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Abstract

The problem of the magnetohydrodynamic non-Newtonian fluid flow with
heat transfer through a porous medium in a vertical channel is studied.
The non-Newtonian fluid under consideration is obeying the rheological
equation of state due to Casson model. The system is stressed by a
uniform transverse magnetic field. The system of nonlinear partial
differential equations which controlled this flow is solved by using
Lighthill method. The velocity and temperature distributions are obtained.
The effects of various physical parameters of the problem on these
distributions are discussed numerically and illustrated graphically through
a set of graphs. Also, some special cases are discussed.

1. Introduction

The study of the influence of heat transfer on non-Newtonian fluid has become
important in the last few years. This importance is due to a number of industrial
processes. Examples are food processing, biochemical operations, transport in
polymers, heat exchanger and reactor cooling, beside biomathematical applications
such as the flowing of the human blood through arteries.
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On the other hand many fluids involved in practical applications present a non-
Newtonian behavior. Such practical applications in porous media could be
encountered in fields like ceramics production, filtration and Oil recovery, certain
separation processes, polymer engineering, petroleum production.

Several studies of the magnetohydrodynamic flow with heat transfer through a
porous medium over a stretching sheet have been done. Eldabe and Oaf [1] studied
the problem of Darcy-Lap wood-Brinkman fluid flow and heat transfer through
porous medium over a stretching porous sheet. Magnetohydrodynamic flow of non-
Newtonian viscoelastic fluid through a porous medium near an accelerated plate is
studied by Eldabe et al. [2]. Also, Eldabe et al. studied the problem of unsteady
magnetic boundary layer flow of power law non-Newtonian conducting fluid
through a porous medium past an infinite porous flat plate [3]. Eldabe and Sallam [4]
studied non-Darcy Couette flow through a porous medium of magnetohydrodynamic
viscoelastic fluid with heat and mass transfer. Lie group analysis of unsteady MHD
three-dimensional by natural convection from an inclined stretching surface
saturated porous medium is studied by EL-Kabeir et al. [5]. Chamkha [6, 7] has
investigated the problem of steady and unsteady states, respectively, of laminar,
hydromagnetic, three-dimensional free convection flow over a vertical stretching
surface in the presence of heat generation or absorption effects. Also some works
concerning hydromagnetic flows and heat transfer of electrically conducting fluids
over a stretching surface can be found in the papers [8-12]. Also, there are some
authors who considered Casson fluid in their works [13] and [14]. Heat and mass
transfer in hydrodynamic flow of the viscoelastic fluid over a stretching sheet is
studied by Ming [15], in the absence of heat generating effect.

The main idea of this work is to study the mathematical analysis of the
Magnetohydrodynamic (MHD) non-Newtonian dusty fluid obeying Casson model
and flowing flow in a vertical channel, in the presence of magnetic field with heat
transfer. Also to show the relation between the different parameters of the motion
and external forces, in order to investigate how to control the motion of the fluid by
changing these parameters and external forces. Some of the applications concerning
this idea are the flow of oil under ground where there is a natural magnetic field. The
other example is the motion of the blood through the arteries.

2. Formulation of the Problem

Consider the two-dimensional steady motion of an electrically conducting
Casson fluid through a porous medium in a vertical channel in the presence of
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external magnetic field. Choose Cartesian coordinates (X, Y), where X axis is in

the direction parallel to the walls and Y axis is perpendicular to it (see Figure 1). The
magnetic field of strength Bj is applied across the channel. We take in our

consideration the effects of heat generation, with joules term.

b

-h/2

Figure 1. Sketch of the problem.

