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Abstract 

A monomial basis for ( ),nSZ Z  the centre of the symmetric group algebra, 

or ( ),nZ H  the centre of the corresponding Iwahori-Hecke algebra, is a 

basis that consists solely of monomial symmetric polynomials in Jucys-
Murphy elements. In a previous paper, we showed that there are only 
finitely many monomial bases for ( )3SZ Z  and ( ).3HZ  In this paper, we 

prove that there exist infinitely many monomial bases for ( ),4SZ Z  which 

we characterize completely. Using this result, we are able to produce three 
new integral bases for ( ),4HZ  each of which is monomial. Based on 

extensive computer calculations, we conjecture that our list of monomial 
bases for ( )4HZ  is exhaustive. In addition, we provide evidence to 

support the conjectures that the number of monomial bases for ( )5SZ Z  is 

finite, and that no monomial bases exist for ( ).5HZ  
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1. Introduction 

The appearance of symmetric polynomials in Jucys-Murphy elements in the 
context of the centre of the integral group ring of the symmetric group nS  was 

implicit in work of Farahat and Higman [2], long before Jucys [8, 9, 10] and Murphy 
[12] had independently defined the elements that bear their names. Farahat and 
Higman showed that the centre of ,nSZ  which we denote here as ( ),nSZ Z  is 

generated over Z  by sums of permutations of the same cycle type, sums that – once 
the definition of Jucys-Murphy elements is made – can be seen to be elementary 
symmetric polynomials in such elements. Monomial symmetric polynomials in the 
Jucys-Murphy elements have been of interest since Murphy [12] constructed a basis 
for ( )nSZ Z  consisting solely of such elements. One natural question to ask then is 

whether the basis given by Murphy generalizes to ( ),nZ H  the centre of the 

corresponding Iwahori-Hecke algebra. Unfortunately, this generalization fails [1, p. 
64]. But perhaps there are other bases for ( )nSZ Z  consisting solely of monomial 

symmetric polynomials in the Jucys-Murphy elements that do generalize to ( ).nZ H  

Such speculation led us to the investigation contained in this article. We refer to 
any  basis for ( )nSZ Z  or ( )nZ H  that consists solely of monomial symmetric 

polynomials in the Jucys-Murphy elements as a monomial basis. 

In this paper, we describe completely all monomial bases for ( ).4SZ Z  They fall 

into two related infinite families and eight exceptional cases (Theorem 4.5). To do 
this, we obtain explicit expressions for coefficients of the class sums in any 
monomial symmetric polynomial in the Jucys-Murphy elements. This largely 
involves finding and solving recursive relations among monomials, and takes up the 
bulk of this paper (Section 3). These computations have made use of the computer 
algebra package GAP [13] with CHEVIE [6], as well as MapleTM [11]. In Section 4, 
we use these closed forms to find sets of monomials that form bases for ( ).4SZ Z  

This procedure requires solving a number of exponential Diophantine equations, 
sometimes using congruence arguments that would have been impractical without 
the use of a computer. Finally, in Section 6 we find only three monomial bases for 
( ),4HZ  and conjecture that there are no more. On the basis of extensive computer 

calculations, we also report some results for ( )5SZ Z  and ( ),5HZ  including our 

failure to find any monomial bases for ( ),5HZ  and our conjecture that there are no 

monomial bases for ( )nZ H  when .5≥n  
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2. Definitions and Notation 

Let nS  be the symmetric group on { },...,,1 n  generated by the simple 

transpositions ( ){ }.111 −≤≤|+ niii  Most calculations in this paper are done in 

,4S  and so we indicate these conjugacy classes using the set of the five generic class 

representatives ( ) ( ) ( ) ( ) ( ){ },,,,,1 abcdcdababcab=C  where ( ).1:1 =  We will 

denote the conjugacy class sum by underlining the generic representative (except in 
the case of 1), so that the sum corresponding to the generic element (abc) is 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).243234143134142124132123 +++++++=abc  

The conjugacy class sums form a basis for the centre ( ),nSZ Z  and so any element of 

( )nSZ Z  can be written as an integral linear combination of the these sums. We 

define Z∈hr,  to be the coefficient of the class representative C∈r  in the 

central element h, so that ∑ ∈
=

Cr rhrh .,  Note, the map ZZZ →× nn SS   

defined by ( ) hrhr ,,  satisfies the properties of an inner product, hence the 

notation. 

