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Abstract

Let p, g, o and B be four real numbers such that p >0, q >0,

a > -1 and B > —1. Let g be a holomorphic function in the unit ball
B, of C". Then g is called a pointwise multiplier from the weighted
Bergman space AP(B,) into the other one A@(Bn) if {fg:f e
Al (B,)} < Al(B,). In the case n=1 Zhao [3] completely
characterized the pointwise multipliers from A?(D) into Af(DD). In

this paper, we prove that his result still holds even in the higher
dimensional case n > 2.
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1. Introduction

Let n >1 be a fixed integer. Let B,, denote the unit ball of C". Let v
denote the normalized Lebesgue measure on B,. For each o € R, we define
a weighted Lebesgue measure v, on B, by dv,(z) = c,(1—|z[*)*dv(z),

_ T(n+a+1)
zeB, Here c, = Tn+ D (a + 1)

or ¢, =1 if a>-1 or a<-1

respectively. H(B,) stands for the space of all holomorphic functions in

B,. The set of all positive real numbers is denoted by R, .

Forany f e H(By), any o € R andany p € R,, we define

1
1 I = Jy 178 ) =11 Iy

The weighted Bergman space AP(B,,) is defined by

AL (Bn)={f e HBn): | f |ap(s,) < =)
As usual, we define
| F e, = ZSEUBF:,| f)| (f e H(B,))
and
H?Bp)={f e HB,): | f ||Hoo(]Bn) < oo},

Let M_(B,) denote the set of all positive Borel measures on B,,. For

neM,(B,), a R and R eR,, we define the function fig , on B, by

u(D(Z, R)) (Z c En)v

ﬁR‘a(Z) = (1_| 7 |2)n+l+a

where D(z, R) is the Bergman metric ball with center at z and radius R (cf.
p. 27 in [5] and p. 71 in [4]).
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For o e R and f € H(B,), we define

| £ 1Ly, 5, = | O]+ supi@—[z ) (VF)(2) [}

zeBy

The Bloch type space 4, (B,,) is defined by

By(By) = {f € H(B,) | f

By (B ) < oo}.

Let {o, B} =R and {p, g} = R,. Then a function g € H(B,,) is called
a pointwise multiplier from AP(B,,) into AS(IBBH) if {fg: feAPB,) c
A (Bp). The set of all pointwise multipliers from AY(By) into AJ(By) is

denoted by (£.4) (AP(B,), Ag(IB%n)). In [3], Zhao proved the following

theorem. Note that D := B, denotes the unit disc in the complex plane C.

Theorem Z ([3, p. 141, Theorem 1]). Let {a, B} = (-1, ) and {p, q}

B+2 a+2

cR,.Puty-= q 0

(i)If p<qandy>0, then (#.4) (AP(D), AS(]ID)) = B1.,(D).
(i) If p<qandy=0, then (#.4) (AP (D), Ag(m))) = H®(D).
(iii) If p < q and y <0, then (#-#) (AL (D), AJ(D)) = {0}.
(iv) If p > q, then (2.4) (A2 (D), Ag(HD)) = AS(D), where s = %
_B_<a
and 6 = s(q p)'

The purpose of this paper is to show that the above Theorem Z remains
valid even if replacing D by B,,. Our main result is the following theorem:
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Theorem 1. Let {a, B} = (-1, ) and {p, q} =« R,. Put y = n+1+p

n+l+a
5

() If p<qgandy>0, then (#.4) (AL(By), Aj(Bp)) = B1,y(By).
(i) If p<qandy=0, then (£.4) (AP (B,), AS(IBSH)) = H”(B,).
(iii) If p<qand y <0, then (#.4) (A (B,). Ag(laan)) = {0}.

(iv) If p>aq, then (#.4) (A7 (By) Af(Bp)) = AS(By), where s =

P4 and 5 = S(E—g).
qa p

2. Preliminaries

Since all the weighted Bergman spaces are F-spaces, by using the closed
graph theorem ([1, Theorem 2.15]), we can easily prove the following
proposition:

Proposition 2. Suppose {a, B} = (-1, ©), {p,q} <R, and g € H(B,).

