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Abstract

This paper is concerned with the nonlinear neutral delay difference
equation with positive and negative coefficients

A[x(n) + R(n)x(n — m)]

+p(n) f(x(n —k)) —q(n) f(x(n - £)) =0, n=ng, (*)
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where A is the forward difference operator defined by
Ax(n) = x(n +1) - x(n).
Sufficient conditions are obtained under which for every solution of
equation (*) is bounded and tends to a constant as n — oo.

1. Introduction

Consider the following nonlinear neutral delay difference equation with
positive and negative coefficients:

A[x(n) + R(n)x(n — m)]

+p(n) f(x(n —k)) —q(n) f(x(n-£)) =0, n=n, 1

where {p(n)} and {q(n)} are sequences of nonnegative real numbers,
f e C(R, R), {R(n)} is a sequence of real numbers, k, ¢/, m are positive
integers, ng is a nonnegative integer and N(ng) = {ng, ng +1, ...}. We note
that when f(x) = x, equation (1) reduces to the linear difference equation
A[x(n) + R(n)x(n = m)]+ p(n)x(n —k)—qg(n)x(n—=¢)=0, ne N(ny). (2)
The asymptotic behavior of solutions of (2) or its special case of
q(n) = 0 has been studied by many authors see, for e.g., [6, 13]. In [10], it is
proved that if R(n)=0, g, =0, {p(n)} is a positive sequence and k is a
n 0
positive integer such that lim sup >  p(i)<1 and >  p(n) = oo, then
=% j=n—k n=ng
every solution of equation (2) tends to zero as n — c. While in [9], the
authors studied equation (2) with R(n)=r, |r|<1 {p(n)} is a positive
sequence and m, k are positive integers such that

. pnem+k)) & -
nI|_r)noosup |M|(1+Wj+-zkp(l) <2 and Zp(n)zoo,

then every solution of equation (2) tends to zero as n — oo.
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The purpose of this paper is to derive sufficient conditions under which
every solution of equation (1) is bounded and tends to a constant as n — co.

Let p = max{m, k, /}. By a solution of equation (1), we mean a sequence
{x(n)} of real numbers which is defined for n>ny —p and satisfies
equation (1) for n > ng. It is easy to see that for any given ng and initial
conditions of the form x(ng+ j)=b;, j=-p,—p+1 —-p+2..,0.
Equation (1) has a unique solution {x(n)} which is defined for n > ng —p

and satisfies the above initial conditions.

As it is customary, a solution of (1) is said to be nonoscillatory, if it is
eventually positive or eventually negative. Otherwise, it will be called
oscillatory.

In what follows, for the sake of convenience, when we write a sequence
inequality without specifying its domain of validity, we mean that it holds for
all sufficiently large n.

2. Main Results

Theorem 2.1. Assume that the following conditions hold:

(Al) k > ¢; there is a constant M > 0 such that

x| <] f(x)] < M|x]|for x e R, and xf(x)>0, for xe R, x=0, (3)

(A2)
tim sup[R(n)| = u <1, 4)
(A3)
H(n)=p(n)—q(n+¢—-k)>0forn>m =ng +k -, ()
(Ad)
n—(-1
Jim sup Y ali+0) < ©

i=n-k
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(AS)
n+k n
I|m sup{z H(|+k)+ﬂ((nii)) Z H(i + 2k)
i=n—k i=n—-k+1
1 H(n+ m+ k) "& ’ 7
+H( +W)+|qu +0)] < ()

then every solution of (1) is bounded.

Proof. Let {x(n)} be any solution of (1). We shall prove that {x(n)} is
bounded. For this purpose, we can rewrite (1) in the form

n-¢-1
[x(n)+ R(n)x(n — m) — Z H(i+ k) F(x(@) - Y q(wf)f(x@))}

i=n—k i=n—k
+H((M+k)f(x(n))=0, n=>ng. (8)

From (4) and (7), we can choose ¢ > 0 sufficiently small such that
p+e<land

n+k
nli_r)noosup{ 3 HG+k)+ ﬂ((rr‘]i% Z H (i + 2K)

i=n—k i=n—k+1
)| ®

also we select ny > ng sufficiently large such that
|R(N)|<p+e for n>ny; (10)
and noting (Al), we have