Definition 2.1. The Jucys-Murphy elements, defined independently by Jucys [8, 
9, 10] and Murphy [12], are 0:1 =L  and, for ,2 ni ≤≤  

( )∑
−≤≤

=
11

.:
ik

i ikL  

Definition 2.2. A polynomial in the variables { }nXX ...,,1  is symmetric if it 

is  fixed by the action of nS  on the indices of the variables. Each partition 

( )rλλ=λ ...,,1  with nr ≤  determines a monomial symmetric polynomial, 

( ) ( ) ( )∑
σ

λ
σ

λ
σλλ == ,:...,, 1

11
r
rn XXXXmm  

where the sum is over permutations nS∈σ  that give distinct monomials 

( ) ( ).
1
1

r
rXX λ

σ
λ
σ  Note that we also write rm λλλ ...,,, 21  for .λm  For example, if 3=n  

and ( ),1,2=λ  then 

( ) ∑
≠

λ ==
ji

ji XXXXXmm .:,, 2
3211,2  
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In addition, we adopt the convention that .1:0...,,0,0 =m  

Remark. Jucys and Murphy both proved, via different methods, that the set of 
symmetric polynomials in { }nLL ...,,1  is precisely ( ).nSZ Z  

Although we postpone the definition and discussion of the Iwahori-Hecke 
algebra nH  until Section 5, we give the following definition. 

Definition 2.3. A basis for ( ),nSZ Z  or ( )nZ H  (the centre of the corresponding 

Iwahori-Hecke algebra), that consists solely of monomial symmetric polynomials in 
the Jucys-Murphy elements is called a monomial basis. 

3. Closed Forms for Coefficients of Class Elements in  
Monomial Symmetric Polynomials in ( )4SZ Z  

We begin with some recursion relations that hold for monomial symmetric 
polynomials in three commuting variables, which are easy to verify. 

Lemma 3.1. The following relations hold for monomial symmetric functions in 
exactly three commuting variables: 

,3,31,1,121,111 >+−= −−− immmmmmm iiii  

,3,3,32,2,22,21,1,111,11,1, >+−= −−−−−− immmmmmmm iiiiiiii  

.1,1,11,1,1,, ≥= −− immm iiiii  

While the above lemma is general, in what follows we present the monomial 
symmetric polynomials evaluated only at the Jucys-Murphy elements ,...,, 41 LL  

recalling that .01 =L  

Lemma 3.2. For monomial symmetric polynomials λm  evaluated at ,...,, 41 LL  

we have the following recursive formulae: 

(1) For ,7≥i  

.364914 642 −−− +−= iiii mmmm  

(2) For ,6≥i  

.72365058 5,54,43,32,21,1, −−−−−−−−−− ++−−= iiiiiiiiiiii mmmmmm  
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(3) For ,5≥i  

.14440 4,4,42,2,2,, −−−−−− −= iiiiiiiii mmm  

Proof. These are all proved by induction, with base steps verified using the data 
in Tables 1, 2, and 3 in Section 7. 

For (1), assume the claim is true for 2,1 −− ii  and 3−i  (because we are 

attempting to prove the result for ,7≥i  this means the base step involves verifying 

that the recursion holds for ,7m  8m  and ).9m  Using Lemma 3.1, we have 

31,1,121,111 −−− +−= iiii mmmmmmm  

( ) ( )8641,17531 364914364914 −−−−−− +−−+−= iiiiii mmmmmmmm  

( )9751,1,1 364914 −−− +−+ iii mmmm  

( ) ( )71,1,161,15151,1,141,131 4914 −−−−−− +−−+−= iiiiii mmmmmmmmmmmm  

( )91,1,181,17136 −−− +−+ iii mmmmmm  

.364914 642 −−− +−= iii mmm  

The inductions for (2) and (3) are similar. � 

Using standard techniques for solving linear recurrences, and the recurrence 
relations in Lemma 3.2, it is straightforward to derive the following closed forms for 
coefficients of class sums in the monomials. 

Lemma 3.3. For any ,1≥i  we have the following closed forms for the 
coefficients of the class sums in the monomial symmetric polynomials 

( )....,,: 41 LLmm λλ =  

• im,−  

( ),23210324,1 +⋅+= iii
i

cm  

( ) ( ),124324, 1 +⋅+= + iii
i

cmab  

( ) ( ),12324, −+= iii
i

cmabc  
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( ) ( ) ( ),122324, −⋅−= iii
i

cmcdab  

( ) ( ).122324, 1 +⋅−= + iii
i

cmabcd  

• iim ,,−  

( ( ) ( ) ),111292103612
1,1 ,

iiiii
iim −+−+⋅++=  

( ) ,0, , =iimab  

( ) ( ( ) ),123612
1, ,

iiii
iimabc −−++=  

( ) ( ) ( ( ) ( ) ),231223612
1, ,

iiiii
iimcdab −−−−⋅−+=  

( ) .0, , =iimabcd  

• iiim ,,,−  

( ),2364,1 11
,,

−− ⋅+= iii
iii

cm  

( ) ( ),264, 111
,,

−−+ −= iii
iii

cmab  

( ) ,64, 1
,,

−⋅= ii
iii

cmabc  

( ) ( ) ( ),264, 11
,,

−− −= iii
iii

cmcdab  

( ) ( ),264, 111
,,

−−+ += iii
iii

cmabcd  

where ( ) .11 i
ic −+=  

To address general monomials, we need to consider coefficients in products of 
monomials. 