The rheological equation of state for an isotropic and incompressible Casson
fluid can be written as [16],

2l p +& i, T > T
B x/ﬂ ij c

Py
2 +—=16;, T<T
{HB ’_2750} ij c

where t; is the fluid stress, e;; is the (i, j)th component of the deformation rate

Tij =

and = = ejje55, m¢ Is a critical value of this product based on the non-Newtonian
model, ug is plastic dynamic viscosity of the non-Newtonian fluid, and py is yield

stress of fluid.
3. Equations of Motion

(i) The continuity equation in Cartesian coordinates takes the form

ou v

x Ty =0 (1)
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where U and V are the velocity components in X and Y directions respectively, since
U is a function of Y only, hence, equation (1) becomes 6V/oY = 0, this means that

V is constant in any channel sectionand V =0 at Y = £ h/2.

(if) The momentum equation has the following components:

1 dP 4.dU oBU U

0=-——+vl+r == 280 v 4 gB(T - Tp), 2
1 0P

0“@6_\(' @)

The Oberbeck-Boussinesq approximation is assumed to hold and for the
evaluation of the gravitational body force, the density is assumed to depend on
temperature according to the equation of state p = pg{l— B(T —Tp)}-

Here v = 1 is the kinematic viscosity, pq is the density, p is the dynamic

Po
viscosity, o, is the electrical conductivity of fluid, K is permeability of the porous

medium, Bg is the magnetic strength, g is acceleration due to gravity,  is thermal

BV 2T

expansion coefficient, A = B b
y

pressure, T is the fluid temperature, T =T; at Y =—-h/2, T =T, at h/2, Ty is the

is non-Newtonian parameter, P is the fluid

reference temperature and P = pggX + p is the difference between the pressure

and the hydrostatic pressure.

Hence, equation (2) can be written as

1+ ydU 1P 0BU U gBT ~To)
dy?

T ) m K v 4)

Since the velocity U and temperature T are functions of Y only, if we differentiate

2
P _ 0, and P _ constant = A, say therefore

(4) with respect to X we have ax—z i

equation (4) can be written as

4.dU A (oBZ 1 gB(T —Tp)
14 H8Y A 1% , 1|y 2P ~To) 5
o )de u{ m +Kj v ©)
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(iii) The heat equation of the fluid can be written as

O=a

4T va+ah (dU jz c.BUZ @
+ - | + + T-Ty), 6
de Cp dy pOCp pOCp ( 0) ( )

where o =

5.C is the thermal diffusivity, k is the thermal conductivity, Cp is
0~p

specific heat at constant pressure and Q* is a constant which may take either

positive or negative values when Q > 0 represents the heat source while Q* < 0

represents the heat sink.

The coupled equations (5) and (6) allow one to obtain a differential equation for
U, namely,

d*U | ©.B? 1 Q* |dU
4 - T N  oonC 2
dy pol+X7)v  (L+AHK potp | dY

, OB (d_Uf* aPoeBS 2
aCp \ dY apoCp(l+ A1)

+ Q& 9B +—~ U + QA . )
apoCp+2H)v| P K psCpa(l+ 27ty
The appropriate boundary conditions are

U=0 at Y =h/2,-h/2, (8)
2 _

d l; _ A - _Bg(TZ 1;0) at Y = h/2,

dy pl+A) v@+A)
2 _

dU_ A BTy oy (9)

dy?  pa+ah v+

The following quantities are employed for writing equations (6)-(9) in the
dimensionless form

T-To
AT

]
u—m,e—
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UD | Cva+h B _ n@+xhHug

T T ' kaT
Q_Q*D2 G . 9BATD® o Tp-T K 10)
Tk T T gyt T AT 0T p2Y

where R; is temperature difference ratio, Gg is dimensionless parameter, G, is
Grashof number, R, is Reynolds number, P, is Prandtl number, B, is Brinkman
number, T;, T, are the prescribed boundary temperatures, M is the magnetic
parameter and D = 2, h is the hydraulic diameter. The reference velocity U, the

reference temperature Ty and the reference temperature difference AT are given by

2
Uoz_Ll, T0=M.
48u(l+ 271 2
2 -1\2
AT =T,-T, if T,<T, AT=YU"*t) (1“;2) it T,=T, (1)
D°Cp

The dimensionless parameter Ry becomes zero for symmetric heating (T; = T,)

and one for asymmetric heating (T; < T;).

