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Abstract 

This paper is concerned with the nonlinear neutral delay difference 
equation with positive and negative coefficients 

( ) ( ) ( )[ ]mnxnRnx −+Δ  

( ) ( )( ) ( ) ( )( ) ,,0 0nnnxfnqknxfnp ≥=−−−+  (∗) 
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where Δ is the forward difference operator defined by 

( ) ( ) ( ).1 nxnxnx −+=Δ  

Sufficient conditions are obtained under which for every solution of 
equation (∗) is bounded and tends to a constant as .∞→n  

1. Introduction 

Consider the following nonlinear neutral delay difference equation with 
positive and negative coefficients: 

( ) ( ) ( )[ ]mnxnRnx −+Δ  

( ) ( )( ) ( ) ( )( ) ,,0 0nnnxfnqknxfnp ≥=−−−+  (1) 

where ( ){ }np  and ( ){ }nq  are sequences of nonnegative real numbers, 

( ),, RRCf ∈  ( ){ }nR  is a sequence of real numbers, mk ,,  are positive 

integers, 0n  is a nonnegative integer and ( ) { }....,1, 000 += nnnN  We note 

that when ( ) ,xxf =  equation (1) reduces to the linear difference equation 

( ) ( ) ( )[ ] ( ) ( ) ( ) ( ) ( ).,0 0nNnnxnqknxnpmnxnRnx ∈=−−−+−+Δ  (2) 

The asymptotic behavior of solutions of (2) or its special case of 
( ) 0≡nq  has been studied by many authors see, for e.g., [6, 13]. In [10], it is 

proved that if ( ) ( ){ }npqnR n ,0,0 ==  is a positive sequence and k is a 

positive integer such that ( )∑
−=∞→

<
n

knin
ip 1suplim  and ( )∑

∞

=
∞=

0

,
nn

np  then 

every solution of equation (2) tends to zero as .∞→n  While in [9], the 
authors studied equation (2) with ( ) ,rnR ≡  ,1<r  ( ){ }np  is a positive 

sequence and m, k are positive integers such that 

( )
( ) ( ) 21suplim <

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+⎟
⎠
⎞⎜

⎝
⎛

+
+++μ ∑

+

−=
∞→

kn

knin
ipknp

kmnp   and  ( )∑
∞

=
∞=

0

,
nn

np  

then every solution of equation (2) tends to zero as .∞→n  
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The purpose of this paper is to derive sufficient conditions under which 
every solution of equation (1) is bounded and tends to a constant as .∞→n  
Let { }.,,max km=ρ  By a solution of equation (1), we mean a sequence 

( ){ }nx  of real numbers which is defined for ρ−≥ 0nn  and satisfies 

equation (1) for .0nn ≥  It is easy to see that for any given 0n  and initial 

conditions of the form ( ) ,0 jbjnx =+  .0...,,2,1, +ρ−+ρ−ρ−=j  

Equation (1) has a unique solution ( ){ }nx  which is defined for ρ−≥ 0nn  

and satisfies the above initial conditions. 

As it is customary, a solution of (1) is said to be nonoscillatory, if it is 
eventually positive or eventually negative. Otherwise, it will be called 
oscillatory. 

In what follows, for the sake of convenience, when we write a sequence 
inequality without specifying its domain of validity, we mean that it holds for 
all sufficiently large n. 

2. Main Results 

Theorem 2.1. Assume that the following conditions hold: 

(A1) ;>k  there is a constant 0>M  such that 

( ) xMxfx ≤≤  for ,Rx ∈  and ( ) ,0>xxf  for ,0, ≠∈ xRx  (3) 

(A2) 

 ( ) ,1suplim <μ=
∞→

nR
n

 (4) 

(A3) 

 ( ) ( ) ( ) 0>−+−= knqnpnH  for ,01 −+=≥ knnn  (5) 

(A4) 

 ( ) ,1suplim
1

∑
−−

−=
∞→

<+
n

knin Miq  (6) 



S. Pandian and Y. Balachandran 48 

(A5) 

( ) ( )
( ) ( )

⎢
⎢
⎣

⎡
+

+
+++∑ ∑

+

−= +−=
∞→

kn

kni

n

knin
kiHknH

nqkiH
1

2suplim  

( )
( ) ( ) ,21

1

MiqknH
kmnH n

kni
<

⎥
⎥
⎦

⎤
++⎟

⎠
⎞⎜

⎝
⎛

+
+++μ+ ∑

−−

−=
 (7) 

then every solution of (1) is bounded. 