Lemma 3.4. The coefficients of the class sums from 4SZ  in products of 
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monomial symmetric polynomials in the Jucys-Murphy elements 41 ...,, LL  are given 

by the following: 

( ) ( ) λμλμλμ += mabmabmmmm ,,6,1,1,1  

( ) ( ) ( ) ( ) λμ+ mcdabmcdab ,,3  

( ) ( ) λμ+ mabcmabc ,,8  

( ) ( ) ,,,6 λμ+ mabcdmabcd  

( ) ( ) λμλμ = mabmmmab ,,1,  

( ) ( ( ) ( ) ( ) )λλλμ +++ mabcmcdabmmab ,4,,1,  

( ) ( ( ) ( ) )λλμ ++ mabcdmabmabc ,4,4,  

( ) ( ) ( ( ) ( ) )λλμ ++ mabcdmabmcdab ,2,,  

( ) ( ( ) ( ) ( ) ),,2,4, λλμ ++ mcdabmabcmabcd  

( ) ( ) λμλμ = mabcmmmabc ,,1,  

( ) ( ( ) ( ) )λλμ ++ mabcdmabmab ,3,3,  

( ) ( ( ) ( ) ( ) )λλλμ +++ mabcmcdabmmabc ,4,3,1,  

( ) ( ) ( ) λμ+ mabcmcdab ,,3  

( ) ( ( ) ),,3,3, 1 λλμ ++ mabcdmsmabcd  

( ) ( ) ( ) ( ) λμλμ = mcdabmmmcdab ,,1,  

( ) ( ( ) ( ) )λλμ ++ mabcdmabmab ,4,2,  

( ) ( ) λμ+ mabcmabc ,,8  

( ) ( ) ( ( ) ( ) )λλμ ++ mcdabmmcdab ,2,1,  

( ) ( ( ) ),,2,4, 1 λλμ ++ mabcdmsmabcd  
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( ) ( ) λμλμ = mabcdmmmabcd ,,1,  

( ) ( ( ) ( ) ( ) )λλμ ++ mcdabmabcmab ,2,4,  

( ) ( ( ) )λλμ ++ mabcdmsmabc ,4,4, 1  

( ) ( ) ( ( ) ( ) )λλμ ++ mabcdmabmcdab ,,2,  

( ) ( ( ) ( ) ( ) ).,,4,1, λλλμ +++ mcdabmabcmmabcd  

Proof. The expansion for the coefficient of the identity follows by counting 
sizes of conjugacy classes. In other cases we must count elements in conjugacy 
classes that multiply to give the element in question. For instance, to find the 
coefficient of (ab) in a product of monomials, we must find all pairs of elements in 

4S  whose product is (ab). A careful listing of such pairs in each case gives rise to 

the expansions in the statement. � 

Proposition 3.5. The coefficients of the class sums in monomials of the form 
( )41,, ...,,: LLmm jii=  for ji ≠  and 1, ≥ji  are given by the following closed 

forms: 

( ( ) ( ) ),2922193232624,1 ijiiijjiijc
m ⋅++−+++=  

( ) ( ( ) ( ) ),2322133232624, 1 ijiiijjiijc
mab ⋅−+−+++= +  

( ) ( ),32326
24

, 1 ijjiijc
mabc ++= +  

( ) ( ) ( ( ) ( ) ),2322133232624, 1 ijiiijjiijc
mcdab ⋅−+−−++= +  

( ) ( ( ) ( ) ),2322133232624, ijiiijjiijc
mabcd ⋅++−−++=  

where ( ) .11 j
jc −+=  

Proof. These follow from the relation jijijjjjii mmm −−= ,,,,,  if ji >  or 

ijiiijii mmm −= ,,,,  if ,ji <  together with the product expansions in Lemma 3.4 
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and the closed forms in Lemma 3.3. While the reduction is different depending on 
whether i is greater than j or not, the closed forms in terms of i and j have the same 
expression. � 

Proposition 3.6. The coefficients of the class sums in monomials of the form 
( )41, ...,,: LLmm iji+=  with 1, ≥ji  are given by the following closed forms: 

( ijijijijc
m 33263624,1 +++= +  

( ( ) ) ( ) ( ) ),122221910 iijii −++−++ +  

( ) ( ijiijijjc
mab 33626324, 1 +++= ++  

( ( ) ) ( ( ) ) ),21342134 iijii −−+−++ +  

( ) ( ( ) ),122233626324, iijiijiijijjc
mabc −−+++++= ++  

( ) ( ) ( ( ( ) ) ( ) ( ) ),122213233626324, ijiiiijiijijjc
mcdab −−+−++++= ++  

( ) ( jiiijijjc
mabcd ++ +++= 33626324, 1  

( ) ( ) ( )),2222213 jiijiii ++ +−−−+  

where ( ) .11 j
jc −+=  

Proof. These formulas all follow from the closed forms given in Lemma 3.3, 
together with the reduction relations give in Lemma 3.4 and the following relations 
among monomial symmetric polynomials in exactly three variables: 