IR()|x2(n—m) < (u+¢) F2(x(n—m)), n=ny. (11)
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Now we introduce the three sequences as

n-1
Wi (n) = {x(n) +R(n)x(n—m) - Z H(@i + k) f(x(i))
i=n—k
n—/-1 2
— q(i + ¢) f (x(i))} ,
i=n—k
n-1 n-1
Wa(n) = > H(i+2k)) ai+0)FA(x(i)),
i=n—k j=i
n-1 n-1
Wa(n) = > H(i+2k)D H(j+k)F2(x(j)
i=n—k j=i

n-1
+(p+e) D HE+m+k)FA(x(), nxnp.

i=n-m

Calculating AW;(n), AW5(n) and AWz(n), we have

n-1
AW;(n) = AHx(n) +R(n)x(n—=m) - Z H(i + k) f(x(i))

i=n-k

n—/-1

2
=Y i) f(x(i))} }

i=n-k

n-1
= A{x(n) +RMX(N=m)= > H(i+k)F(x()

i=n—-k

n—-/-1

- Y a0 f(x(i))]

i=n-k

49
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n

X(n+1)+ RO +Dx(n+1-m)— > H(i+k)F(x(i))

i=n+1-k

_ nz_g q(i + ¢) f(x(i)) + x(n) + R(n)x(n — m)

i=n—-k+1
n—1 n—-¢-1

= D HE+RF) - Y ali+ o) F(x(D)
i=n—k i=n-k

< —H(n + k)| 2x(n) f (x(n)) = R(n) [x*(n — m) = | R(n) |  2(x(n))

n-1
Z H(i + k) f2(x(i)) - Z H(i + k) f2(x(n))
i=n-k i=n-k
n-¢-1 n-¢-1
= D g+ 02 - D ali+ 1) FA(x(n))
i=n-k i=n-k

= —H(n+k)| 2x(n) f (x(n)) - | R(n)|x*(n —=m) = | R(n)|  2(x(n))

>
|_\

%M

H(i+k) f2(x(i)) - Z H(i +k) f2(x(n))

i=n—k i=n—k

~

-1 n-/-1

ali+ ) F2(x(@) - Y. ali+0) fF2(x(n)|, (12)

-k i=n-k

n-—

I

AW,(n) = q(n + £) £ 2(x(n)) i H (i + 2K)
i=n—k+1

- H(n+k) Z q(i + ¢) £2(x(i))

i=n-k
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n

<gn+0)F2(x(m) > H(i+2k)

i=n-k+1

n-1-1

—HM+k) D" ali+0) FA(x(0), (13)

i=n-k

AW5(n) = H(n + k) £ 2(x(n)) Zn: H(i + 2k)

i=n—-k+1

~H(n+k) ni H(i + k) f 2(x(i))

i=n-k
+(u+e)HM+m+k) F2(x(n)—(u+e)H(n+k) f2(x(n—m)).
(14)

Set W(n) =Wy (n) +W,(n)+Wz(n), n > n;. By (12)-(14) and (A1), we
get

AW(n) = AW]_ + AWZ + AW3

n+k

<=Hn+ k)| 2x(m) F(x(n) = D H(i+k) F2(x(n)

i=n-k

n

q(i + £) £2(x(n)) - g((rr‘]i f()) 20n) Y H(+2k)

i=n-k+1

n-/-1

i=n-k

(a9 F20m) H AR v-0) ()

n+k

S—H(n+k)f2(x(n)){%—{ 3" H(i+k)

i=n-k
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A (UROF Z H (i + 2k)

H(n+k)| n—-k+1
&t H(n+m+k)
+ i:;k qi +0)+ (u+ s)(1+ Wj , (15)

which together with (7) implies
D HM+K) F2(x() < o (16)
n=m
and hence for any positive integer s we have
lim Z H(i + k) f2(x(i)) = 0. (17)
I n-s
Noting (7), there is a sufficiently large positive integer ng > n, such that
a(n+7) Z H(|+2k)<—H(n+k) for n > n3 (18)
i=n—k+1
and thus for n > ng + k we have
q(j +1) Z H(|+2k)<—H(J+k) (19)
i=j-k+1

where j=n-k,n—-k+1, .., n—1. Therefore, we have

Hn+k)+H(h-k+1)+--+H(+2k -1)g(n+ ¢ -1)
<£H(n+k—1)
M )
hence for n > n3 + k we have