Proof. Let ( ){ }nx  be any solution of (1). We shall prove that ( ){ }nx  is 

bounded. For this purpose, we can rewrite (1) in the form 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−+−−+Δ ∑ ∑

−

−=

−−

−=

1 1n

kni

n

kni
ixfiqixfkiHmnxnRnx  

( ) ( )( ) .,0 0nnnxfknH ≥=++  (8) 

From (4) and (7), we can choose 0>ε  sufficiently small such that 
1<ε+μ  and 

( ) ( )
( ) ( )

⎢
⎢
⎣

⎡
+

+
+++∑ ∑

+

−= +−=
∞→

kn

kni

n

knin
kiHknH

nqkiH
1

2suplim  

( ) ( )
( ) ,21 MknH

kmnH <
⎥
⎥
⎦

⎤
⎥⎦
⎤

⎢⎣
⎡

+
+++ε+μ+  (9) 

also we select 01 nn >  sufficiently large such that 

 ( ) ε+μ≤nR  for ;1nn >  (10) 

and noting (A1), we have 

 ( ) ( ) ( ) ( )( ) ., 1
22 nnmnxfmnxnR ≥−ε+μ≤−  (11) 
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Now we introduce the three sequences as 

( ) ( ) ( ) ( ) ( ) ( )( )
⎢
⎢
⎣

⎡
+−−+= ∑

−

−=

1

1

n

kni
ixfkiHmnxnRnxnW  

( ) ( )( ) ,
21

⎥
⎥
⎦

⎤
+− ∑

−−

−=

n

kni
ixfiq  

( ) ( ) ( ) ( )( ),2
1 1

2
2 ∑ ∑

−

−=

−

=
++=

n

kni

n

ij
jxfjqkiHnW  

( ) ( ) ( ) ( )( )∑ ∑
−

−=

−

=
++=

1 1
2

3 2
n

kni

n

ij
jxfkjHkiHnW  

( ) ( ) ( )( ) .,
1

2
2∑

−

−=
≥++ε+μ+

n

mni
nnixfkmiH  

Calculating ( ) ( )nWnW 21 , ΔΔ  and ( ),3 nWΔ  we have 

( ) ( ) ( ) ( ) ( ) ( )( )
⎢
⎢
⎣

⎡

⎪⎩

⎪
⎨
⎧

+−−+Δ=Δ ∑
−

−=

1

1

n

kni
ixfkiHmnxnRnxnW  

( ) ( )( )
⎥
⎥

⎦

⎤

⎪⎭

⎪
⎬
⎫

+− ∑
−−

−=

21n

kni
ixfiq  

( ) ( ) ( ) ( ) ( )( )
⎢
⎢
⎣

⎡
+−−+Δ= ∑

−

−=

1n

kni
ixfkiHmnxnRnx  

( ) ( )( )
⎥
⎥
⎦

⎤
+− ∑

−−

−=

1n

kni
ixfiq  
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( ) ( ) ( ) ( ) ( )( )
⎢
⎢
⎣

