ZERO-DIVISOR GRAPH IN COMMUTATIVE RINGS WITH DECOMPOSABLE ZERO IDEAL

A. Abbasi and Sh. Habibi

Department of Pure Mathematics
Faculty of Mathematical Sciences
University of Guilan
P. O. Box 41335-19141, Rasht, Iran

e-mail: aabbasi@guilan.ac.ir

Abstract

In this paper, we study some graph properties of zero-divisor graph of a commutative ring R where the zero ideal is decomposable. It is obtained that the girth is 3 and the diameter of the zero-divisor is greater than or equal to 2 for $n \ge 2$. It is also obtained the conditions that the zero-divisor graph is not planar.

1. Introduction

Let R be a commutative ring with nonzero identity and let Z(R) be the set of zero-divisors of R. Let $\Gamma(R)$ be the graph of nonzero zero-divisors of R, in the sense that the vertices of $\Gamma(R)$ are all elements of $Z(R)^* = Z(R) - \{0\}$. For all x, $y \in Z(R)^*$, the vertices x and y are said to be *adjacent* if xy = 0. Note that $\Gamma(R)$ is empty if and only if R is an integral domain. For all vertices x, y in $\Gamma(R)$, let d(x, y) be the length of shortest path between x and y. Note that d(x, x) = 0 and $d(x, y) = \infty$ if there is no such path. The *diameter* of $\Gamma(R)$ is denoted by

© 2011 Pushpa Publishing House

2010 Mathematics Subject Classification: 35R35, 49M15, 49N50.

Keywords and phrases: primary decompositions, commutative ring, zero-divisor graph.

Received April 8, 2011

 $diam(\Gamma(R))$ and defined by $\sup\{d(x, y)|x, y \in Z(R)^*\}$. The *girth* of $\Gamma(R)$, denoted by $\operatorname{gr}(\Gamma(R))$, is the length of shortest cycle in $\Gamma(R)$. We note that $gr(\Gamma(R)) = \infty$ if there is no cycle in the zero-divisor graph. The *degree* of the vertex x of $\Gamma(R)$, denoted by $\operatorname{deg}(x)$, is the number of all edges incident with x. Graph $\Gamma(R)$ is called to be *connected* if there is a path between each pair of its vertices x and y. We will say that $\Gamma(R)$ is *bipartite* if the vertex set of $\Gamma(R)$ may be partitioned into two disjoint sets V_1 and V_2 in such a way that each edge of the graph joins a vertex in V_1 to a vertex in V_2 . The graph $\Gamma(R)$ is called to be *complete bipartite* if it is bipartite and each vertex in V_1 is adjacent to all vertices in V_2 and vice versa. It is called that $\Gamma(R)$ is a *star graph* if it is complete bipartite with $|V_1| = 1$.

A graph is said to be *planar* if it can be drawn in the plane so that its edges intersect only at their ends. A *subdivision* of a graph is a graph obtained from it by replacing edges with pairwise internally-disjoint paths. A remarkably simple characterization of planar graphs was given by Kuratowski in 1930. Kuratowski's theorem says that a graph is *planar* if and only if it contains no subdivision of K_5 or $K_{3,3}$ (see [9, Section 9.1]).

The concept of zero-divisor graphs in a commutative ring R was introduced by Beck [7], and then further studied in [3] and [5]. There are so many published articles connected to algebraic theoretic properties of R and graph theoretic properties of $\Gamma(R)$ (see for example, [12], [11], [7] and so on). Anderson and Livingston showed in [3, Theorem 2.4] that, for any commutative ring R, $\Gamma(R)$ is connected. Mulay has shown in [12] that, if $\Gamma(R)$ contains a cycle, then it contains a cycle of length less than or equal to four. In this paper, we continue studying the interplay between $\Gamma(R)$ and R. It is known that $diam(\Gamma(R)) = 1$, 2 or 3 and $gr(\Gamma(R)) = 3$, 4 or ∞ (see [3] and [4]).