W, (n) = H(n + k)q(n -k +1)f2(x(n—k))+[H(n+k)+ H(n+k +1)]
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qin—k + £ +1) F2(x(n — Kk +1)) + ---
n-1

<o D H(+ k) FA(x(0)), (20)

i=n-k

N

n-1 n-1

H(i +2k) D H(j + k) F2(x())

W3(n) =
i=n—k j=i

+(n+e) ni H(i +m + k) f2(x(i))

i=n-m

]

-1 n-1
< ﬁj LR ) £20(j)) + 2i_;kH(i PP, (20)

Il
>

(20) and (21) together with (17) imply lim W,(n) =0 and lim W3(n) = 0.
n—oo n—oo

On the other hand, by (7) and (15), we see that W(n) is eventually

decreasing. In view of W(n) >0, lim W(n) =y exists and is finite, thus,
nN—o0

lim W(n) = lim Wy(n) =y, thatis
n—o0

n-1
lim {x(n) +R(n)x(n —m) - H(i + k) f(x(i))
N— 00| i~k
n—-1 2
- qi +0) f (X(i))} = 7. (22)
i=n-k

Let

n-1
z(n) = x(n) + R(n)x(n —m) — Z H(i + k) f(x(i))

i=n-k

n—{-1

- Dl + ) F(x().

i=n-k
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Then
Az(n)+ H(n+ k) f(x(n))=0, n=>n, (23)

and
lim z2(n) =y,
Nn—o0
thatis lim|z(n)|= /7.
n—o

We claim that {z(n)} converges. In fact, this is clear if y = 0. If y > 0,

then it suffices to show that {z(n)} is eventually positive or eventually
negative. Otherwise, choose a number 0 < g < \ﬁ and let N be a positive
integer such that

Jy e <|zn)| <y +&, n>=N, (24)

and let A={n>N:z(n)<0}, B={n>N, z(n)>0}. Since {z(n)} is
neither eventually positive nor eventually negative, it follows that A and B
are unbounded; then there exists a divergent sequence of integers {nj} such

that N <m <np <--<nj<--,njeknj+1leA Then z(nj +1)<0

and z(n;) > 0. Furthermore, by (24),

2=y —&1) < z(nj +1) = z(nj) < A=y + ), j=1.
Therefore, in view of (23),
0<2(y—g)<HMj+k) f(x(nj) <2y +&), j=1  (25)
On the other hand, by (16) and (25), we see that {f(x(n;))} converges to
zero. Noting that {H(n)} is bounded, we get H(n; + k) f(x(nj)) - 0 as
j = o which contradicts (25). Thus {z(n)} must converge. So,
n-1

nli_r)noO z(n) = nIi_r)noo x(n) + R(n)x(n —m) — Z H(i + k) f(x(i))

i=n-k
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n—¢{-1

= D A+ 0f(x() | =5, (26)

i=n-k

where = ﬁ or B = —/y and is finite. In view of (23), we have

n-1
H(i + k) f(x(i)) = z(n — k) — z(n),
i=n-k
SO,
n-1
lim H(i + k) f(x(i)) = 0. 27
n—éwi:n_k
By (26) and (27), we have
n—¢-1
lim | x(n) + R()x(n—=m) = > q(i +¢) f(x(D) | = B. (28)
N—> 0| ion—k

Next, we shall show that {| x(n)|} is bounded. If {| x(n)|} is unbounded, then
there exists a divergent sequence of integers {nj} such that | x(nj)|— o as

j = o, and

| x(nj)[=sup [x(n)]. (29)

ng—p<n<n;j

Noting (6) and (29), we have

nj—é—l
x(nj) +R(nj)x(nj —m) - Z q(i+£)f(x(i))‘
i:nj—k
nj—¢-1
>|x(nj)|[1(u+s)M Z q(i+€)}—>ooasj—>oo
i=nj—k

which contradicts (28). So { x(n) |} is bounded. The proof of Theorem 2.1 is

complete. O
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Theorem 2.2. Let (Al), (4) and (5) hold. Assume that R(n) >0 or

R(n) < 0 for sufficiently large n and

lim|R(n)|=pn <1 (30)
and
n—-/-1
nl@wi;kq(i +0)=0, (31)
lim su nil‘: H(i+ k) + 2040 Zn: H(i + 2k)
N i=n—k Hin+k) &
W(H%)]ﬁ @)

Then every solution of (1) tends to a constant as n — <.

