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Abstract

We show, up to accepting axioms on scales, scoring and aggregation, and

using the method of pairwise comparisons, that there is only one model

for scoring a set of options with respect to a hierarchy of criteria. The

model allows for team decision making with respect to each criterion and

we show that aggregation across teams is possible only under the strict

use of appropriate scales. We show that there is a clear distinction to be

made between the options using a category difference scale and the

weighting of criteria using a ratio scale. The interaction between policy,

as given by the hierarchy of weighted criteria, and the scores is clearly

demonstrated.

1. Introduction

The technique of pairwise comparisons has a long history of analysis
and application, [1, 2, 9, 11, 15, 19]. In this paper we establish some basic
principles which govern its use in multicriteria problems. In this context
there have been various controversies surrounding some popular and
well used applications, e.g., the AHP of Saaty [6, 7, 8, 10, 20] and it is one
of the aims of this paper to establish an axiomatic and coherent
treatment which clears up some of these difficulties.
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The major features of the model we present here are:

(1) The use of category scales in pairwise comparisons, [12, 17, 18].

(2) An axiomatic approach to aggregation across decision makers or
criteria, [12].

(3) An axiomatic approach to scoring options, weighting criteria and
measuring the relative influence of decision makers.

Aggregation is briefly covered in Section 4, details can be found in
[12]. The work on scales is covered in Section 3.

In Section 2 we define the decision problem and its basic modelling.
The main results on scoring options and weighting criteria are in Section
5 and we finish with a summary of the main points of the model in
Section 6.

1.1. Notation and definitions

N is the set of natural numbers, R is the set of real numbers and +R

is the set of positive non-zero real numbers. The mathematics used in the
modelling is standard and relies upon elementary results in linear
algebra and convex subsets of linear spaces, see [12, 13, 14, 15] for more

details. All linear spaces are over R.

A part from the linear space theory we also need permutation
matrices in Section 5.

Permutation matrices

Let ( ) { }....,,2,1 nnI =  If ( ) ( )nInIp →:  is a permutation, i.e., a

bijection, then the permutation matrix ( )ijpP =  of p is the nn ×  matrix

defined by 1=ijp  if ( ) ,jip =  0=ijp  otherwise. Note that if =x

( ) ntr
n Rxx ∈...,,1  is a column vector, then ( ( ) ( ) ( ) ),...,,, 21 nppp

tr xxxPx =

i.e., P permutes the components of the vector according to p.

We say that a matrix P is a permutation matrix if it is the

permutation matrix of some permutation.

We note that if P is a permutation matrix associated to the
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permutation p, then TPP =−1  and for any nn ×  matrix ( )ijaA =  we

have ( ( ) ( ) ),1
jpipaAPP =−   i.e., we permute rows and columns in the

same way.

2. The Decision Problem

2.1. Options and the criterion hierarchy

There is a set of n options to be scored with respect to a policy

structure given by a hierarchy of criteria as defined in [19]. The overall
objective sits at the top of the tree and it is decomposed into subcriteria.

2.2. The criteria

The “leaf” subcriteria are those at the bottom of the hierarchy, and
are used to directly assess the options. The basic structural unit in such a

hierarchy is that of a criterion C split into leaf subcriteria ....,,1 mCC

If a process can be developed such that the option scores at the leaf
subcriteria level can be combined or aggregated to give scores at the
criterion level for such a structural unit, then it is clear that we iterate
this process as we move up the hierarchy in order to get the overall scores
of the options. Thus we limit our analysis to this basic structure and
describe such an aggregation process using weighted criteria in Section 4.

2.3. Criterion teams

The options are assessed with respect to each leaf criterion c by a

team of decision makers called the criterion team .cT

We assume that each decision maker uses the method of pairwise
comparisons and that he/she obtains a set of scores for the options. These
scores are obtained from decision makers by the use of appropriate scales
which are derived from validated stimulus-response theory in
psychophysics [21] and from the standard treatment of scales in terms of
allowable transformations, [16]. See Section 3 for details.

It is worth noting here that the pairwise comparison response from
the decision maker is requested in terms of a category difference scale as
categories are the only invariants of the allowable transformations we
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use. These categories form an absolute scale and can be thought of as
levels of “desirability” with respect to the relevant criterion. This allows
us to combine decision makers’ scores, or decision matrices, at the
category difference level as they are using the same scale and the
conditions of interpersonal communication are satisfied - see [3, 16].