Using equation (10), equations (6)-(9) become

d*u d2u (du)2 2
—— — Ny —=—=Nsu - N3 = GrB,| =—| + MGRrB,u”, 12
ot Tz 2 3 = GrBr gy rRBr (12)
d%0 (dujz )
—+Q0=-B,|—| —-BMu“, 13
a2 T Bl ) B (13)
where
1
Ny = -Qy,
' { Ko+ 270) }
1
Ny = QM +——=——1|, N3=-48Q (14)
Ko+ A7)
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with the boundary conditions

u=0 at y =14, -14,
9=% at y=1/4, 9=—% at y=-14
diu RGR B
V_—48—T at y=1/4,

d2u RGgr ~
V_—48+T at y=-1/4.

Notice that

207

(15)

For an ordinary non-Newtonian fluid (A — o), and in the absence of heat

generating (Q =0) with non-porous medium (K — o), the system of our

equations leads to the system which treated by [17].

Case [1]. B, = 0 (when the viscous dissipation is negligible).

Equations (12) and (13) for velocity u and temperature 6 become uncoupled and

they can be solved with boundary conditions (15), then we have

u = ACoshayy + B Sinhoyy + ¢ Cosh By + ' Sinh By — Ny,

R .
9 = WS”] moy,
where
5 2 Njp++/NZ+4N, 5 Ny — N7 +4N,
Q=my, aj = 5 . Bt = 5 ,
_ —(48+Ngp) _ (484 Ngof) N, = N
(@f -pf)Coshoy/a” ©  (af -pf)Coshpy/a’ " N2
_ —(GrRy) r- (GrRY) _
2(af - pf)Sinh oy /4 2(af —B)Sinh By /4
Notice that

(16)

17)

(18)

In the case of symmetric heating, when buoyancy forces are dominating, i.e.,

when Gg — oo, equation (16) gives

u p—

B Sinh oy y + T Sinh ;Y.
Gr

(19)
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Case [2]. Gg = 0 (which means the buoyancy forces are negligible and viscous

dissipation is relevant). Solutions of equations (12) and (13) by using boundary
conditions (15) become

u = ACoshayy + x Cosh By — Ny, (20)

_ Cos mpy B
0= Ll{(—Cos mo/4)Cosh ay/2 — Cosh Zocly}

Cos mgy
+ Ly {(WJ Cosh /2 — Cosh Zﬁly}

+ Lo{Cosh (ag - )y - (o Cosh a - /4

+ L44Cosh ayy ( CC:SS;:O /);jCosh 0(1/4}

Cosmpy

{
{

L5{Cosh (g +Bp)y — (m) Cosh (ay + B1)/ 4}
{

+

+ Lg{ Cosh Byy —( Cosmg /y4jCosh 31/4}

Cosmgy Rr
" L7{1 (Cos m0/4j} T 2Sinmy /4 Sin oy, 1)
where

_ B A’ (M +af) L, = Bx’(M +Bf)
2(mé + 40.?) 2(mé + 4p2)

L _BeAylagB - M) | 2B AMN,
L= _

2 2 4 2 25’
(o = B1)" + mg (mg +ai)

L= BrAx(ogpy - M) - 2ByMNy

’ 6 ’
(o +B)* +m§ (m§ + )
B
L, = ﬁ[Azaf +72B2 — M(A? + %2 + 2N2)]. (22)
0
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4. Perturbation Method

In order to the coupled nonlinear differential equations (12) and (13) we can use
the following perturbation series method [18] for the velocity and temperature
distribution can be written