Proof. Let {x(n)} be any solution of (1). From the proof of Theorem 2.1,
we know that { x(n)|} is bounded and (28) holds. Now we shall prove that

lim x(n) exists and is finite. Noting condition (31), we obtain
n—oo

n—(-1 n—(-1
0<| Y qli+0)fxi)|< Y ali+0] f(x(0)
i=n—k i=n-k

n-/-1
<M Z q(i + )| x(i)] > 0asn—
i=n-k

which together with (28) gives

[x(n) + R(n)x(n — m)] = B. (33)

lim
n—oo

If w=0, then lim x(n) =B which is finite.

n—oo
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If 0 <p <1, thenwe let
lim supx(n) =uy, lim infx(n) = u,
Nn—c0 N—o0

and let {a;} and {b;} be two sequences such that a; — o, bj & © as i — «
and

lim x(a) =ug, lim x(bj) = uy,

1—00 |—0

for n > n3, we have the following two cases:
Case (i). If 0 < R(n) <1 for n > n3, then we have

y = lim x(aj) = i'l)"(jo[x(ai) — R(aj)x(a; — m) + R(a)x(a; —m)]

=B +p lim x(aj —m) < B+ puyy
|—>0
and

up = lim x(by) = i'l)"go[x(bi)— R(bj ) (b —m) + R(b;) x(b; — m)]

=B+ p lim x(bj —m) > B + uu,.
|—o0

Thus u; < 113“ < u,, which together with u; >u, implies u; =u, =
p

———. This shows that lim x(n) exists and is finite.
1-p n—>o0

Case (ii). If -1 < R(n) < 0 for n > n3, then we have

B = lim [x(a)) — R(aj)x(a —m)] = uy +p lim x(& —m) > vy + puip
and

B = lim [x(b;) - R(bi)x(b —m)] = up + lim x(b —m) < uy + puy.
Thus 0<u; —uy <p(u; —Uy), so that u; =up = % This shows that

lim x(n) exists and is finite. The proof of Theorem 2.2 is complete. O
n—o
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Theorem 2.3. Assume that the conditions of Theorem 2.2 imply that
every oscillatory solution of (1) tends to zero as n — .

In Theorem 2.2, taking f(x) = x we have

Corollary 2.1. Assume that k > ¢, (5) and (31) hold and

n+k n
nli_r)r;sup{ > Hi +k)+% 3 H(+2)
i=n-k i=n-k+1
+ p(l + %Wﬂ < 2. (34)

Then every solution of equation (2) tends to a constant as n — oo.
In Theorem 2.2, taking q(n) = 0 and f(x) = x, we have

Corollary 2.2. Assume that k is a non-negative integer and {p(n)} is a
positive sequence and
A p(n +m + k)
lim su i+ k)+ (1+—) < 2.
n—ow p{ Z P J+H p(n +k) }
i=n-k

Then every solution of the equation

A[x(n) + R(n)x(n —m)]+ p(n)x(n—k)=0, n > ng,
tends to a constant as n — oo.

