a
vertex in V; to a vertex in V,. The graph T'(R) is called to be complete bipartite if
it is bipartite and each vertex in V; is adjacent to all vertices in V, and vice versa. It

is called that I'(R) is a star graph if it is complete bipartite with |V, | = 1.

A graph is said to be planar if it can be drawn in the plane so that its edges
intersect only at their ends. A subdivision of a graph is a graph obtained from it by
replacing edges with pairwise internally-disjoint paths. A remarkably simple
characterization of planar graphs was given by Kuratowski in 1930. Kuratowski’s
theorem says that a graph is planar if and only if it contains no subdivision of Kg or

Ks 3 (see [9, Section 9.1]).

The concept of zero-divisor graphs in a commutative ring R was introduced by
Beck [7], and then further studied in [3] and [5]. There are so many published
articles connected to algebraic theoretic properties of R and graph theoretic
properties of I'(R) (see for example, [12], [11], [7] and so on). Anderson and

Livingston showed in [3, Theorem 2.4] that, for any commutative ring R, I'(R) is
connected. Mulay has shown in [12] that, if T'(R) contains a cycle, then it contains a

cycle of length less than or equal to four. In this paper, we continue studying the
interplay between T(R) and R. It is known that diam(T'(R))=1 2 or 3 and

gr(T(R)) = 3, 4 or o (see [3] and [4]).

An ideal | of ring R is called decomposable if there is an integer n such that
| =q9N---Ndq,, where forall 0<i<n, g isa pj-primary and p; is a prime

ideal of R. A decomposition | = m;io gi is called minimal if ﬂi;éj qi < q; forall

0 < j<nandthat p; # p; forall i = j.
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Throughout, R is a commutative ring with 1= 0, Z(R)" is the set of nonzero
zero-divisors, Nil(R) is the ideal of nilpotent elements of R and the zero ideal of R

is decomposable.

2. Some Properties of Zero-divisor Graph

Let the zero ideal of R has a minimal primary decomposition as ﬂin:oqi’ where
q; isa p;-primary forall 0 <i <n. Then Nil(R) = ﬂ?zopi and Z(R) = Uinzopi.
There is x; ﬂjﬂqj and x; ¢ q; forall 0 <i <n suchthat p; =0 :5 xj. Let
po be a minimal ideal of R.

Proposition 2.1. With the above notation, the subgraph H of I'(R) with the

vertex set {x; |0 <i < n} is acomplete graph K 1.

Proof. If 0 is a primary ideal, then H trivially is K;. So, let n>1 and let

0<i, j<n suchthati= j. Since x; € ﬂj¢iqj’ we have

Xin € [ﬂjii qjjﬂql =0.

This completes the proof. O

Corollary 2.2. With the above notation, if n > 4, then I'(R) is not planar.

Proof. Since Kj is not planar, the result follows from [9, Proposition 9.1.10]. [

We are going to study the graph properties of I'(R) in the case of 0 = ﬂ?:o gi-
If n =0, then 0 isaprimary ideal.

Proposition 2.3. Suppose that the zero ideal of R is p -primary. Then

(i) If | p| =1, then T(R) is empty.

(ii) If | p| = 2, then diam(I'(R)) = 0 and gr(I'(R)) = .

(iii) If | p| = 3, then diam(I'(R)) =1 and gr(I'(R)) = oo.

(iv) If | p| = 4, then 1 < diam(I'(R)) < 2 and gr(I'(R)) =3 or «.
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Proof. We note that Z(R) = Nil(R) = p.
(i) In this case, p = 0 and R is an integral domain.
(ii) This is trivial.
(iii) Let |p|=3. Then we may assume that p = {0, X, y}. This implies that
xy = 0.

(iv) This immediately follows from [1, Theorem 2.2] and [4, Theorem 2.3].
Because in the last statement gr(I'(R)) = 4. O

If the zero ideal of R is p-primary with |p| <5, then T'(R) is planar. Let
|p|=6. If [(R) = Ks, thenitis notplanar and if I'(R) # Kg, then it is planar.

Theorem 2.4. Let zero ideal of R be p -primary with p ¢ Max(R) and |p| > 7.
Then T'(R) is not planar.

Proof. Since p € Ass(R), there is a nonzero x € R such that p = (0 :g x). It
is easy to see that by non-maximality of p, Rx isinfinite. Let y;, y,, y3 be disjoint
elements of p. Then nonzero elements of Rx are adjacent to yj, Yy,, ¥3. So, a
subdivision of T'(R) is isomorphic to Kg 3 and the proposition follows from
[9, Theorem 9.1.7 and Proposition 9.1.10]. O

Proposition 2.5. Let zero ideal of R be p -primary with |p|>7 and | R/p| > 4.
Then T'(R) is not planar.

Proof. Suppose that Uy, U,, U3 € R/p are nonzero disjoint elements. Then u;x,
Up,x and usx are disjoint, where p = (0 :g x). There are distinct elements vy, v5, v3

e p which are adjacent to ux, U,X, UgX as required. U
For the case n =1, we have the following.

Theorem 2.6. Let R be a non-integral domain commutative ring and 0 =qq gy
be a primary decomposition of zero ideal. Then the following hold:

(i) Let p; be not minimal. If |pg|=2, then I'(R) is a star graph and if
| po | = 3, then gr(I'(R)) = 3.
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(ii) Let p; be minimal. If py N p; = 0, then T(R) is a complete bipartite graph.

So, if | pj | = 3, then gr(I(R)) = 4.