2.4. Aggregation

Aggregation in criterion teams

The team decision for a leaf criterion is to be obtained by combining
or aggregating across the teams’ decisions. This is achieved by using
decision maker influences, see 2.5 below, and the aggregation process as
outlined in Section 4.

Aggregation over criteria

We now use criteria weights for each of the leaf subcriteria

mCC ...,,1  with respect to C in order to aggregate the scores obtained for

each of the subcriteria into overall scores for the options with respect to

C. See 2.5 below and Section 4.

2.5. Decision maker influences and criteria weights

The process of aggregation outlined above for decision makers and for
criteria is based on giving weights to these objects. These weights reflect
the relative importance of either the decision maker in his/her criterion
team or the leaf criterion amongst the other leaf criteria with respect to
their common overarching criterion. These weights are assumed, for the
purpose of this model, to be obtained by pairwise comparison methods -
but the underlying scale is a simple ratio scale as we can think of these
weights as trade off coefficients between the absolute scales given by the
category levels obtained for the options. See 3.3 below. Thus the pairwise
comparisons are multiplicative in character - this is in contrast with the
comparison of options as there we use a category difference scale.

The influences of the decision makers could also be determined by a
team, as could the weights of the criteria. The formal work on
aggregation from Section 4 still applies and we can obtain the team
weights or influences.
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We simplify our discussion below by supposing that decision maker
influences are given and we discuss the derivation of criteria weights
using consistency ideas in Section 6.

We shall call a weighted set of subcriteria, with respect to a criterion
C, a C policy or just a policy if C is understood.

The team of decision makers deciding on the policy is called the policy

team.

3. Scales for Pairwise Comparisons: Scores and Weights

3.1. Response scales

We discuss here the responses of decision makers in a criterion team
to the options with respect to a fixed criterion. It is assumed that each
decision maker in the team will respond to the stimulus of each option
with values which follow a power law.

A scale is defined by the group of allowable transformations of the
scale, see [16] for a well presented discussion. As we need the criterion
team to have a common view of the options we assume, a priori, that the
allowable transformations of the scale are given by maps of the form

( ) ;βαν=νφ  0, >βα  and that we can transform between individual

decision makers scales by these maps. Note that these are increasing
maps and are homeomorphisms of intervals of strictly positive real
numbers. It follows from this that all statements concerning scales are
subject to the proviso that they are invariant under allowable
transformations.

In more detail, we suppose that there are k decision makers

kDMDM ...,,1  in the criterion team. When the ith decision maker makes

comparisons using a scale it is assumed that he/she is using an

underlying representative interval [ ( ) ( )]., i
c

i
c Mm

This establishes for iDM  the context range for the underlying

response scale for the options with respect to the given criterion. We also
assume, without loss of generality, that there is an orientation for any
representative interval in that the greater the response value for an
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option the more desirable that option becomes w.r.t. the criterion.
Allowable transformations preserve this orientation.

Between any two decision makers ji DMDM ,  in the criterion team

we assume there is an allowable transformation of their response scales:

[ ( ) ( )] [ ( ) ( )] ( ) ,0,0,,,,:, >β>ανα=νφ→φ β
ijijijij

j
c

j
c

i
c

i
cji

ijMmMm

where ,ikijjk φ=φφ  ( ) ,ν=νφii  .1
jiij φ=φ−  It follows that ,ikjkij β=ββ

.ikjkij
jk α=αα

β

3.2. Category scales

Given the decision makers’ response scales and the allowable
transformations between these scales we have to identify an invariant
scale common to the team. This we achieve by using the construction in
[12]. There, given a response scale [ ]cc Mm ,  for a decision maker for a

criterion c, we showed, using a minimization of error principle, that there

are natural scale points of the form ,i
ccrm  ,...,,0 ti =  where =cr

( ) ,21 t

cc mM  i.e., they form a geometric progression with common ratio

cr  which we will call the progression factor for the criterion c. The

dividing points are called the category boundaries. The index i of a

category boundary i
ccrm  is called the category. We note the important

fact that these categories are invariant under allowable transformations
as geometric progression is sent to a geometric progression by allowable

maps, i.e., if i
crm  is a category boundary, then ( ) ( ) ,i

cc
i
cc rmrm ββα=φ

( ) 0,; >βααν=νφ β  an allowable transformation.