⎩
⎨
⎧

<−
>−

=−=
−

−−
+ jimmmm

jimmmm
mmmm

ijiiijii

jijijjjjii
jiijiiiji

,,,

,,,,
,,,,  

and 

.3 ,,,,2 iiiiiiii mmmm −=  
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For instance, for ji >  we have 

jijijjjjiiiji mmmmm −−+ −= ,,,,, ,1,1,1  

( ) ( ) ( ) ( ) jiijii mcdabmcdabmm ,,3,1,1 ,, +=  

( ) ( ) ( jijijjjjii mmmabcmabc −−−+ ,,,, ,1,1,,8  

( ) ( ) ( ) ( ) jijijjj mcdabmcdab −−+ ,,, ,,3  

( ) ( ) )jijijjj mabcmabc −−+ ,,, ,,8  

( ( ) ) ( ijijijij 3326361124
1 +++−+= +  

( ( ) ) ( ) ( ) ).122221910 iijii −++−++ +  

Note that while the factorization of jiim ,,  into two parts depends on whether 

jiji <> ,  or ,ji =  the resulting closed forms are equal and hence we obtain a 

single expression for all i, j. � 

Proposition 3.7. The coefficients of the class sums in monomials of the form 
( )41,, ...,,: LLmm kikjik +++=  for 1,, ≥kji  are given by 

( ( )),2229624,1 ,,,
k

kjj
ki

ji
kji

kikij
kkj cccd

c
m +

+++
+

+ +++=  

( ) ( ( )),2223624, ,1,1,
1 k

kii
ki

ki
kji

kikij
kkj cccd

c
mab ++

+
+

++
+

++ +++=  

( ) ,624, ij
kkj d

c
mabc +=  

( ) ( ) ( ( ki
kjikji

kji
kijikjij

kkj ccd
c

mcdab +
++

++
++

+ +−= 223624, ,,,,,,  

)),2,,,
k

kjikijiic +++++  

( ) ( ( ki
kjikji

kji
kijikjij

kkj ccd
c

mabcd +
++++

++
++++

+ ++= 223624, 1,1,,1,,1,  

)),21,1,,
k

kjikijiic +++++++  
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where ( ) ,11 x
xc −+=  ( ) ( ) ,11,

yx
yxc −+−=  ( ) ( ) ( )zyx

wzyxc 111,,, −+−+−=  

( )w1−+  and .22336263 ijiijiijij
ijd +++++= ++  

Proof. For monomial symmetric polynomials of three (non-zero) variables, 
we  have .,,,,, ijikkkkkikji mmm ++++ =  Combining this with the formulas for 

coefficients in products of monomials given in Lemma 3.4 gives the result. � 

4. Monomial Bases for ( )4SZ Z  

An integral basis for ( )4SZ Z  has a 55 ×  transition matrix to the conjugacy 

class sum basis that is invertible over the integers. In other words, the determinant of 
the transition matrix is .1±  Because of Lemma 6.1 in [5], we can reorder the bases 
so that the transition matrix is block diagonal, with an “even” block and an “odd” 
block. The even ( )33 ×  block consists of monomials whose partition is of an even 

integer, and can be written as a linear combination using only the sums 1, (abc) and 
(ab) (cd). We refer to these monomials as even monomials. The odd ( )22 ×  block 

consists of monomials whose partition is of an odd integer, and can be written as a 
linear combination using only the sums (ab) or (abcd). We refer to these monomials 
as odd monomials. That is, the transition matrix of these reordered bases is of the 
form 

( ) ( ) ( ) ( ) ( )

( )

( ) ( )

( )

( ) ⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

∗∗

∗∗

∗∗∗

∗∗∗

∗∗∗

abcd

ab

cdab

abc

abcdabcdababc
1

1

. 

Some monomials have even coefficients on all class elements, and therefore 
they cannot be part of an integral basis (the corresponding column in the transition 
matrix would have a factor of 2). Using the closed forms for coefficients on class 
elements obtained above, we can determine which monomials have this property, 
and rule them out immediately as possible basis elements. We consider first the even 
monomials: 



Andrew Francis and Lenny Jones 130 

• ,0m  

• iim ,  for all i, 

• im  and iiim ,,  for i even, 

• ijim ,+  and jiim ,,  for j even, and 

• kikjikm ,, +++  for kj +  even. 

Lemma 4.1. The even monomials that have at least one odd coefficient on a 
class element are iimmm ,20 ,,  and 2,, iim  for .1≥i  

Proof. We break the set of possible even monomials into families as above, and 
claim that the following monomials have at least one odd coefficient on a class 
element: 

(1) ,0m  

(2) iim ,  for all i, 

(3) 2m  from { },even imi |  

(4) 2,2,2m  from { },even ,, im iii |  

(5) 2,, iim  from { },even, ,, ijjm jii ≠|  

(6) none from { },even , jm iji |+  

(7) none from { }.even ,, kjm kikjik +|+++  

Since the proofs are similar, we present only the proofs of parts (3) and (5). 