U= Ug(y) +euy(y) + O(%) + - = D &"uy(¥), (23)
n=0
0 = 0p(y) + 01(y) + O(&%) + -+ = Y &"0p(y), (24)
n=0
where
e = B,Gg = R.P/L (25)
and

pgbD
L
Cp

Substituting these equations (23) and (24) into equations (12) and (13) and
equating the coefficient of like powers of ¢ for n = 0 and n =1 and neglecting the
terms beginning form n = 2 and higher, we get the following pairs of equations:

dd‘;lio - Ny ddi,uZO —Naup — N3 =0, (26)
ddzyezo * Q8% =0 (28)
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The corresponding conditions can be written

Up=0, uy =0, 6;=0 at y=1/4, -1/4,

60:% at y =1/4, 60:—% at y =-1/4,

2 2

WY _ 4g-RCr S _o o y_ya, (30)
dy 2 dy

2 2

d—uzoz—48+ﬁ,d—21=0 at y=-1/4.

dy 2 dy

Hence, the solution of equations (26)-(29) corresponding the conditions (30) can be
written as

u = ACoshoyy + B Sinhoyy + x Cosh By + ' Sinh 1y — Ny
+ 8{[C1 Cosh oy C2 Sinh oy + C3 Cosh Bly + C4 Sinh Bly + C5

+ Hy[(A? + B2)Cosh 204y + 2AB Sinh 2]

+ Hy[(x% + T?)Cosh 2B,y + 2T Sinh 2B,y]
+ H3[(BI + Ay)Cosh(aq + B1)y + (By + AT') Sinh(ay + B1) Y]
+ H4 Cosh (O(l — Bl) y + H5 Sinh((ll — [31) Yy

— Hg[ACosh oy y + B Sinh oyy] — H7[x CoshB1y + T Sinh B1y]]},  (31)

where
_ of +M o — M +pBf
1= 4 2 : 2= 4 2 :
2(16(11 — 4N10L]_ — N2) 2(16[31 — 4N1Bl — Nz)
0L1[31 +M 2N4M
Hs = 4 2 » He=— 2 ’
(ag +B1)" = Ny(og +B1)” = Ny a; — Njof — Nj
_ (Ax = BI)(M —aypy) Hy = 2N4M
4 2 ' 4 2 :
(g =B1)" = Ny(og = B1)” = Ny By — NiBi — Ny

. = (AL + By)(M + ayBy) '
(o —B)* = Ny(ag - By)® = Ny

(32)
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Cs = 5y (0% =) (B + M) + (A ~ B%)(of — M) - 2N7m, (33)

0

(Blz — (112 )Cosh oy

" (B2 - a?)Cosh

" (B2 - a?)sinhp,

- [-Csp? — Hi(A? + B2)(B? - 4a? ) Cosh 20,

+ Ha{aAx? + I'?)pf Cosh 26, }
~ Ha(BL + Ay) (B — (oq + B1)?)Cosh(oy + By)

~ Ha(B? — (g — By)? ) Cosh(oy — By) + HpA], (34)

1
(Bf —of )Sinhoy

[-H,AB(2B? — 80,2 ) Sinh 204

+ Ha {6y TR Sinh 2B, } — Ha(By + AD) (B — (oy + By)? ) Sinh(ay + By)
— Hs(BZ - (0g — B1)?) Sinh(ay — By) + HgBI, (35)

-1 —Cea? + 3H4(A? + B?)a? Cosh 2a
541 1 1 1

— Ha{(x? + T?)(of - 4Bf)Cosh 28}
— H3(BT + Ay)(af - (ay + By)?) Cosh(oy + By)
~ Hg(af — (ag - By)?)Cosh(oy — By) + H7C], (36)

- [6H; ABa? Sinh 204

— Hs(B? — (g — B1)?) Sinh (ag — By)Ha {xI (20 — 8p7)B7 Sinh 2B, }

— H3(By, + A)(af — (o + By)?) Sinh(oy + By) + H7DJ, (37)