An ideal I of ring R is called decomposable if there is an integer n such that $I = \mathfrak{q}_0 \cap \cdots \cap \mathfrak{q}_n$, where for all $0 \le i \le n$, \mathfrak{q}_i is a \mathfrak{p}_i -primary and \mathfrak{p}_i is a prime ideal of R. A decomposition $I = \bigcap_{i=0}^{\infty} \mathfrak{q}_i$ is called minimal if $\bigcap_{i \ne j} \mathfrak{q}_i \not\subset \mathfrak{q}_j$ for all $0 \le j \le n$ and that $\mathfrak{p}_i \ne \mathfrak{p}_j$ for all $i \ne j$.

Throughout, R is a commutative ring with $1 \neq 0$, $Z(R)^*$ is the set of nonzero zero-divisors, Nil(R) is the ideal of nilpotent elements of R and the zero ideal of R is decomposable.

2. Some Properties of Zero-divisor Graph

Let the zero ideal of R has a minimal primary decomposition as $\bigcap_{i=0}^n \mathfrak{q}_i$, where \mathfrak{q}_i is a \mathfrak{p}_i -primary for all $0 \le i \le n$. Then $Nil(R) = \bigcap_{i=0}^n \mathfrak{p}_i$ and $Z(R) = \bigcup_{i=0}^n \mathfrak{p}_i$. There is $x_i \in \bigcap_{j \ne i} \mathfrak{q}_j$ and $x_i \notin \mathfrak{q}_i$ for all $0 \le i \le n$ such that $\mathfrak{p}_i = \sqrt{0:_R x_i}$. Let \mathfrak{p}_0 be a minimal ideal of R.

Proposition 2.1. With the above notation, the subgraph H of $\Gamma(R)$ with the vertex set $\{x_i \mid 0 \le i \le n\}$ is a complete graph K_{n+1} .

Proof. If 0 is a primary ideal, then H trivially is K_1 . So, let $n \ge 1$ and let $0 \le i$, $j \le n$ such that $i \ne j$. Since $x_i \in \bigcap_{j \ne i} \mathfrak{q}_j$, we have

$$x_i x_j \in \left(\bigcap_{j \neq i} \mathfrak{q}_j\right) \cap \mathfrak{q}_i = 0.$$

This completes the proof.

Corollary 2.2. With the above notation, if $n \ge 4$, then $\Gamma(R)$ is not planar.

Proof. Since K_5 is not planar, the result follows from [9, Proposition 9.1.10]. \square

We are going to study the graph properties of $\Gamma(R)$ in the case of $0 = \bigcap_{i=0}^{n} \mathfrak{q}_i$. If n = 0, then 0 is a primary ideal.

Proposition 2.3. Suppose that the zero ideal of R is \mathfrak{p} -primary. Then

- (i) If $|\mathfrak{p}| = 1$, then $\Gamma(R)$ is empty.
- (ii) If $|\mathfrak{p}| = 2$, then $diam(\Gamma(R)) = 0$ and $gr(\Gamma(R)) = \infty$.
- (iii) If $|\mathfrak{p}| = 3$, then $diam(\Gamma(R)) = 1$ and $gr(\Gamma(R)) = \infty$.
- (iv) If $|\mathfrak{p}| \ge 4$, then $1 \le diam(\Gamma(R)) \le 2$ and $gr(\Gamma(R)) = 3$ or ∞ .

Proof. We note that $Z(R) = Nil(R) = \mathfrak{p}$.

- (i) In this case, $\mathfrak{p} = 0$ and R is an integral domain.
- (ii) This is trivial.
- (iii) Let $|\mathfrak{p}| = 3$. Then we may assume that $\mathfrak{p} = \{0, x, y\}$. This implies that xy = 0.
- (iv) This immediately follows from [1, Theorem 2.2] and [4, Theorem 2.3]. Because in the last statement $gr(\Gamma(R)) \neq 4$.

If the zero ideal of R is \mathfrak{p} -primary with $|\mathfrak{p}| \le 5$, then $\Gamma(R)$ is planar. Let $|\mathfrak{p}| = 6$. If $\Gamma(R) = K_5$, then it is not planar and if $\Gamma(R) \ne K_5$, then it is planar.

Theorem 2.4. Let zero ideal of R be \mathfrak{p} -primary with $\mathfrak{p} \notin Max(R)$ and $|\mathfrak{p}| \geq 7$. Then $\Gamma(R)$ is not planar.