To prove part (3), we first observe that the coefficient im,1  of 1 in im  is even 

if and only if 

( )8mod0232103 ≡+⋅+ ii  

by Lemma 3.3. Since i is even, ( ),8mod13 ≡i  and ( ),8mod0210 ≡⋅ i  this 

coefficient is always even. 
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Similarly, the coefficient on (abc) is even if and only if ( ).8mod0123 ≡−+ ii  

This congruence holds if and only if ,4≥i  meaning that 2m  has odd coefficient on 

(abc) but no others in this family do. 

Finally, the coefficient on (ab) (cd) is even if and only if 1223 −⋅− ii  

( ).8mod0≡  With i even, we have ( )8mod13 ≡i  and ( ).8mod02 1 ≡+i  So this 

coefficient is even for all even i. 

Thus, with the exception of ,2m  all monomials in this family have even 

coefficients on all class elements, making 2m  the only candidate for inclusion in a 

basis. 

For part (5), observe that for ,4≥j  the expressions 

( ) ( ) ,29221932326 ijiiijjii ⋅++−+++  

ijjii 32326 ++  and ( ) ( ) ijiiijjii 23221332326 ⋅−+−−++  

are all divisible by 8, making the coefficients on class sums all even. For example, 

( ) ( ) ( ( ) ) ( ),8mod0112012232326 ≡−+≡++−≡++ iiiiijjii  

which accounts for the coefficient of (abc). 

This leaves the case ,2=j  which means that 2,, iim  is our only candidate for a 

basis element from this family. In this case, we have that ( ) 2,,, iimabc  is odd since 

( ),8mod432326 22 ≡++ iii j  while all other coefficients are even. � 

We have the following table of candidate even monomials given in Lemma 4.1: 

( ) ( ) ( ) ( )
( )

( )
( ) ( ) evenoddeven200

oddoddeven310
evenevenodd6611

2,,12,122,22,2,220

cdab
abc

iiiiii ++

 

The parities shown in the table are direct consequences of the closed forms 
obtained earlier. 
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Since these columns must be columns of a matrix whose determinant is ,1±  we 

must have a monomial of form 12,12 ++ iim  in a basis (see the coefficients of 

(ab) (cd)). Looking at the coefficients of the identity, we must also have either 0m  

or one of the form .2,2 iim  Each of these three has the same parity on both (abc) and 

(ab)(cd), so we must include a monomial that has different parity on these two: 
either 2,2,22, mm  or .2,, iim  Thus, we have six possible (families of) sets of 

monomials given below that could form a basis. For each of these cases, we examine 
the determinant of the 33 ×  matrix to ascertain which have a determinant of .1±  

• { }2012,12 ,, mmm ii ++  

The determinant of this transition matrix is given by 

( ( ( ) ) ( ) ).121323612
1 1212121212 +++++ −−−+−+ iiiii  

This determinant is exactly 1 when 0=i  and is increasing with i. 

Thus, 0=i  gives the only spanning subset here, namely { }.,, 21,10 mmm  

• { }2,2,2012,12 ,, mmm ii ++  

The determinant here is 

( ( ( ) ) ( ) ),121983612
1 1212121212 +++++ −−−+−+ iiiii  

which is 1 when 0=i  and increasing with i. Thus, { }2,2,21,10 ,, mmm  is the only 

spanning set from this family. 

• { }2,,012,12 ,, jjii mmm ++  

The determinant simplifies to 

( )[( ( ) ) ( ) ].14211123648
1 121212 jjjiii −+−++++− +++  

When j is even, we have that ( ( ) ) ( ) .414211 >−+−+ jjj  Then, since 

,121236 121212 ≥+++ +++ iii  there are no values of i and j that give determinant 
.1±  When j is odd, the determinant is 1 if and only if .0=i  Thus, the set 

{ }odd ,, 2,,1,10 jmmm jj |  gives all sets of this form that span the class elements 

here. 
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• { }22,212,12 ,, mmm jjii ++  

The determinant simplifies to 

(( ) ( ) ).36262361212
1 2221212122 jjjiiij −−⋅+++− +++  

We claim that this determinant is never equal to –1, and is equal to 1 only when 
0=i  and .1=j  To see this, we rewrite the determinant, replacing 2j with ,3+w  

and set it equal to .1±  Multiplying by 12 produces the following two exponential 
Diophantine equations: 

( ) ( ) .12362623612 3333 ±=−−⋅+++− ++++ wwwiiiw  (4.1) 

In the case when the right-hand side of (4.1) is –12, the equation has no 
solutions modulo 28. When the right-hand side of (4.1) is 12, we see that there are 
no solutions by reducing the equation modulo 1971. All calculations were done by 
computer. Thus, the equations in (4.1) have no solutions for any integers 1≥i  and 