Ry . & Cosmgy 3
2 Sinmg Sinmgy + Gn HEl{(—Cos Mg jCosh 204 — Cosh Zocly}

Sinmgy ) . .
EZ{(W) Sinh 20,4 — Sinh Zaly}
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+ Es{(cos mOyjash (0g + By) — Cosh (ay + By) y}

£ ( o; moijOSh (ag —B1) — Cosh (ay — By) y}

jSlnh (og + B1) = Sinh (o + 31)Y}

+
m

(e
IE

moyj Sinh (oy — By) — Sinh (o — Bl)y}

+
m

{
&
{
{

, ( SmOijosh 2B, — Cosh 2[31y}

(%))

where

£ _ (A +BHM +of)
2(40f + mé)

(BL + Ax)(oypy + M)

E3 =
2 2
mg + (o + By)

_ AB(M +af)
(mg + 40(%) ’

(BI + Ax)(oypy + M)

mg + (o — By)°

E4=
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_(By+ AD)(agpy +M) o _ 2AMN,

E5 ) 9 — ’
mg + (o + By)? (m§ + of)
Eq _ (By + AT)(oyBy + M) E, :(F2+x2)(M +Bf)
m§ + (ay — By)? 2(4p5 + m§)
_ Tx(M +Bf) £y = 2MNg
(m§ + 4p7) (m§ +Bf)
E 2BMN, 2I'MN,
11 = %5 501 12 =75 50
(m§ +af) (m§ +B)
1
B3 = W[(AZ ~B%)(M —0f) + (x* ~T?)(M = Bf) + 2N4M]. (39)
o
5. Discussion

In this paper, we obtained analytically the velocity and temperature distributions
for the steady motion of an electrically conducting Casson fluid through a porous
medium in a vertical channel. The effects of the physical problem on numerical
calculating of these formulae are discussed and illustrated graphically through
Figures 2-28.

1. The following figures are illustrated for the case B, = 0.

Figure 2 shows the relation between the velocity component u and the Magnetic
parameter M. It is clear that the velocity u decreases with increasing M.

Figure 3 shows the effect of the non-Newtonian parameter A on the velocity
field. It is clear that the velocity u decreases with increasing A.

In Figure 4, the relation between the velocity component u and the porous
medium parameter K is illustrated. It is clear that the velocity u increases with
increasing K.

In Figure 5, the effect of the heat source parameter Q on the velocity field is

illustrated. It is seen that the velocity decreases with increasing Q in the region from
y = -0.25 upto y = 0, and the increases from y = 0 to y = 0.25.
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The effect of the temperature difference ratio Ry on velocity field is discussed

through Figure 6. It is seen that the velocity decreases and increases with increasing
Rr.

The effect of the parameter Gg =% on velocity field in the case of
€

asymmetric heating (Ry =1) is discussed through Figure 7. It is seen that the

velocity decreases and increases with increasing Gg.

In Figure 8, the effect of the heat source parameter Q on the temperature
distribution is illustrated. It is seen that the temperature decreases and increases with
increasing Q.

2. The following figures are illustrated for the case Gg = 0.

Figure 9 shows the relation between the velocity components u and the
Magnetic parameter M. It is clear that the velocity u decreases with increasing M.

Figure 10 shows the effect of the non-Newtonian parameter A on the velocity
field. It is clear that the velocity u decreases with increasing A.

In Figure 11, the relation between the velocity components u and the porous
medium parameter K is plotted drawn. It is clear that the velocity u increases with
increasing Kg.

In Figure 12, the effect of the heat source parameter Q on the temperature
distribution is illustrated. It is seen that the temperature decreases and increases with
increasing Q.

The effect of the of Brinkman number parameter B, on the temperature of the

Casson model is illustrated in Figure 13. It is seen that the temperature increases
with increasing B, which shown.

3. The following figures are illustrated for the general case.

Figure 14 shows the relation between the velocity component u and the
Magnetic parameter M. It is clear that the velocity u decreases with increasing M.