⎡
+−−++++ ∑

−+=

n

kni
ixfkiHmnxnRnx

1
111  

( ) ( )( ) ( ) ( ) ( )∑
−

+−=
−+++−

n

kni
mnxnRnxixfiq

1
 

( ) ( )( ) ( ) ( )( )
⎥
⎥
⎦

⎤
+−+− ∑ ∑

−

−=

−−

−=

1 1n

kni

n

kni
ixfiqixfkiH  

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )
⎢
⎢
⎣

⎡
−−−+−≤ nxfnRmnxnRnxfnxknH 222  

( ) ( )( ) ( ) ( )( )∑ ∑
−

−= −=
+−+−

1
22

n

kni

n

kni
nxfkiHixfkiH  

( ) ( )( ) ( ) ( )( )
⎥
⎥
⎦

⎤
+−+− ∑ ∑

−−

−=

−−

−=

1 1
22

n

kni

n

kni
nxfiqixfiq  

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )
⎢
⎢
⎣

⎡
−−−+−= nxfnRmnxnRnxfnxknH 222  

( ) ( )( ) ( ) ( )( )∑ ∑
−

−= −=
+−+−

1
22

n

kni

n

kni
nxfkiHixfkiH  

( ) ( )( ) ( ) ( )( ) ,
1 1

22

⎥
⎥
⎦

⎤
+−+− ∑ ∑

−−

−=

−−

−=

n

kni

n

kni
nxfiqixfiq  (12) 

( ) ( ) ( )( ) ( )∑
+−=

++=Δ
n

kni
kiHnxfnqnW

1

2
2 2  

( ) ( ) ( )( )∑
−

−=
++−

1
2

n

kni
ixfiqknH  
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( ) ( )( ) ( )∑
+−=

++≤
n

kni
kiHnxfnq

1

2 2  

( ) ( ) ( )( )∑
−−

−=
++−

1
2 ,

ln

kni
ixfiqknH  (13) 

( ) ( ) ( )( ) ( )∑
+−=

++=Δ
n

kni
kiHnxfknHnW

1

2
3 2  

( ) ( ) ( )( )∑
−

−=
++−

1
2

n

kni
ixfkiHknH  

( ) ( ) ( )( ) ( ) ( ) ( )( ).22 mnxfknHnxfkmnH −+ε+μ−++ε+μ+  

 (14) 

Set ( ) ( ) ( ) ( ) ., 1321 nnnWnWnWnW ≥++=  By (12)-(14) and (A1), we 

get 

( ) 321 WWWnW Δ+Δ+Δ=Δ  

( ) ( ) ( )( ) ( ) ( )( )
⎢
⎢
⎣

⎡
+−+−≤ ∑

+

−=

kn

kni
nxfkiHnxfnxknH 22  

( ) ( )( ) ( )
( ) ( )( ) ( )∑ ∑

−−

−= +−=
+

+
+−+−

1

1

22 2
n

kni

n

kni
kiHnxfknH

nqnxfiq  

( ) ( )( ) ( )
( ) ( ) ( )( )

⎥
⎥
⎦

⎤
ε+μ−

+
++ε+μ− nxfknH

kmnHnxf 22  

( ) ( )( ) ( )
⎢
⎢
⎣

⎡

⎢
⎢
⎣

⎡
+−+−≤ ∑

+

−=

kn

kni
kiHMnxfknH 22  
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( )
( ) ( )∑

+−=
+

+
++

n

kni
kiHknH

nq

1
2  

( ) ( ) ( )
( ) ,1

1

⎥
⎥
⎦

⎤

⎥
⎥
⎦

⎤
⎟
⎠
⎞⎜

⎝
⎛

+
+++ε+μ+++ ∑

−−

−=

n

kni
knH

kmnHiq  (15) 

which together with (7) implies 

 ( ) ( )( )∑
∞

=
∞<+

1

2

nn
nxfknH  (16) 

and hence for any positive integer s we have 

( ) ( )( ) .0lim
1

2∑
−

−=
∞→

=+
n

snin
ixfkiH  (17) 

Noting (7), there is a sufficiently large positive integer 23 nn ≥  such that 

( ) ( ) ( )∑
+−=

+<++
n

kni
knHMkiHnq

1

22  for 3nn ≥  (18) 

and thus for knn +≥ 3  we have 

( ) ( ) ( ),221
1

∑
+−=

+<++
j

kji
kjHMkiHjq  (19) 

where .1...,,1, −+−−= nknknj  Therefore, we have 

( ) ( ) ( ) ( )1121 −+−++++−++ nqknHknHknH  

( ),12 −+< knHM  

hence for knn +≥ 3  we have 

( ) ( ) ( ) ( )( ) ( ) ( )[ ]11 2
2 +++++−+−+= knHknHknxfknqknHnW  
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( ) ( )( ) ++−++− 11 2 knxfknq  