Hence we see immediately that categories are independent of the
representative interval of a scale and hence are invariants of the scales
we are dealing with if we allow the scale group to be the group of all
allowable transformations. We shall call these scales category scales. We
also note that the scale given by the categories is an absolute scale, i.e.,
the categories have only the identity transformation as an allowable
transformation.
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We note that the number of category scale points N in such a

category scale is of the form 12 +t   and once a representative interval is

given and 12 += tN  is given then the value of cr  is easily determined

for that representative interval by .1
c

N
cc Mrm =−

We note from the method of building scales in [12] that 1−N  is a
power of two and so we adopt the well used category scale with 9 points.

Category difference scale and decision matrices

When comparisons are made between options i and j, say, the

decision maker is asked to make the comparison in the following terms:

“Which option is more desirable with respect to c and indicate the

difference in desirability on this 0-8 scale.”

The decision maker reports back the perceived category differences of

the options, i.e., if option i is perceived to be associated to category a and

option j to category b, then the decision maker reports back ba −  for the

comparison of option i to option j. Note that ab −  should then be

reported back as the comparison of j to i. Thus the response scale lies in

the range of integers from 8−  to 8 if we adopt the fixed value of .9=N

Decision matrices using pairwise comparisons in a category scale

Comparing each pair of options gives a decision matrix with entries

in the range [ ]8,8−  and we observe that this matrix is skew symmetric.

3.3. Comparison scales for weights

By weights we mean either the values associated to criteria which
reflect their relative importance in terms of the overall objective or the
weights we assign to decision makers in a criterion or policy team to
reflect their relative influences. For simplicity we restrict discussion to
weights for criteria; all we say here also applies to decision maker
influences. We model these weights as giving trades off between the
criterion decisions - the scores of the options with respect to a criterion
give levels of desirability, on an absolute scale, and we can translate
between the scores between the criteria using the relative weights.
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Thus if criterion ic  has weight ,iw  ,2,1=i  then a score of s with

respect to criterion 1c  is worth a score of 
1

2
w
w

s  with respect to .2c

We are assuming that these relative weights are found by using the

method of pairwise comparisons. An important distinction between

finding scores for options and finding weights for criteria is that we are

assuming a ratio scale for weights which is directly estimated by decision

makers. Thus when a decision maker is asked to compare two criteria the

response is assumed to be an estimate of the relative weights. It may be

argued that there is no point including criteria which are hopelessly

mismatched, i.e., if some of the relative weights are very large (or very

small) and that if we consider the scale as expressing domination, then

the scale should be, for example, a 1-9 scale as in [19], where the scale

points refer to linguistic comparisons and are somehow transformed into

relative weights. If we followed the method for building of scales based

upon a minimization of error principle as in Section 2 we can construct

the scale with 12 +k  scale points, .2...,,0,2 ki
i iNt

k
==

We call the scale which these comparisons lie on a multiplicative

scale.

4. Aggregation

4.1. Aggregating scores for options

In order to define aggregation across team members’ decisions in a

criterion team each decision maker must have the same objective scale,

up to allowable transformations for the options with respect to that

criterion, see 3.1. Also the comparisons are reported by the decision

maker using a difference category scale, which we take to lie in the range

8−  to 8, see 3.2. In order to use aggregation we have to extend the

difference category scale to include all possible weighted means of

decisions.

This means that we use the interval [ ]8,8−=S  and call S the

extended scale.
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We assume that there are k decision makers and that they have each

been given weights reflecting their relative influence on the decisions.

Let kiwi ...,,1, =  be the weights of the decision makers. We show below

that it is the relative influence weights that determine the aggregation.

For this reason we assume that +∈ Zwi  as we can approximate

arbitrarily closely any set of relative weights by positive integers.

Consider then two decision makers i, j who have compared options A

and B and we obtain the comparisons [ ]8,8, −∈ji ss  respectively. We

consider these as weighted decisions, i.e., as pairs ( ) ( ) ,,,,, ijjii wwsws

.Nwj ∈

The mathematical model of aggregation

In order to introduce a model for the process of combining such
weighted decisions we write:

( ) ( )( ) ( )wswsws ,,,,agg 2211 =

to mean that given the weighted decisions ( ) ( )2211 ,,, wsws  and that

there is agreement to combine then in this case the aggregated weighted

decision is ( )., ws

It is not yet clear that we can always do this, but we now introduce a
set of axioms to show the existence of such an aggregation function
under minimal assumptions.

In the following scale points are in S and all weights in N.