Then the following two conditions are equivalent:

(i)
g e (M) (AL (By), AS(IB%n))-
(ii)
I fg |
sup ﬂ: f e AP(B,\{0}} < .
I a2 (s,

Proposition 3. Let s € (n, ), a =s—(n+1) and pe R,. Then a €
(-1, ) and



Pointwise Multipliers from A (By) into Aj(By) 161

J | f(w)[* -, (W) [}
B

_ Ly
@-|wp)™ A A

for any f e C(B,) and any z e B,, where ¢, is the involutative

biholomorphic map of B,, that exchanges 0 and z.

Proof. It is clear that o € (-1, «). By Lemma 1.2 of [5] and Proposition
1.13 of [5], forany f € C(B,,) and any z € B,,,

LFW[PL- o, (W o
'[Bn (1_ | W|2)n+1 d (W)

_[ Lt {(1—|z|2><1—|w|2)}sdv(w)

Bo - w)™ 1= (w, 2)[?

|z @-|wp)y "t

—war oW

:.[IB%nl f(w) [P -

_ p(1_|z|2)n+l+a(1_|w|2)(x .
Jo, T e ¥

1 (1 _ | 7 |2)n+1+(x
- QIBnl f(w)|P o o) T dv, (W)

= o[, 11 e 0w Pavg(w)

Gy

1
= — f o p . D
Ca ” 2 ”Lp(Va)

The next lemma is in p. 260 of [5] as Exercise 7.7. For the completeness,
we prove it here.
Lemma 4. For any a € (1, ), it holds that

S (Bp) = {f e H(Bp): sup {1~z |)a_l| f(2)[} < OO}

2B,



162 Yasuo Matsugu and Toshinao Takeshima

Proof. Forany f € H(B,,) andany z € B,,,

1 1
@)~ 1) = | [, e < [ @)

1
IO (1— | tz |2)a| (Vf )(tZ)|(]_— | tz |2)—adt

IA

sup {(1- | w[*) (V) ) @~z Py et

welB,

—(1 |2 sup {(L—|w[*)*(VE)(w)]}

welB,
a-1
< G2 sw e WPy vHe ) @
By (1), we obtain forany f € H(B,),
ol 2(1 -1
s (012 1 < (1 2 1 - @
zeBy,

Conversely, suppose

f e H(By) and sup,g, (1|2 )" f(2)[} <o

Then f e Aé_l(IBSn). The Bergman integral formula (Theorem 2.2 of [5])

thus gives

f(w)
—d B,). 3
=], = wype ) (B ®)
Differentiating inside the integral sign, we have for j € {1, ..., n},

(n+ oc)w f(w)
B, (1 >)n+a+1

(0;)@) = | dve (W) (ZcB,). @)
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By (4), for z € B,,,

(V) (2)]
<n(n+a)c,_q sup { f(w)|L-] W|2)“‘1}I dv(w) . (5
weB, By |1-(z, w)|"reH
By Proposition 1.4.10 of [2],
dv(w) < C

< zeB,), 6
J.Bn |1—<Z, W>|n+0c+1 (1_|Z|2)0L ( n) ( )

where C is a positive constant depending only on o, and n. By (5) and (6),

sup {1121 (V) @)}

< n(n+a)c1C sup { f(w)|(@L—|w[?)* ). @)

weB,

By (7), we have

| f 14,8, < @+ n(n+0)c, 1C) sup 1fw)|a-|wP)* . @®)
weB,
(2) and (8) together show that
#(Bn) = {f < H(By): sup {(L-| 2“7 £ (2) |} < o0}, O
zeB,

3. Proof of Theorem 1 in the Case p < q

Lemma 5. Let o € (-1, ©), {p,q} = R, and u e M_(B,). Suppose

p < g. Then the following two conditions are equivalent:
(i)

f
sup e AP (B, M0} ! < oo.
It 1apce,)
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(ii)

(1 _ | 7 |2)%(n+1+oc)

sup 5 du(w) ¢ < oo.
q
zeB, B |1_ (Z, W) |?(n+1+oc)
Proof. See [4, p. 69], (a) < (b) of Theorem 50. O
Proposition 6. Let {a, B} = (-1, ) and {p, q} = R,. Put y _n+1+p
—M%. Suppose p <. Then for any g € H(B,), the following

inequalities hold:

Cy sup {(@-1z[) g(2) [}

zeBy

q
117 2\—(n+l+a)
<sup [ AEIZDE g favy(w
zeB, By |1 _ <Z, W> |T(n+1+a)

<C,sup {@-|zP) ] 9(2) )%,

2By

where C; and C, are both positive constants depending only on o, B, p, q
and n.