Proof. Since $\mathfrak{p} \in Ass(R)$, there is a nonzero $x \in R$ such that $\mathfrak{p} = (0:_R x)$. It is easy to see that by non-maximality of \mathfrak{p} , Rx is infinite. Let y_1, y_2, y_3 be disjoint elements of \mathfrak{p} . Then nonzero elements of Rx are adjacent to y_1, y_2, y_3 . So, a subdivision of $\Gamma(R)$ is isomorphic to $K_{3,3}$ and the proposition follows from [9, Theorem 9.1.7 and Proposition 9.1.10].

Proposition 2.5. Let zero ideal of R be \mathfrak{p} -primary with $|\mathfrak{p}| \ge 7$ and $|R/\mathfrak{p}| \ge 4$. Then $\Gamma(R)$ is not planar.

Proof. Suppose that \overline{u}_1 , \overline{u}_2 , $\overline{u}_3 \in R/\mathfrak{p}$ are nonzero disjoint elements. Then u_1x , u_2x and u_3x are disjoint, where $\mathfrak{p}=(0:_Rx)$. There are distinct elements v_1 , v_2 , $v_3 \in \mathfrak{p}$ which are adjacent to u_1x , u_2x , u_3x as required.

For the case n = 1, we have the following.

Theorem 2.6. Let R be a non-integral domain commutative ring and $0 = \mathfrak{q}_0 \cap \mathfrak{q}_1$ be a primary decomposition of zero ideal. Then the following hold:

(i) Let \mathfrak{p}_1 be not minimal. If $|\mathfrak{p}_0| = 2$, then $\Gamma(R)$ is a star graph and if $|\mathfrak{p}_0| \geq 3$, then $gr(\Gamma(R)) = 3$.

(ii) Let \mathfrak{p}_1 be minimal. If $\mathfrak{p}_0 \cap \mathfrak{p}_1 = 0$, then $\Gamma(R)$ is a complete bipartite graph. So, if $|\mathfrak{p}_i| \ge 3$, then $gr(\Gamma(R)) = 4$.

Proof. (i) There is a minimal ideal \mathfrak{q} of R such that $\mathfrak{q} \subset \mathfrak{p}$. This forces $\mathfrak{q} = \mathfrak{p}_0$. Hence, $Nil(R) = \mathfrak{p}_0 \subset \mathfrak{p}_1 = Z(R)$. If $|\mathfrak{p}_0| = 2$ and x is the nonzero element of \mathfrak{p}_0 , then for all $y, z \in \mathfrak{p}_1 \setminus \mathfrak{p}_0$, $yz \neq 0$. So, for all $y \in \mathfrak{p}_1$, it must be yx = 0. This shows that $\Gamma(R)$ is a star graph. If $|\mathfrak{p}_0| \geq 3$, then the statement follows by [1, Theorem 2.12].

(ii) Assume that $V_1 = \mathfrak{p}_0 \setminus \{0\}$ and $V_2 = \mathfrak{p}_1 \setminus \{0\}$. For all $x, y \in Z(R)$ with xy = 0, there is no the case $x, y \in \mathfrak{p}_i$ (i = 0, 1). Because $x, y \in \mathfrak{p}_i$ implies that $0 = xy \in \mathfrak{p}_j$ for $j \neq i$. Therefore, $x \in \mathfrak{p}_j$ or $y \in \mathfrak{p}_j$. So, there is a nonzero element in $\mathfrak{p}_0 \cap \mathfrak{p}_1$. This shows that $\Gamma(R)$ is bipartite. Let us now, $x, y \in Z(R)^*$ with $x \in V_1$ and $y \in V_2$. Then $xy \in \mathfrak{p}_0 \cap \mathfrak{p}_1 = 0$. So, $\Gamma(R)$ is a complete bipartite graph. It is clear that in all complete bipartite graphs $K_{r,s}$ with $r, s \geq 2$, the girth is 4.

Example 2.7. (1) Consider the idealization $R = \mathbb{Z}(+)\mathbb{Z}_2$. It is easy to see that $Nil(R) = \{(0, 0), (0, 1)\}$ is a prime ideal, say, \mathfrak{p}_0 . Moreover,

$$\mathbb{Z}(R) = \{(n, \bar{s}) | n \text{ is even and } \bar{s} \in \mathbb{Z}_2\}$$

is a prime ideal, say \mathfrak{p}_1 . On the other hand,

$$0 = \mathfrak{p}_0 \cap \mathfrak{q}$$

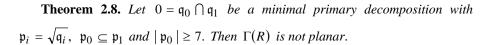
where $q = \{(m, 0) | 4 | m\}$ is p_1 -primary. By Theorem 2.6, $\Gamma(R)$ is a star graph.