Theorem 2.4. The conditions in Theorem 2.2 together with

(i) for any o > 0 there exists 6 > 0 such that

| f(x)| =8 for | x|>a (35)
and
(ii)
D H(m) = (36)
n=ng

imply that every solution of (1) tends to zero as n — .
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Proof. By Theorem 2.3, we only have to prove that every nonoscillatory
solution of (1) tends to zero as n — oo. Let {x(n)} be an eventually positive

solution of (1). We shall prove that lim x(n)=0. By Theorem 2.1, we

n—o0
rewrite (1) in the form (23). Summing from ng to n on both sides of (23), we
get

Zn: H( + k) f(x(i)) = z(ng) — z(n +1)

i:no
by using (26) we have > H(i + k) f(x(i)) < o, which together with (36),
i=n0

yields lim inf f(x(n)) = 0. We claim that
n—oo

lim inf x(n) = 0. (37)

n—oo

Let {sy,} be such that s;; =0 as m — oo and lim f(x(sy)) =0.
nN—o0

Then we must have lim inf(x(sy,)) = M = 0. In fact, if M > 0, then there
n—oo

is a subsequence {s, } such that x(sy, ) > M/2 for sufficiently large k. By
(35), we have f(x(smk )) > ¢ for some ¢ > 0 and sufficiently large k, which

yields a contradiction because I(Iim inf f(x(sm, ) =0. Therefore, by
—0

Theorem 2.2, lim x(n) exists and hence lim x(n) = 0. Thus, the proof is
nN—o0 n—oo

complete. 0O

3. Example

AP@+%#am4ﬁ{(Zﬁ}pmMmmomm—a

—iz[l+sin2x(n—1)]x(n—1):0, n>2, (38)
n

here p(n):%, q(n):iz, R(n) n—_l, m=1 k=2, ¢=1hy
(n-1) n 6n
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simple calculation, p = lim |R(n)| = % <1,
n—oo

|x| <] (2+sin?x)x| <2 x|, x*@+sin?x)>0 (x = 0).

The above equation satisfies all the conditions of Theorems 2.1 and 2.2.
Therefore, every solution of (38) is bounded and tends to a constant as
n — oo.

[1]

(2]

(3]

[4]

(5]

(6]

[7]

(8]

(9]

[10]

(11]

[12]

References

L. H. Erbe and B. G. Zhang, Oscillation of discrete analogues of delay equation,
Differ. Integral Equ. 2(3) (1989), 300-309.

X. H. Tang and J. S. Yu, Oscillations of delay difference equations, Comput.
Math. Appl. 37(7) (1999), 11-20.

X. H. Tang and J. S. Yu, Oscillations of delay difference equations in a critical
state, Appl. Math. Lett. 13 (2000), 9-15.

Basak Karpuz, Some oscillation and nonoscillation criteria for neutral delay
difference equations with positive and negative coefficients, Comput. Math. Appl.
57(4) (2009), 633-642.

G. Ladas, Explicit condition for the oscillation of difference equations, J. Math.
Anal. Appl. 153 (1990), 276-286.

I. Gydri and M. Pituk, Asymptotic formulae for the solutions of a linear delay
difference equations, J. Math. Anal. Appl. 195 (1995), 376-392.

S. A. Levin and R. M. May, A note on difference delay equations, Theor. Popul.
Biol. 9 (1976), 178-187.

J. S. Yu, Asymptotic stability for a linear difference equation with variable delay,
Comput. Math. Appl. 36(10-12) (1998), 203-210.

J. S. Yu and S. S. Cheng, A stability criterion for a neutral difference equation
with delay, Appl. Math. Lett. 7(6) (1994), 75-80.

G. Ladas, C. Qian, P. N. Vlahos and J. Yan, Stability of solutions of linear
nonautonomous difference equations, Appl. Anal. 41 (1991), 183-191.

V. L. Kocic and G. Ladas, Global attractivity of neutral difference equations,
Proc. Amer. Math. Soc. 115 (1992), 1083-1088.

Z. Zhou, J. S. Yu and Z. C. Wong, Global attractivity in nonlinear delay
difference equations, Comput. Math. Appl. 36(6) (1998), 1-10.



[13]

[14]

[15]

Asymptotic Behavior of Solutions of Nonlinear Neutral Delay ... 61
Ming-Po Chen and B. Liu, Asymptotic behaviour of solutions of first order
nonlinear delay difference equations, Comput. Math. Appl. 32(4) (1996), 9-13.

W. G. Kelly and A. C. Peterson, Difference Equations: An Introduction with
Applications, Academic Press, New York, 1991.

P. R. Agarwal, Difference Equations and Inequalities: Theory, Methods and
Applications, Marcel Dekker, New York, 1992.