Proof. Put
s=%(n+1+a), ag =B -1y 1)

Then by the assumptions and (1),
se(n o), ag=s-(n+1). (2)

Fix g € H(B,,). Define

G(z)=(1-]21*)9(2)| (z€By). @A)
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Then G € C(B), and so, by (1) ~ (3) and Proposition 3,

1
Lap|ceg,[

a
og zeBy L (VGO)

— sup {(1 E: |2)%(n+1+a)J‘ (1-] W2|2)[3 | g(w) |q dv(W)}

zeB, B, |1 _ <Z, W> |Fq(n+1+a)

_ 2 ﬂ(n+1+a)
—iww“ -]zf)e mMWmmm} @

Cp zeB, | ¥ Bn 11— (z, w) |2—g(n+1+a)

Since vy, (B,) =1, by (3),

sup [Gog, |9, < sup [GwW)[? = sup {@-|wP)|gw)]}?. (5)

q
zeB, L (VO‘O ) weB, wel,

By (4) and (5),

_ 2 g(r1+1+on)
sup {[ (1-]z| )pz : | g(w) |quB(W)}

zeB,, | ¥ Bn |1_ (Z, W> |?q(n+1+a
C
< = sup {2 -]z )" g(2) )", (6)
og zeB,
Conversely, choose any R € R, . By using Lemma 2.24 of [5], we have

G

0@ < o [ [ 9F @B @)

where C, is a positive constant depending only on 3, R and n. By (7),

sup {L—| ") 9(2) [}

zeB

C q
< sup g|'dv
z%ia%Zﬁ”HH“hum|| *
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Gy q
= sup lg| dvg
zeBy (1 _ | 7 |2)%(n+l+a) JD(Z, R)
(1 _ | 7 |2)ﬂ(n+l+oc)
= C, sup j 2p | g(w) |quB(W) . 8)
zeB,, |¥ D(z,R) 1-|z |2)?q(n+1+oc)
By Lemma 2.20 of [5],
29
—(n+l+a)
[1-(z, w)[}P
(W < C2 (Z S ]BH, W e D(Z, R)), (9)

where C, is a positive constant depending only on p, g, o, R and n. By (8)
and (9),

sup {(1—|z )| g(z)}°

zeBy,
(1 _ | 7 |2)%(n+l+a)

< C,C, sup J. 2 | g(w) [*dvg(w)

zeB, D(z,R) |1 _ <Z, W> |?(n+l+(x)
(1 _ | 7 |2)%(n+1+on)

< C,C, sup j - | g(w) [Fdvp (W)} (10)

zeB, By |1 _ <Z, W> |F(n+1+(x)
The assertion of the proposition follows from (6) and (10). O

Proposition 7. Let {a, B} = (-1, »), {p,q} =R, and g € H(B,).

_n+1+B n+l+a

Put vy q 0 . Suppose p < g. Then the following three
conditions are equivalent:
(i)

g € (L A)(AL (Bn), AJ(By)).



Pointwise Multipliers from A (By) into Aj(By) 167
(ii)
q
(1 _ | 7 |2) p(n+1+a)

sup | g(w)|Ydvg(w) < .
zeB, [* Bn 11-(z, w) |2?q(n+1+(x) P

(iii)

sup {(L—|z[*)' g(2) ]} < o0

zeBy

Proof. Define ug € M, (By) by dug =|g|%dvp. Then
I lg) =1 10l A, forall f e H(By).

Hence, the present proposition follows from Proposition 2, Lemma 5 and
Proposition 6. O

Proof of Theorem 1 inthe case p < q

When y > 0, by Lemma 4,

Ay (By) ={g € H(B,) : sup {1—|z|)| 9(z)| < oo} 1)

zeB,

By Proposition 7 and (1), we obtain

(#l) (AL (By), Af(Bn)) = A (By).

When y = 0, by Proposition 7, we obtain

(2 M0) (AD(B,), AL(E,) = {g < H(B,): sup | g(2)] < oo} = H*(B,)

zeBy

When y < 0, itis easily shown that

{g e H(B,): sup {1-|z[)| 9(2)[} < =}

2eBy

={96H(Bn)i‘zfim0|9(2)|=0}={0}- )

—1-
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By Proposition 7 and (2), we obtain
(#-40) (AL (Bp), A (Bp)) = {0}.