Axiom 1. ( ) ( )( ) ( )( ).2,2,,,agg 2121 wsswsws +=

Axiom 2. ( ) ( )( ) ( ).,,,,agg 2121 wwswsws +=

Axiom 3. ( ) ( )( ) ( ) .,,,,,,0,agg 111111 NwSsswswss ∈∈∀=

In order to extend the aggregation function to more than two
weighted decisions we introduce the following assumptions:

Axiom 4. The aggregation function, when defined, is both
commutative and associative and is continuous for fixed weights.
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This last axiom allows us to extend the aggregate function to more
than two weighted decision makers. The continuity condition establishes
that if this aggregation function holds for all teams of weighted decision
makers who allow all possible aggregations within their teams, then
there is a unique aggregation function, i.e., the following theorem then
follows from these axioms.

Theorem on aggregation

It is proved in [12] that if the k decision makers in a criterion team

have influence weights ,iλ  ki ...,,1=  and if an option has scores ,is

ki ...,,1=  for each of the decision makers, then the aggregated score for

that option is the normalized weighted average

....,,1,,
1

1

∑
∑=

=

∗∗ =

λ

λ
=λλ

k

i
k

j
j

i
iii kis

The same aggregation technique applies to aggregating criterion
decisions over weighted criteria.

4.2. Aggregating weights

A similar aggregation process takes place if the decision makers in a
policy team are giving relative weights to criteria and the decision
makers are weighted with respect to their influences on the policy. The
only difference is that we use a multiplicative scale. A similar analysis
follows for determining decision maker influences.

5. Scoring and Weighting using Pairwise Comparisons

In this section, we indicate how the work on scales and aggregation in
Sections 3 and 4 together with three axioms concerning the interaction
between scoring and aggregation imply that there is only one method of
scoring a decision matrix.

5.1. Characterization of scores for options

We assume that there are n options and a decision maker is using a

category scale derived from a fixed context range for a fixed criterion.
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This category scale allows the decision maker to compare the options two
at a time and each comparison is a category difference estimation lying in

the range { }.8,7...,,0...,,7,8 −−=W  Let ( )jic ,  be the comparison of

option i to option j, and let ( )( )jicC ,=  be the nn ×  skew-symmetric

matrix with entries in W. The set of skew symmetric matrices with

entries in the scale W we denote by ( ).Wn∑  As we are aggregating these

decision matrices over the decision makers in the team we extend the

scale to [ ]8,8−=S  to include all possible weighted averages of scale

points. We call the set of all such decision matrices generalized decision

matrices and denote this set by ( ).Snn ∑=∑

Properties of generalized decision matrices

An important property of n∑  is that it is convex. There are two

obvious properties of n∑  that we need:

Property 1. Let P be an nn ×  permutation matrix, see 1.1 above,

and let .nC ∑∈  Then .1
nCPP ∑∈−

Property 2. Let kiZi ...,,1, =∈λ +  be the influence weights given

to the k decision makers in a criterion team and let kiCi ...,,1, =  be the

corresponding decision matrices for the decision makers. Then ,nC ∑∈

where

,...,,1,,
1

1

∑
∑=

=

∗∗ =

λ

λ
=λλ=

k

i
k

j
j

i
iii kiCC

i.e., the team decision matrix formed by aggregation is also a generalized

decision matrix. We let ( ) jizzZ ijijn ,,0, ∀==  be the zero decision

matrix, clearly .nnZ ∑∈

Characterizing the score function

We assume that there is a function giving the relative scores of the
options:

.:Score n
n R→∑
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Using variants of the axioms developed in [4, 5] we show that there is
only one possible scoring method given by:

( ) ,.Score trLCC α=

where ( )nnnL 1...,,1,1=  and ,+∈α R  i.e., the score associated to

option i is a multiple of the mean of the ith row of C.

The axioms are:

Axiom Sc1. The scores are independent of the order of the options,
i.e.,

( ) ( ) ,,Score.Score 1
nCCPCPP ∑∈∀=−

where P is a permutation matrix.

Axiom Sc2. Scoring an aggregation of decision matrices is the same
as aggregating the  scores of each decision matrix, i.e., scoring and
aggregation “commute”, i.e.,

( ) .1,...,,1,0,ScoreScore
1 11
∑ ∑∑
= ==

=λ=≥λλ=












λ

k

i

k

i
iiii

k

i
ii kiCC

Axiom Sc3. ( ) ( ).0...,,0,0Score =nZ

Note that in these axioms we are careful to make sure that all

matrices lie in ,n∑  by Properties 1, 2 above, and hence that Score is

defined only on decision matrices.