.0≥w  This implies that the original determinant can only be 1±  when .1=j  

Substituting 1=j  into the original determinant shows that i must be 0. Hence, the 

only spanning set here is { }.,, 22,21,1 mmm  

• { }2,2,22,212,12 ,, mmm jjii ++  

The determinant simplifies to 

( ),23366217
12
1 122122122 +++ −−−−−⋅ ijijij  

which is less than –1 when 1>j  or .0>i  The only solution is 0=i  and ,1=j  

giving the set of monomials { }.,, 2,2,22,21,1 mmm  

• { }2,,2,212,12 ,, kkjjii mmm ++  

The determinant simplifies to 

( kjkj 623248
1 1232 ++ +  

( ( ) ) ( )jkikjkikkik 21221212 62323262211 ++++−+− ++++  

( ) ( ) ( ( ) ) ).211723623614 2222121212 kjkjjjiiik ++++ −−++++++−−  
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As before, we require that this determinant be .1±  So, we need to solve the two 
exponential Diophantine equations: 

kjkj 6232 1232 ++ +  

( ( ) ) ( )jkikjkikkik 21221212 62323262211 ++++−+− ++++  

( ) ( )jjjiiik 222121212 23623614 +++++−− +++  

( ( ) ) .482117 2 ±=−−+ +kjk  (4.2) 

Reducing (4.2) modulo 45 shows that there are no solutions when the right-hand 
side is –48, while reduction modulo 1197 proves that there are no solutions to (4.2) 
when the right-hand side is 48. Hence, no spanning set arises in this situation. 

We summarize the above computations on the even monomials in the following 
lemma. 

Lemma 4.2. The sets of even monomial symmetric polynomials in 41 ...,, LL  

that are bases for the subspace of ( )4SZ Z  spanned by { ( ) ( ) ( )}cdababc ,,1  are: 

• { },,, 21,10 mmm  

• { },,, 2,2,21,10 mmm  

• { },odd ,, 2,,1,10 immm ii |  

• { },,, 22,21,1 mmm  

• { }.,, 2,2,22,21,1 mmm  

We now turn our attention to the odd monomials. 

Lemma 4.3. The odd monomial symmetric polynomials in 41 ...,, LL  that have 

at least one odd coefficient on a class element are ,im  iiim ,,  and ijim ,+  for 

1, ≥ji  and odd. 

Proof. As in the proof of Lemma 4.1, we break the possibilities up into families, 
and show that the following have at least one odd coefficient on a class element: 
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(1) { },odd imi |  

(2) 1,1,1m  from { },odd ,, im iii |  

(3) 1,, iim  from { },odd, ,, ijjm jii ≠|  

(4) { },odd , jm iji |+  

(5) none from { }.odd ,, kjm kikjik +|+++  

The proofs are similar to the proofs given of Lemma 4.1. For example, for part 

(1), observe that ( ),8mod41243 ≡+⋅+ ii  which shows that ( ) imab ,  is odd. 

Also, ( )8mod41223 ≡+⋅− ii  when ,3≥i  and 1223 +⋅− ii  is divisible by 8 

when ,1=i  which shows that ( ) imabcd ,  is even only when .1=i   � 

A consequence of Lemma 4.3 is that the parities of the candidate odd 
monomials are: 

( ) ( ) ( )

( )

( ) oddoddodd10

oddoddeven01

33

,1,,1,1,11

abcd

ab

ii

ijiiii

≥≥

+

 

From this table we see that there are nine possibilities where the determinant of 
the 22 ×  odd block is odd. We show below which of these possibilities actually 
yield a determinant equal to .1±  In certain cases, Maple was used in the 
computations. 

• { }1,1,11, mm  

This is clearly a spanning set for the odd class elements. 

• { }1,1,1, mmi  with 3≥i  

Since we require that the determinant is ,1±  we derive the following equations: 

.121243 ±=+⋅+ ii  

It is easy to see that there is no solution since .3≥i  
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• { }1,1,1, , mm iji+  

Since j is odd, the following equations are derived from requiring that the 
determinant be equal to :1±  

( ( ) ) ( ( ) ) .1221342134336263 ±=−−+−+++++ ++ iijiiijiijij  

There are no solutions since the left-hand side is always larger than 12. 

• { }1,,1, iimm  with 3≥i  

The determinant here is 

( ( ) ),232233232612
1 iiiii ⋅++⋅+⋅+⋅+  

which is clearly larger than 1. So, there are no solutions in this situation. 

• { }imm ,1  with 3≥i  

Requiring that the determinant be 1±  produces the equations: 

.121223 ±=+⋅− ii  

It is easy to see that there is the single solution .3=i  Thus, the odd block can 

be { }., 31 mm  

• { }ijimm ,1, +  

Setting the determinant equal to 1±  gives the two equations 

( ) ( ) ( ) .122222213336263 ±=+−−−++++ +++ jiijiiijiiijij  

Reduction modulo 5 shows that the left-hand side is congruent to 0, 1 or 4, 
while the right-hand side is congruent to 2 or 3. Thus, there are no solutions here. 

• { }1,,, jji mm  with 3≥i  

Setting the determinant equal to 1±  leads to two exponential Diophantine 
equations: one with –48 on the right-hand side, and one with 48 on the right-hand 
side. The –48-equation has no solutions mod 819, while the 48-equation has no 
solutions mod 5. 
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• { }1,,, , iijkj mm +  

As above we get two exponential Diophantine equations by equating the 
determinant to .1±  The –48-equation has no solutions mod 45, while the 48-equation 
has no solutions mod 85. 