The proof of Theorem 1 in the case p < g is now completed.
4. Proof of Theorem 1 in the Case p > q

Lemma 8. Let o € (-1, ), {p,q} < R, and ue M_(B,). Suppose

p > g. Then the following two conditions are equivalent:

(i)

I llagy 0

sups—————: f e A (By)\{0} < .

[T Taps,)

(ii)
P
AR o € LP79(vy) forall R e R,.

Proof. See [4, p. 73], (a) < (c) of Theorem 54. O

Proposition 9. Let {a, B} = (-1, »), {p,q} <R, and g € H(B,).
Define pg e M, (By) by dug =|g|qde. Suppose p > . Then the
following two conditions are equivalent:

0)

g € (M) (AL (Bn), AJ(By)).

(ii)

_p
(ig)r o € LP9(vy) forall R e R,.

Proof. By the definition of p,



Pointwise Multipliers from AP (B,,) into A@(Bn)

169

Iy =1 0l A3, forall f e H(By).

The present proposition thus follows from Proposition 2 and Lemma 8. O

Proposition 10. Let {a, B} < (-1, «) and {p, q} = R,. Suppose p > q.

Puts=—P9_

and 8 = s(%—%). Then for any pair {f, g} < H(B,,),

| fg ”Ag(Bn) < Clf lap @)l 9 Az,

where C is a positive constant depending only on o, B, p, g andn.

Proof. Put
__ Db __Po
Po p—(q v o Py — 1
Then
{Po, do} = (L, ), Ll
p Jo

By the assumptions,

s—q s—q
By (1) ~ 3),

f q
L1

— q
jBn| fg [Ydvg

8

9 _ (B_q?éj;:a.

M)

)

@)

3

p-—— o
“q, 1@ a-12P) " o a- 12" oo

1

5 1%
S%DM%NDWPHFWE}dW4%



170 Yasuo Matsugu and Toshinao Takeshima

1
5 1 Po Po
-[jB Ha@pra-zPy| dv(z)]p

s—q

o[, RS-zt ]|

|2

S

: Um' 9(z) -]z |2)5dv(z)}

[Ke]

S

q
_ CBUBH| f(2)]Pa-|2 |2)“dv(z)}pUBn| 0(2)F(1-|2 |2)5dv(z)}

9 a
= CaC, PCs 5| f | .
This completes the proof. O

Proposition 11. Let {a, B} < (-1, ©) and {p, q, R} c R,. Put s =

P4 and 5= s(% —%). Suppose p > g. Then forany g € H(B,),

s A P
-[Bn [ [dvs < CJBH| (Bg)r, o [Padve,

where dpg = lg |q dvg and C is a positive constant depending only on the

six numbers {a, B, p, 0, R, n}.

Proof. By the definition of (fig)g .

~ _P
j | (Hg )R,a |p—q dvg
By

P
= 1 q P—q
B -[Bn {(1 |z |2)n+1+a J‘D(Z, R)| 9| dvﬁ} dv,(2). (1)




Pointwise Multipliers from A (By) into Aj(By) 171
By Lemma 2.24 of [5], we have

G

lg(2)[" < WL@@' gfdvy  (z e By), )

where C, is a positive constant depending only on §, R and n. By (1) and
),

“ P
J~ | (Hg )R,a | p-gqdvy
By

P

_ 2\n+1+p D—q
. IBH{ e L2l |g<z>|‘*}pqdva<z>

(1 _ | 7 |2)n+1+a

p
s p(B-o) Pq
=, P a-2fy e @ pradva(2)
n

__h
=eaCy POf, @-12f)g()Fdv(z)

P
= ¢,Cy p_chlj | g [*dvs.
]Bn

This completes the proof. O

Proof of Theorem 1 in the case p > q

By Proposition 10,

g e A(By) = g e (LA (AL(B,), A (By)). @
By Proposition 9 and Proposition 11,
g € (P M)A (B,), Al(B,) = g € AS(B,). )

(1) and (2) together show that

('%'//Z)(A(E(Bn)' Ag(Bn)) = Ag(Bn)-

The proof of Theorem 1 is now finished. g
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