We now consider the influence weights for decision makers and
weights for criteria.

5.2. Characterization of weights

We have seen that the scores of options can be characterised by
insisting on the commutativity of aggregation and scoring (and two other
axioms). However in the case of influence weights for members of a
criterion team or the weights of the criteria there is a marked difference
as there is, in general, no underlying objective scale as the weights are
purely relative and give trade off information between levels of relative
desirability of the options.
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In order to simplify the following discussion we concentrate on the
weights of the criteria. The same comments apply to finding influence
weights of the decision makers in a criterion team.

We note that all criterion scores for the options are in terms of a
common scale of relative desirability. So in finding the relative weights of
the criteria we can make pairwise comparisons which ask for the relative
worth of scores with respect to one criterion as against another. There is
no a priori limit on the size of these relative weights as we have seen that
these weights are normalized before we aggregate, [12, 14]. Thus when
we make pairwise comparisons for obtaining weights we produce decision

matrices ( )ijdD =  which are reciprocal matrices with entries in

{ },0: >=++ xxR  i.e., .,,1 jidd jiij ∀=  Let this set of reciprocal

matrices be denoted by kΓ  which is an abelian group under

multiplication, see [5].

Our assumption at this point is that there is a policy team with
members having weighted influences. The policy team can decide on the
criteria weights by aggregating their weighted decisions, obtained
through pairwise comparisons using multiplicativity. The process of
aggregation is formally the same except that we obtain weighted
geometric means instead of weighted additive means. Thus if we require
that this commutes with scoring we obtain that the weights are given by
the geometric means of the rows of the multiplicative decision matrices -
this is essentially the argument in [5].

In detail, if the policy team has m members with influence weights

miwi ...,,1, =  and each member produces a multiplicative decision

matrix miDi ...,,1, =  and if we let ( ) ( ),, ,, ipqi
w

ipq
w
i dDdD ii ==  then the

aggregated decision matrix is

( ),
1
∏
=

=
m

i
ij

w
i dD i

where we assume that the influence weights are normalized, i.e.,

∑
=

=
m

i
iw

1
.1
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Given a multiplicative decision matrix ( ),ijdD =  then the weights

obtained from D are

.
1

k

k

j
iji dW ∏

=

=

We note that these multiplicative weights are normalized in that

∏
=

=
k

i
iW

1
.1  In order to use these weights to aggregate across the criteria

decisions we have to re-normalise so that the sum of the weights is 1, see
Section 4.

5.3. Combining over criteria

If we now aggregate the criterion scores over these weights using the
same technique of aggregation as developed in Section 4 we have to

normalise the weights to sum 1, i.e., if ( )is  is the vector of scores for

criterion i and iw  is the weights for criterion i as obtained above, then

the overall scores are:

( ) .,1

1
∑
=

∑==
m

i
w

i
i i

Wsw
W

s

6. Summary of the Model

6.1. Criterion teams

Given a criterion team scoring options with respect to a given
criterion we have:

(1) Each decision maker uses the same underlying objective scale
when making pairwise comparisons and the comparisons are reported as
category differences from the category scale. Hence each decision maker

produces a decision matrix in .n∑

(2) Each decision maker has an influence weight that reflects his/her
relative influence on the decisions. These weights can be considered as a
means of trading off stated levels of relative desirability of the options
between decision makers with respect to that criterion.
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(3) The option scores derived from the decision matrices of each
decision maker are characterised by the above axioms.

(4) Axiom Sc2 tells us that we can aggregate across the normalised
weighted decision matrices to get a criterion team decision matrix and
then score that to get the criterion decision or we can score each of the
decision matrices of the team members and then aggregate the scores
using the same normalized weights to get the same criterion decision.

(5) The above methodology gives an automatic normalization of the
scores, whether team member scores or criterion scores.

(6) We make the point here that all of the difficulties found in the use
of other methodologies which use pairwise comparisons, see e.g., [7, 8],
are due to the fact that aggregation and the somewhat arbitrary
normalization methods used do not commute. But this is in fact due to
the failure to use well founded scales for comparisons, as once this is done

the model is driven forward in the direction given by this paper. See [14].