• { }1,,1,, , jjii mm  with 3, ≥ji  

In this situation, we arrive at two exponential Diophantine equations: one with  
–144 on the right-hand side, and one with 144 on the right-hand side. Reduction 
modulo 91 shows that there are no solutions in either case since the left-hand side is 
congruent to 0 or 16 while the right-hand side is congruent to 38 or 53. 

We summarize the above computations on the odd monomials in the following 
lemma. 

Lemma 4.4. The sets of odd monomial symmetric polynomials in 41 ...,, LL  that 

are bases for the subspace of ( )4SZ Z  spanned by {( ) ( )}abcdab ,  are { }1,1,11, mm  

and { }., 31 mm  

Lemma 4.2 and Lemma 4.4 determine all bases for ( )4SZ Z  which consist 

solely of monomial symmetric polynomials in Jucys-Murphy elements. We get eight 
specific bases and two infinite families of bases. This result differs dramatically from 
( ),3SZ Z  where there are only finitely such bases [5]. We state this main result in the 

following theorem. 

Theorem 4.5. The complete list of monomial bases for ( )4SZ Z  is 

• { },,,,, 1,1,11,1210 mmmmm  

• { },,,,, 2,2,21,1,11,110 mmmmm  

• { },,,,, 2,21,1,11,121 mmmmm  

• { },,,,, 2,2,22,21,1,11,11 mmmmm  

• { }31,1210 ,,,, mmmmm  (Murphy’s basis [12]), 

• { },,,,, 32,2,21,110 mmmmm  

• { },,,,, 2,231,121 mmmmm  
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• { },,,,, 2,2,22,231,11 mmmmm  

• { }, ,,,, 2,,1,1,11,110 oddimmmmm ii |  

• { }. ,,,, 2,,31,110 oddimmmmm ii |  

5. The Iwahori-Hecke Algebra 

In this paper, we use a normalized version of the generators for the Hecke 
algebra. 

Definition 5.1. The Iwahori-Hecke algebra nH  of nS  is the associative [ ]ξZ -

algebra generated by the set { }SsTs ∈|
~  with identity 1

~T  and subject to the relations 

.11for ~~~
,21for ~~~~~~

,2 if~~~~

1
2

111

−≤≤ξ+=

−≤≤=

≥−=

+++

niTTT

niTTTTTT

jiTTTT

ii

iiiiii

ijji

ss

ssssss

ssss

 

Remark. The Iwahori-Hecke algebra nH  of type 1−nA  is a deformation of the 

symmetric group algebra .nSZ  In particular, the specialization of nH  at 0=ξ  is 

isomorphic to .nSZ  

The exact connection between this definition and the standard definition over 

[ ]2121 , −qqZ  is the following. Set ss TqT 21:~ −=  for ( ){ iiiSs ≤|+=∈ 11  

},1−≤ n  and let .2121 −−=ξ qq  Then this normalized Hecke algebra, which is a 

subalgebra of the more standard Hecke algebra generated by { }SsTs ∈|  over 

[ ],, 2121 −qqZ  is an algebra over the ring [ ].ξZ  A principal reason for defining the 

algebra with normalized generators is that then many results concerning the centre 
have more natural statements and proofs [3, 4, 5]. The statements of this paper are all 

readily translated back to statements over [ ]., 2121 −qqZ  

Many of the approaches to ( )nSZ Z  described above generalize neatly to the 

centre of the Iwahori-Hecke algebra ,nH  which we denote ( ).nZ H  To begin with, 

( )nZ H  has an integral basis of “class elements” { },nSw ∈|Γ λλ  which specialize to 
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a class sum [7, 3]. The Jucys-Murphy elements can directly be generalized, by 
setting 0:1 =L  and for ,2 ni ≤≤  

( )∑
−≤≤

=
11

.~:
ik

kii TL  

The main result of both Jucys and Murphy – that the centre is the set of 
symmetric polynomials in Jucys-Murphy elements – generalizes to a result known as 
the Dipper-James conjecture, shown for the semisimple case by Dipper and James in 
1987 [1] and in generality by the first author and Graham in 2006 [4]. The result of 
Jucys giving the elementary symmetric polynomials in Jucys-Murphy elements as a 
sum of class sums has a direct analogue, and so the analogue of Farahat and 
Higman’s generators for the centre also holds [4, Prop. 7.4, Cor. 7.6]. The fly in the 
ointment is that the basis for ( )nSZ Z  given by Murphy does not generalise to a basis 

for ( ),nZ H  even for ( )3HZ  [5]. While it is possible, as a result of the proof of the 

Dipper-James Conjecture, to construct an integral basis for ( )nZ H  using linear 

combinations of monomial symmetric polynomials in Jucys-Murphy elements [5], it 
is still unclear in general whether there exists an integral basis for ( )nZ H  using 

monomial symmetric polynomials alone. 