(2) In $R = \mathbb{Z}_3 \times \mathbb{Z}_3$, we can compute that $Nil(R) = \{(0, 0)\},\$

$$Z(R) = \{(0, 0), (0, 1), (1, 0), (0, 2), (2, 0)\},\$$

$$\mathfrak{p}_0 = \{(0, 0), (0, 1), (0, 2)\} \text{ and } \mathfrak{p}_1 = \{(0, 0), (1, 0), (2, 0)\}.$$

Note that $\mathfrak{p}_0 \cap \mathfrak{p}_1 = 0$ and $\mathfrak{p}_0 \cup \mathfrak{p}_1 = Z(R)$. It is easy to see that $\Gamma(R)$ is complete bipartite.



Proof. There are nonzero $x, t \in R$, where $\mathfrak{p}_0 = 0 :_R x$ and $\mathfrak{p}_1 = 0 :_R t$. The elements x, t and x + t are disjoint and nonzero. There exist nonzero elements v_1, v_2, v_3 in \mathfrak{p}_0 adjacent to x, t, x + t. So, a subdivision graph of $\Gamma(R)$ is isomorphic to $K_{3,3}$.

Remark 2.9. Considering the notation of Theorem 2.8, let x, t be not nilpotent elements. Then the result holds for $|\mathfrak{p}_0| \ge 4$. Because in that case, $x + t \notin \mathfrak{p}_0$.

Corollary 2.10. Suppose that \mathfrak{p}_0 and \mathfrak{p}_1 are minimal prime ideals of R with $\mathfrak{p}_0 \cap \mathfrak{p}_1 = 0$. If $|\mathfrak{p}_i^*| \geq 3$, then $\Gamma(R)$ is not planar.

Proof. It immediately follows from Theorem 2.6(ii).

Theorem 2.11. Let $n \ge 2$ and $0 = \mathfrak{q}_0 \cap \mathfrak{q}_1 \cap \cdots \cap \mathfrak{q}_n$ be a minimal primary decomposition of zero ideal such that $\sqrt{\mathfrak{q}_i} = \mathfrak{p}_i = \sqrt{0 :_R x_i}$ for $0 \le i \le n$. Then $gr(\Gamma(R)) = 3$.

Proof. By Proposition 2.1, the subgraph with vertex set $\{x_i \mid 0 \le i \le n\}$ is a complete graph. Now, for the case of $n \ge 2$, the cycle $x_0 - - - x_1 - - - x_2 - - - x_0$ exists.

Theorem 2.12. Let $n \ge 2$ and $0 = \mathfrak{q}_0 \cap \mathfrak{q}_1 \cap \cdots \cap \mathfrak{q}_n$ be a minimal primary decomposition. Let for $0 \le k \le n$, $\mathfrak{p}_0, ..., \mathfrak{p}_k$ be the only minimal ideals of R such that $\left| \bigcap_{i=0}^k \mathfrak{p}_k \right| \ge 7$. Then $\Gamma(R)$ is not planar.

Proof. There are nonzero elements $s_i \in R$ provided $\mathfrak{p}_i = (0:_R s_i)$. For every $k+1 \leq j \leq n$ (if k < n), there is $0 \leq i \leq k$ that $\mathfrak{p}_i \subseteq \mathfrak{p}_j$. Since $\left| \bigcap_{i=0}^k \mathfrak{p}_k \right| \geq 7$, one can see that there are disjoint elements $t_1, t_2, t_3 \in \bigcap_{i=0}^k \mathfrak{p}_k$ distinct to $s_{i_1}, s_{i_2}, s_{i_3}$ for $\{i_1, i_2, i_3\} \subseteq \{0, ..., n\}$. It is clear that $t_1, t_2, t_3 \in Nil(R)$ adjacent to $s_{i_1}, s_{i_2}, s_{i_3}$. So, there exists a subdivision graph of $\Gamma(R)$ isomorphic to $K_{3,3}$.