( ) ( )( ),2 1
2∑

−

−=
+≤

n

kni
ixfkiHM  (20) 

( ) ( ) ( ) ( )( )∑ ∑
−

−=

−

=
++=

1 1
2

3 2
n

kni

n

ij
jxfkjHkiHnW  

( ) ( ) ( )( )∑
−

−=
++ε+μ+

1
2

n

mni
ixfkmiH  

( ) ( )( ) ( ) ( )( ),22 1 1
22∑ ∑

−

−=

−

−=
+++≤

n

knj

n

kni
ixfkiHjxfkjHM  (21) 

(20) and (21) together with (17) imply ( ) 0lim 2 =
∞→

nW
n

 and ( ) .0lim 3 =
∞→

nW
n

 

On the other hand, by (7) and (15), we see that ( )nW  is eventually 

decreasing. In view of ( ) ,0≥nW  ( ) γ=
∞→

nW
n
lim  exists and is finite, thus, 

( ) ( ) ,limlim 1 γ==
∞→∞→

nWnW
nn

 that is 

( ) ( ) ( ) ( ) ( )( )
⎢
⎢
⎣

⎡
+−−+ ∑

−

−=
∞→

1
lim

n

knin
ixfkiHmnxnRnx  

( ) ( )( ) .
21

γ=
⎥
⎥
⎦

⎤
+− ∑

−−

−=

n

kni
ixfiq  (22) 

Let 

( ) ( ) ( ) ( ) ( ) ( )( )∑
−

−=
+−−+=

1n

kni
ixfkiHmnxnRnxnz  

( ) ( )( ).
1

∑
−−

−=
+−

n

kni
ixfiq  
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Then 

 ( ) ( ) ( )( ) 2,0 nnnxfknHnz ≥=++Δ  (23) 

and 

( ) ,lim 2 γ=
∞→

nz
n

 

that is ( ) .lim γ=
∞→

nz
n

 

We claim that ( ){ }nz  converges. In fact, this is clear if .0=γ  If ,0>γ  

then it suffices to show that ( ){ }nz  is eventually positive or eventually 

negative. Otherwise, choose a number γ<ε< 10  and let N be a positive 

integer such that 

 ( ) ,,11 Nnnz ≥ε+γ<<ε−γ  (24) 

and let ( ){ },0: <≥= nzNnA  ( ){ }.0, >≥= nzNnB  Since ( ){ }nz  is 

neither eventually positive nor eventually negative, it follows that A and B 
are unbounded; then there exists a divergent sequence of integers { }jn  such 

that .1,,21 AnknnnnN jjj ∈+∈<<<<≤  Then ( ) 01 <+jnz  

and ( ) .0>jnz  Furthermore, by (24), 

( ) ( ) ( ) ( ) .1,212 11 ≥ε+γ−<−+<ε−γ− jnznz jj  

Therefore, in view of (23), 

( ) ( ) ( ( )) ( ) .1,220 11 ≥ε+γ<+<ε−γ< jnxfknH jj  (25) 

On the other hand, by (16) and (25), we see that { ( ( ))}jnxf  converges to 

zero. Noting that ( ){ }nH  is bounded, we get ( ) ( ( )) 0→+ jj nxfknH  as 

∞→j  which contradicts (25). Thus ( ){ }nz  must converge. So, 

( ) ( ) ( ) ( ) ( ) ( )( )
⎢
⎢
⎣

⎡
+−−+= ∑

−

−=
∞→∞→

1
limlim

n

kninn
ixfkiHmnxnRnxnz  
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( ) ( )( ) ,
1

β=
⎥
⎥
⎦

⎤
+− ∑

−−

−=

n

kni
ixfiq  (26) 

where γ=β  or γ−=β  and is finite. In view of (23), we have 

( ) ( )( ) ( ) ( )∑
−

−=
−−=+

1
,

n

kni
nzknzixfkiH  

so, 

 ( ) ( )( )∑
−

−=
∞→

=+
1

.0lim
n

knin
ixfkiH  (27) 

By (26) and (27), we have 

 ( ) ( ) ( ) ( ) ( )( ) .lim
1

β=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−−+ ∑

−−

−=
∞→

n

knin
ixfiqmnxnRnx  (28) 