Figure 15 shows the effect of the non-Newtonian parameter A on the velocity
field. It is clear that the velocity u decreases with increasing A.
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In Figure 16, the relation between the velocity component u and the porous
medium parameter K is plotted drawn. It is clear that the velocity u increases with

increasing Kg.
In Figure 17, the effect of the heat source parameter Q on the velocity field is
illustrated. It is seen that the velocity decreases and increases with increasing Q.

The effect of the Prandtl number parameter P, on the velocity of the Casson

model is illustrated through Figure 18. It is seen that the velocity increases with
increasing P.

The effect of the temperature difference ratio Ry on velocity field is discussed
through Figure 19. It is seen that the velocity decreases and increases with increasing
Rr.

In Figure 20, the effect of the Grashof number parameter G, on the velocity
field is illustrated. It is seen that the velocity decreases and increases with increasing
G,.

Figure 21 shows the relation between the temperature field of the fluid and the
magnetic parameter M. It reveals that the temperature increases with increasing M.

The effect of the non-Newtonian parameter A on the temperature distribution is
discussed through Figure 22. It is seen that the temperature increases with increasing
A

Figure 23 shows the relation between the temperature of the fluid and the
porous medium parameter Kg. It is clear that the temperature increases with
increasing Kg.

In Figure 24, the effect of the heat source parameter Q on the temperature
distribution is illustrated. It is seen that the temperature increases with increasing Q.

The effect of the of the Prandtl number parameter P, on the temperature of the

Casson model is illustrated in Figure 25. It is seen that the temperature increases
with increasing P, which shown.

In Figure 26, the relation between the temperature of the fluid and the effect of

the dimensionless parameter Gg = % It is clear that the temperature increases
€

with increasing Gg.
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The effect of the parameter ¢ = GRB, on the temperature is discussed through

Figure 27. It is seen that the temperature increases with increasing e.

The effect of the Grashof number parameter G, on the temperature is discussed

through Figure 28. It is seen that the temperature increases with increasing G, .

6. Conclusion

The mathematical models for momentum and the energy equations which
describe the physical phenomena of the magnetohydrodynamic non-Newtonian
(Casson fluid flow) with heat and mass transfer through porous medium in a vertical
channel are investigated. These equations are solved analytically. The effects of the
problem parameters on the solutions are studied. The obtained results were
illustrated graphically to show how to control the velocity and heat of the fluid flow.
While there is no similar experimental case to this theoretical study, we have only
compared our results in special cases with other previous published works, say.

i A ..-"'"". N ."'ﬂ-.__“. }'I=-:|:|1

af

Figure 2. The velocity (u) of the fluid is drown against y for different values of
M =0.01, 6,15, 25, Q = 0.01, » = 0.0, Ky = 0.1, Gg = 0.5, Ry = 0.5.
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¥

Figure 3. The velocity (u) of the fluid is drown against y for different values of
A =0.01, 0.15, 0.36,0.98, Q =1, M = 0.01, Ky = 0.01, G = 0.5, Ry =0.5.

¥

Figure 4. The velocity (u) of the fluid is drown against y for different values of
Ko =0.01, 0.02, 0.04, 0.36, Q = 0.0, M =0.01, A =05, Gg = 0.1, Ry =1.

Figure 5. The velocity (u) of the fluid is drown against y for different values of
Q =5,50,80,100, 2 =0.1, M =5, Ky =0.01, Gg =50, Ry =5.
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Figure 6. The velocity (u) of the fluid is drown against y for different values of
Rr =1, 25, 55,100, A = 0.0, M =5, Ky =0.1, Gg =5, Q =5.

Figure 7. The velocity (u) of the fluid is drown against y for different values of
Ggr =50, 150, 250, 400, A =0.01, M =5, Ky =01, Q =5 Ry =1.

Figure 8. The temperature (6) of the fluid is drown against y for different values of
Q =5, 55, 85, 100, Ry.
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Figure 9. The velocity (u) of the fluid is drown against y for different values of
M =0.01 6, 15, 25, Q = 0.01, » = 0.01, Ky = 0.1.