6. Summary, Generalizations and Conjectures 

Since, upon specialization at ,0=ξ  any monomial basis for ( )nZ H  gives a 

monomial basis for ( ),nSZ Z  we can identify monomial bases for ( )nZ H  by 

restricting our attention to sets of monomials in ( )nZ H  which correspond to 

monomial bases for ( ).nSZ Z  Using this strategy in [5], we showed that there are 

only four such bases for ( ),3SZ Z  only one of which “lifts to” an integral basis for 

( ).3HZ  The motivation for the investigation in this paper was to produce a similar 

result for .4=n  Since Theorem 4.5 gives the complete list of monomial bases for 
( ),4SZ Z  to find all monomial bases for ( ),4HZ  it is sufficient to check the sets of 

monomials in 4H  corresponding to the bases for ( ).4SZ Z  However, the existence 

of the infinite families of monomial bases for ( )4HZ  makes the identification of all 

monomial bases for ( )4HZ  more difficult. Checking the infinite families for ,50<i  

and the remaining sporadic bases gives the following list of bases for ( ) :4HZ  
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{ },,,,, 1,1,11,1210 mmmmm  

{ },,,,, 1,1,21,1,11,110 mmmmm  

{ }.,,,, 2,2,21,1,11,110 mmmmm  

In an attempt to extend the above findings to ,5=n  we conducted a search 

using GAP up through partitions of 10, and found the following 12 monomial bases 
for ( ):5SZ Z  

{ },,,,,,, 41,231,1210 mmmmmmm  

{ },,,,,,, 1,1,1,11,231,1210 mmmmmmm  

{ },,,,,,, 41,1,131,1210 mmmmmmm  

{ },,,,,,, 1,1,1,11,1,131,1210 mmmmmmm  

{ },,,,,,, 541,21,1210 mmmmmmm  

{ },,,,,,, 51,1,1,11,21,1210 mmmmmmm  

{ },,,,,,, 1,1,341,1,11,1210 mmmmmmm  

{ },,,,,,, 1,1,31,1,1,11,1,11,1210 mmmmmmm  

{ },,,,,,, 1,1,1,11,1,21,231,110 mmmmmmm  

{ },,,,,,, 1,1,1,11,1,21,1,131,110 mmmmmmm  

{ },,,,,,, 51,1,1,11,1,21,21,110 mmmmmmm  

{ }.,,,,,, 1,1,31,1,1,11,1,21,1,11,110 mmmmmmm  

Note that despite checking up to partitions of 10, no partitions of greater than 5 
appear in these bases. Together with the fact that none of these sets of monomials in 

5H  provides a basis for ( ),5HZ  this suggests the conjectures stated below. The 

following table summarizes what is currently known regarding monomial bases for 
( )nSZ Z  and ( )nZ H  when .5,4,3=n  
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Algebra Number of Monomial Bases Reference 

( )3SZ Z  4 [5] 

( )3HZ  1 [5] 

( )4SZ Z  8 + two infinite families  Theorem 4.5 

( )4HZ  3 known end of Section 4 

( )5SZ Z  12 known see above 

( )5HZ  None known checked the 12 known 

  bases for ( )5SZ Z  

We end by conjecturing the following: 

Conjecture 6.1. 

(1) There are only 12 monomial bases for ( ).5SZ Z  

(2) When ,5≥n  there are only finitely many monomial bases for ( ).nSZ Z  

(3) There are only 3 monomial bases for ( ).4HZ  

(4) When ,5≥n  there are no monomial bases for ( ).nZ H  

7. Tables of Data 

Table 1. Coefficients for im  in ,91,4 ≤≤ iSZ  obtained using GAP 

 0m  1m  2m  3m  4m  5m  6m  7m  8m  9m  

1 1 0 6 0 22 0 116 0 762 0 

( )ab  0 1 0 5 0 31 0 225 0 1811 

( )abc  0 0 1 0 8 0 66 0 568 0 

( ) ( )cdab  0 0 0 0 4 0 50 0 504 0 

( )abcd  0 0 0 1 0 15 0 161 0 1555 
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Table 2. Coefficients for iim ,  in ,91,4 ≤≤ iSZ  obtained using GAP 

 1,1m  2,2m  3,3m  4,4m  5,5m  6,6m  7,7m  8,8m  9,9m  

1 0 11 20 141 670 4051 23520 140921 841490 

( )ab  0 0 0 0 0 0 0 0 0 

( )abc  1 4 21 116 671 3954 23521 140536 841491 

( ) ( )cdab  1 2 21 108 671 3922 23521 140408 841491 

( )abcd  0 0 0 0 0 0 0 0 0 

Table 3. Coefficients for iiim ,,  in ,81,4 ≤≤ iSZ  obtained using GAP 

 1,1,1m  2,2,2m  3,3,3m 4,4,4m 5,5,5m 6,6,6m 7,7,7m 8,8,8m  

1 0 6 0 120 0 3936 0 140160 

( )ab  0 0 16 0 640 0 23296 0 

( )abc  0 3 0 108 0 3888 0 139968 

( ) ( )cdab  0 2 0 104 0 3872 0 139904 

( )abcd  1 0 20 0 656 0 23360 0 
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