Next, we shall show that ( ){ }nx  is bounded. If ( ){ }nx  is unbounded, then 

there exists a divergent sequence of integers { }jn  such that ( ) ∞→jnx  as 

,∞→j  and 

 ( ) ( ) .sup
0

nxnx
jnnn

j
≤≤ρ−

=  (29) 

Noting (6) and (29), we have 

( ) ( ) ( ) ( ) ( )( )∑
−−

−=
+−−+

1j

j

n

kni
jjj ixfiqmnxnRnx  

( ) ( ) ( ) ∞→
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
+−ε+μ−≥ ∑

−−

−=

1

1
j

j

n

kni
j iqMnx  as ∞→j  

which contradicts (28). So ( ){ }nx  is bounded. The proof of Theorem 2.1 is 

complete.  
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Theorem 2.2. Let (A1), (4) and (5) hold. Assume that ( ) 0≥nR  or 

( ) 0≤nR  for sufficiently large n and 

 ( ) 1lim <μ=
∞→

nR
n

 (30) 

and 

( ) ,0lim
1

∑
−−

−=
∞→

=+
n

knin
iq  (31) 

( ) ( )
( ) ( )∑∑

+−=

+

−=
∞→

+
+
++

⎢
⎢
⎣

⎡
+

n

kni

kn

knin
kiHknH

nqkiH
1

2suplim  

( )
( ) .21 MknH

kmnH <
⎥
⎥
⎦

⎤
⎟
⎠
⎞⎜

⎝
⎛

+
+++μ+  (32) 

Then every solution of (1) tends to a constant as .∞→n  

Proof. Let ( ){ }nx  be any solution of (1). From the proof of Theorem 2.1, 

we know that ( ){ }nx  is bounded and (28) holds. Now we shall prove that 

( )nx
n ∞→
lim  exists and is finite. Noting condition (31), we obtain 

( ) ( )( ) ( ) ( )( )∑∑
−−

−=

−−

−=
+≤+≤

11
0

n

kni

n

kni
ixfiqixfiq  

( ) ( )∑
−−

−=
∞→→+≤

1
as0

n

kni
nixiqM  

which together with (28) gives 

 ( ) ( ) ( )[ ] .lim β=−+
∞→

mnxnRnx
n

 (33) 

If ,0=μ  then ( ) β=
∞→

nx
n
lim  which is finite. 
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If ,10 <μ<  then we let 

( ) ( ) 21 inflim,suplim unxunx
nn

==
∞→∞→

 

and let { }ia  and { }ib  be two sequences such that ∞→∞→ ii ba ,  as ∞→i  

and 

( ) ( ) ,lim,lim 21 ubxuax iiii
==

∞→∞→
 

for ,3nn >  we have the following two cases: 

Case (i). If ( ) 10 << nR  for ,3nn >  then we have 

( ) ( ) ( ) ( ) ( ) ( )[ ]maxaRmaxaRaxaxu iiiiiiii
−+−−==

∞→∞→
limlim1  

( ) 1lim umax i
i

μ+β≤−μ+β=
∞→

 

and 

( ) ( ) ( ) ( ) ( ) ( )[ ]mbxbRmbxbRbxbxu iiiiiiii
−+−−==

∞→∞→
limlim2  

( ) .lim 2umbx ii
μ+β≥−μ+β=

∞→
 

Thus ,1 21 uu ≤
μ−

β≤  which together with 21 uu ≥  implies == 21 uu  

.1 μ−
β  This shows that ( )nx

n ∞→
lim  exists and is finite. 