Proposition 2.13. Let Nil(R) = 0. Then $d(x_i) = |\mathfrak{q}_i| - 1$ for all $0 \le i \le n$.

Proof. By the hypothesis, for all $0 \le i \le n$, one has $x_i \notin \mathfrak{p}_i$. So, $(0:_R x_i) = \mathfrak{q}_i$ by [6, Lemma 4.4]. Hence, $d(x_i)$ is the number of nonzero elements of \mathfrak{q}_i .

Theorem 2.14. Suppose that $n \ge 1$. In the minimal decomposition

$$0 = \mathfrak{q}_0 \cap \mathfrak{q}_1 \cap \cdots \cap \mathfrak{q}_n$$

with $Nil(R) \neq 0$, we have $diam(\Gamma(R)) \geq 2$.

Proof. Let $diam(\Gamma(R)) \le 1$. Since $n \ge 1$, it follows from [3, Theorem 2.3] that $diam(\Gamma(R)) = 1$ and $\Gamma(R)$ is connected. This implies that $Z(R)^2 = 0$. So, $\mathfrak{p}_n \subset Nil(R) = \bigcap_{i=0}^n \mathfrak{p}_i$. So, $\mathfrak{p}_n \subset \mathfrak{p}_0$, a contradiction.

Proposition 2.15. For every $0 \le i \le n$ and all nonzero elements $x, y \in \mathfrak{p}_i$, $d(x, y) \le 2$.

Proof. If xy=0, then there is nothing to prove. Let $xy\neq 0$. Considering $\mathfrak{p}_i=\sqrt{0:x_i}$, there are $m,n\in\mathbb{N}$ such that $x^nx_i=y^mx_i=0$. Let m,n be the least integers with these properties. Then $x^ny^{m-1}x_i=x^{n-1}y^mx_i=0$. Hence, $x^ny^{m-1}x_i=x^{n-1}y^mx_i=0$.

Theorem 2.16. Let Z(R) be an ideal of R. Then $diam(\Gamma(R)) \le 2$.

Proof. There is $0 \le k \le n$ where $Z(R) = \mathfrak{p}_k$. By Proposition 2.15, the proof is completed.

Corollary 2.17. Suppose that Z(R) is an ideal. Then for all pairs (x, y) of zero-divisors of R, $(0:(x, y)) \neq 0$.

Corollary 2.18. Let $n \ge 1$, $Nil(R) \ne 0$ and Z(R) be an ideal of R. Then $diam(\Gamma(R)) = 2$.

Proof. The result follows from Theorems 2.14 and 2.16. \Box

References

[1] D. D. Anderson and A. Badawi, On the zero-divisor graph of a ring, Comm. Algebra 36 (2008), 3073-3092.

- [2] D. F. Anderson, F. Frazier, A. Lauve and P. S. Livingston, The zero-divisor graph of a commutative ring II, Lecture Notes Pure Appl. Math., Marcel Dekker, New York, Basel, 2001, Vol. 202, pp. 61-72.
- [3] D. F. Anderson and Ph. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), 434-447.
- [4] D. F. Anderson and S. B. Mulay, On the diameter and girth of a zero-divisor graph, J. Pure Appl. Algebra 210 (2007), 543-550.
- [5] D. D. Anderson and M. Naseer, Beck's coloring of a commutative ring, J. Algebra, 159 (1993), 500-514.
- [6] M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley Pub. Co., 1969.
- [7] I. Beck, Coloring of a commutative ring, J. Algebra 116 (1988), 208-226.
- [8] B. Bollbas, Graph Theory, Springer-Verlag, New York, 1997.
- [9] J. Gross and J. Yellen, Graph Theory and its Applications, CRC Press, New York, 1999.
- [10] J. A. Huckaba, Commutative Rings with Zero Divisors, Marcel Dekker, New York, Basel, 1988.
- [11] T. G. Lucas, The diameter of a zero divisor graph, J. Algebra 301 (2006), 174-193.
- [12] S. B. Mulay, Cycles and symmetries of zero-divisors, Comm. Algebra 30(7) (2002), 3533-3558.
- [13] R. Y. Sharp, Steps in Commutative Algebra, Cambridge Univ. Press, 1990.