6.2. Aggregating over criteria

(7) If all the criterion teams have done their work and produced
criterion decisions, then we can aggregate these across the criteria using
the relative weights of the criteria. We can regard these weights as once
again giving trades off between the criteria in terms of relative
desirability in meeting the objective. Hence we obtain overall scores for
the options.

(8) The above complete methodology from the use of objective scales
for options, through the axiomatic scoring and aggregation processes to
the overall normalized score satisfies all the basic requirements of such
models.

6.3. Policy and the effect of policy changes

(9) There is now a clear model for the effect of policy changes on the
scoring of options - as long as these policy changes are derived from
changes in the weights of the criteria which in turn are given by changes
in the decision matrices. Policy is seen, at the basic structural unit of the
hierarchy, as a set of weights which are normalised to product 1. Thus
the natural setting for policy is the Lie group
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( ) ....,,1,0,1:...,,
1

1












=>== ∏
=

n

i
iin nixxxxG

We examine this model of policy and policy change in a subsequent
paper.

References

[1] J. A. Algie and W. H. Foster, The Priority Decision System, Work Sciences

Associates, London, 1984.

[2] J. A. Algie and W. H. Foster, Joint finance and planning using a fresh approach,

J. Royal Society of Health 106(4) (1986).

[3] K. J. Arrow, Social Values and Individual Choice, Yale University Press, 1963.

[4] J. Barzilai and W. D. Golani, An axiomatic framework for aggregating weights and

weight-ratio matrices, Proceedings of the 2nd Int. Symp. on the AHP, Pittsburgh,

Penn., 1991, pp. 59-70.

[5] J. Barzilai, W. D. Cook and B. Golani, Consistent weights for judgement matrices of

the relative importance of alternatives, Oper. Res. Lett. 6 (1987), 131-134.

[6] V. Belton, A comparison of the analytic hierarchy process and a simple multi-

attribute function, European J. Oper. Res. 26 (1986), 7-21.

[7] V. Belton and A. E. Gear, On a shortcoming of Saaty’s method of analytical

hierarchies, Omega 11 (1983), 227-230.

[8] V. Belton and A. E. Gear, The legitimacy of rank reversal - a comment, Omega 13

(1985), 143-144.

[9] H. A. David, The Method of Paired Comparisons, Griffin, London, 1963.

[10] J. S. Dyer, Remarks on the analytic hierarchy process, Management Science 36

(1990), 249-258.

[11] G. T. Fechner, Elements of Psychophysics, Transl. by Helmut E. Adler, Holt

Reinhart and Winston, New York, 1966.

[12] W. H. Foster, Modelling multicriteria problems using pairwise comparisons,

Department of Mathematics and Statistics, Brunel University, Technical Report,

1997.

[13] W. H. Foster, Scales, consistency and scoring in pairwise comparisons, Department

of Mathematics and Statistics, Brunel University, Technical Report, 1997.

[14] W. H. Foster and A. Al-Dubaibi, Normalization and interlevel consistency,

Department of Mathematics and Statistics, Brunel University, Technical Report,

1995.

[15] W. H. Foster and J. A. Algie, The Technical Basis of the Priority Decision System,

Work Sciences Associates, London, 1984.



w
w

w
.p

ph
m

j.c
om

AN AXIOMATIC MODEL FOR MCDM … 191

[16] S. French, Decision Theory, Ellis Horwood, 1986.

[17] F. A. Lootsma, Scale Sensitivity in the Multiplicative AHP and SMART, Report 93-

37, Faculty TWI, Delft University of Technology, Delft, The Netherlands, 1993.

[18] F. A. Lootsma, Context-related Scaling of Human Judgement in the Multiplicative

AHP, SMART and ELECTRE, Report 93-38, Faculty TWI, Delft University of

Technology, Delft, The Netherlands, 1993.

[19] Th. L. Saaty, The Analytic Hierarchy Process, McGraw-Hill, New York, 1980.

[20] Th. L. Saaty and L. Vargas, Inconsistency and rank preservation, J. Math. Psych. 28

(1984), 205-214.

[21] S. S. Stevens, On the psychophysical law, Psychological Review 64 (1957), 153-181.

Department of Mathematical Sciences
Brunel University
Uxbridge, UB8 3PH, U. K.
e-mail: william.foster@brunel.ac.uk

Department of Mathematics, College of Basic Education
P. O. Box 34053, Audiuilia 73251, Kuwait
e-mail: aishah_aldubaibi@hotmail.com

aishah@paaetms.edu.kw