Case (ii). If ( ) 01 <<− nR  for ,3nn >  then we have 

( ) ( ) ( )[ ] ( ) 211 limlim uumaxumaxaRax iiiiii
μ+≥−μ+=−−=β

∞→∞→
 

and 

( ) ( ) ( )[ ] ( ) .limlim 122 uumbxumbxbRbx iiiiii
μ+≤−+=−−=β

∞→∞→
 

Thus ( ),0 2121 uuuu −μ≤−≤  so that .121 μ+
β== uu  This shows that 

( )nx
n ∞→
lim  exists and is finite. The proof of Theorem 2.2 is complete. ~ 
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Theorem 2.3. Assume that the conditions of Theorem 2.2 imply that 
every oscillatory solution of (1) tends to zero as .∞→n  

In Theorem 2.2, taking ( ) xxf ≡  we have 

Corollary 2.1. Assume that ,>k  (5) and (31) hold and 

( ) ( )
( ) ( )∑∑

+−=

+

−=∞→
+

+
++

⎢
⎢
⎣

⎡
+

n

kni

kn

knin
kiHknH

nqkiH
1

2suplim  

( )
( ) .21 <⎥

⎦

⎤
⎟
⎠
⎞⎜

⎝
⎛

+
+++μ+ knH

kmnH  (34) 

Then every solution of equation (2) tends to a constant as .∞→n  

In Theorem 2.2, taking ( ) 0≡nq  and ( ) ,xxf ≡  we have 

Corollary 2.2. Assume that k is a non-negative integer and ( ){ }np  is a 

positive sequence and 

( ) ( )
( ) .21suplim <

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞⎜

⎝
⎛

+
+++μ++∑

+

−=∞→

kn

knin knp
kmnpkip  

Then every solution of the equation 

( ) ( ) ( )[ ] ( ) ( ) ,,0 0nnknxnpmnxnRnx ≥=−+−+Δ  

tends to a constant as .∞→n  

Theorem 2.4. The conditions in Theorem 2.2 together with 

(i) for any 0>α  there exists 0>δ  such that 

( ) δ≥xf  for α≥x  (35) 

and 

(ii) 

( )∑
∞

=
∞=

0nn
nH  (36) 

imply that every solution of (1) tends to zero as .∞→n  
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Proof. By Theorem 2.3, we only have to prove that every nonoscillatory 
solution of (1) tends to zero as .∞→n  Let ( ){ }nx  be an eventually positive 

solution of (1). We shall prove that ( ) .0lim =
∞→

nx
n

 By Theorem 2.1, we 

rewrite (1) in the form (23). Summing from 0n  to n on both sides of (23), we 
get 

( ) ( )( ) ( ) ( )∑
=

+−=+
n

ni
nznzixfkiH

0

10  

by using (26) we have ( ) ( )( )∑
∞

=
∞<+

0

,
ni

ixfkiH  which together with (36), 

yields ( )( ) .0inflim =
∞→

nxf
n

 We claim that 

 ( ) .0inflim =
∞→

nx
n

 (37) 

Let { }ms  be such that ∞→ms  as ∞→m  and ( )( ) .0lim =
∞→ mn

sxf  

Then we must have ( )( ) .0inflim ==
∞→

Msx m
n

 In fact, if ,0>M  then there 

is a subsequence { }
kms  such that ( ) 2Msx

km ≥  for sufficiently large k. By 

(35), we have ( ( )) ζ≥
kmsxf  for some 0>ζ  and sufficiently large k, which 

yields a contradiction because ( ( )) .0inflim =
∞→ kmk

sxf  Therefore, by 

Theorem 2.2, ( )nx
n ∞→
lim  exists and hence ( ) .0lim =

∞→
nx

n
 Thus, the proof is 

complete. ~ 

3. Example 

( ) ( )
( )

[ ( )] ( )22sin1
1

216
1 2

2 −−+⎥
⎦

⎤
⎢
⎣

⎡

−
+⎥⎦

⎤
⎢⎣
⎡ −−+Δ nxnx

n
nxn

nnx  

[ ( )] ( ) ,2,011sin11 2
2 ≥=−−+− nnxnx

n
 (38) 

here ( )
( )

,
1

2
2−

=
n

np  ( ) ,1
2n

nq =  ( ) ,6
1

n
nnR −=  ,1=m  ,2=k  1=  by 
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simple calculation, ( ) ,16
1lim <==μ

∞→
nR

n
 

( ) ( ) ( ).00sin1,2sin2 222 ≠>+≤+≤ xxxxxxx  

The above equation satisfies all the conditions of Theorems 2.1 and 2.2. 
Therefore, every solution of (38) is bounded and tends to a constant as 

.∞→n  
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