Proof. (i) There is a minimal ideal q of R such that q — p. This forces q = py.
Hence, Nil(R) = pg < p; = Z(R). If | pg | = 2 and x is the nonzero element of py,
then forall y, z € p;\pg, yz # 0. So, forall y € py, it must be yx = 0. This shows
that I'(R) is a star graph. If | pg| > 3, then the statement follows by [1, Theorem
2.12].

(i) Assume that Vj = po\{0} and V, = p\{0}. For all x, y e Z(R) with
xy = 0, there is no the case x, y € p; (i =0, 1). Because x, y € p; implies that

0=xyep; for j=i Therefore, x epj or yepj. So, there is a nonzero

element in py N p;. This shows that T(R) is bipartite. Let us now, x, y € Z(R)"
with x eV and y eV,. Then xy € pg Np; = 0. So, T(R) is a complete bipartite
graph. It is clear that in all complete bipartite graphs K, ; with r, s > 2, the girth
is 4. O

Example 2.7. (1) Consider the idealization R = Z(+)Z,. It is easy to see that
Nil(R) = {(0, 0), (0, 1)} is a prime ideal, say, pg. Moreover,

Z(R) ={(n, §)|n isevenand 5§ € Z,}
is a prime ideal, say p;. On the other hand,
0=poNa,
where g = {(m, 0)| 4|m} is p, -primary. By Theorem 2.6, T'(R) is a star graph.
(2) In R = Z3 x Z3, we can compute that Nil(R) = {(0, 0)},
Z(R) =10, 0), (0, 1), (1. 0). (0, 2), (2, 0},

po =1{(0,0), (0, 1), (0, 2)} and p; = {(0, 0), (1, 0), (2, 0)}.

Note that pg N p; =0 and py U p; = Z(R). It is easy to see that T'(R) is complete
bipartite.
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Theorem 2.8. Let 0=qg gy be a minimal primary decomposition with
pi = /g, po < py and | po | = 7. Then I'(R) is not planar.

Proof. There are nonzero x, t € R, where po =0:g x and p; =0:x t. The
elements x, t and x +t are disjoint and nonzero. There exist nonzero elements
Vi, Vo, V3 in pg adjacent to x,t, x +t. So, a subdivision graph of T(R) is

isomorphic to K3 3. U

Remark 2.9. Considering the notation of Theorem 2.8, let X, t be not nilpotent
elements. Then the result holds for | pg | > 4. Because in that case, x +t & pg.

Corollary 2.10. Suppose that py and p; are minimal prime ideals of R with
po Npy = 0. If | pi | > 3, then T(R) is not planar.

Proof. It immediately follows from Theorem 2.6(ii). l

Theorem 2.11. Let n>2 and O0=gqg g, N---MNg, be a minimal primary
decomposition of zero ideal such that ,/q; = p; =/0:g X; for 0 <i<n. Then
gr(T(R)) = 3.

Proof. By Proposition 2.1, the subgraph with vertex set {x;|0 <i<n} is a
complete graph. Now, for the case of n > 2, thecycle xg ———%; ——— X, ———Xg

exists. O

Theorem 2.12. Let n>2 and 0=gqg g, N---MNg, be a minimal primary

decomposition. Let for 0 <k <n, pg, ..., px be the only minimal ideals of R such

that ‘n:(:o Pk ‘ > 7. Then I'(R) is not planar.

Proof. There are nonzero elements s; € R provided p; = (0:g ;). For every

k+1<j<n (if k<n), thereis 0 <i <k that p; c p;. Since ‘m:(:opk >7,

L k -
one can see that there are disjoint elements t, ty, t3 € ﬂi:o py distinct to s;,

Sy Sig for {iy, i, i3} = {0, ..., n}. It is clear that t, tp, t3  Nil(R) adjacent to

Siy+ iy Sig- SO, there exists a subdivision graph of ['(R) isomorphicto K3 3. [
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Proposition 2.13. Let Nil(R) = 0. Then d(x;) =|gj|—1forall 0 <i <n.

Proof. By the hypothesis, forall 0 <i < n, one has x; ¢ p;. So, (0:g Xj) = g

by [6, Lemma 4.4]. Hence, d(X;) is the number of nonzero elements of g;. U

Theorem 2.14. Suppose that n > 1. In the minimal decomposition

0=qoMa MN--Nap,
with Nil(R) = 0, we have diam(I'(R)) > 2.

Proof. Let diam(T'(R)) <1. Since n >1, it follows from [3, Theorem 2.3] that
diam(I'(R)) =1 and T(R) is connected. This implies that Z(R)? =0. So,
p, < Nil(R) = ﬂ?zopi. So, p, < pg. a contradiction. O

Proposition 2.15. For every 0 <i <n and all nonzero elements x, y € pj,
d(x, y)<2.

Proof. If xy =0, then there is nothing to prove. Let xy = 0. Considering
p; =+/0: X, there are m,n e N such that x"x; = y™x; = 0. Let m, n be the

least integers with these properties. Then x"y™1x; = x"1y™x, =0. Hence,

x ———x""LyM™1x. — — _y isa path with length 2. O
Theorem 2.16. Let Z(R) be an ideal of R. Then diam(I'(R)) < 2.

Proof. There is 0 < k < n where Z(R) = p,. By Proposition 2.15, the proof is
completed. O

Corollary 2.17. Suppose that Z(R) is an ideal. Then for all pairs (x, y) of
zero-divisors of R, (0:(x, y)) = 0.

Corollary 2.18. Let n>1, Nil(R) =0 and Z(R) be an ideal of R. Then
diam(I'(R)) = 2.

Proof. The result follows from Theorems 2.14 and 2.16. O
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