¥

Figure 10. The velocity (u) of the fluid is drown against y for different values of
A =0.01, 0.15,0.36, 0.98, Q =1, M = 0.01, Ky = 0.01.

Figure 11. The velocity (u) of the fluid is drown against y for different values of
Ko =0.01, 0.02, 0.04, 0.36, Q = 0.01, M = 0.0, » = 0.5.
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sof T

Figure 12. The temperature (0) of the fluid is drown against y for different values of
Q=54575951=02 M =02, Ky =0.1, B, =0.01, Ry = 40.

T T ———— .
15L Gr=0:Q =20, i

Rp =10 Bt;lﬁ'

10}

Figure 13. The temperature (0) of the fluid is drown against y for different values of
B, =0.01, 3,6,10,Q =20, . =0.01, M = 2, K5 = 0.01, Ry =10.

0.0

¥

Figure 14. The velocity (u) of the fluid is drown against y for different values of
M =0.01, 6,15, 25,Q =2, A =0.01, Ky =0.01, Gg =5, R =05, L=0.1, P, =0.1,

R, = 0.01, B, = 0.01.
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Figure 15. The velocity (u) of the fluid is drown against y for different values of
A =0.01, 0.15,0.36,0.98, Q =2, M =0.01, K5 =0.01, Gg =5, Ry =0.5, L =0.1,

Pr =01 R, =0.01, B, =0.0L

Figure 16. The velocity (u) of the fluid is drown against y for different values of
Kg =0.01,0.02, 0.04,0.36, Q =0.01, M =0.0L, A =0.5,Gg =0.1, Ry =0.1, L=0.1,

P, = 0.1 R, = 0.01, B, = 0.0L.

Figure 17. The velocity (u) of the fluid is drown against y for different values of
Q =5, 50, 80, 100, » = 0.0, M =0.01, Ky = 0.01, B, = 0.05, Ry =5, Gg = 50,

L=0.1 P =0.1, R, =001
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Figure 18. The velocity (u) of the fluid is drown against y for different values of
P, =0.01, 0.04, 0.06, 0.09, A =09, M =5, K5 =0.09, B, =1, Ry =50, Gg = 400,

L =1 Q =50, Ry = 0.55.

Figure 19. The velocity (u) of the fluid is drown against y for different values of
Rr =50, 100, 150, 200, P, = 0.1, A = 0.01, M =0.01, Ky = 0.09, B, =1, Gy =5,

L=010Q=2 R, =001

Figure 20. The velocity (u) of the fluid is drown against y for different values of
Gy =011535 P =01 x1=09 M =0.1 Ky =001 B, =0.1, ¢ = 0.0, Q = 2.5,

Re = 0.01, Ry =1.
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Figure 21. The temperature (0) of the fluid is drown against y for different values of
M =0.1,0.3,06,1, Q=5 1=0.01 Ky =0.01, Gg =200, Ry =50, ¢ =5, B, =0.5.

Figure 22. The temperature of the fluid is drown against y for different values of
A =0.01 0.04,0.14, 097, Q =5, M = 0.1, Ky = 0.01, Gg =300, Ry =50, ¢ =8,
B, = 0.5.

Figure 23. The temperature of the fluid is drown against y for different values of
Ko = 0.01, 0.05, 0.15,0.98, Q =5 M = 0.1, A = 0.5 Gg = 200, Ry =50, ¢ =8,

B, = 0.5.
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Figure 24. The temperature of the fluid is drown against y for different values of
Q=25,15, 20, 23, K5 = 0.0, M =0.01, . =0.01, Gg =200, Ry =50,¢=8, B, =0.5.

Figure 25. The temperature of the fluid is drown against y for different values of
P, =0.01, 0.35, 0.65, 0.98, A = 0.9, M =5, K, =0.09, B, =1, Ry =50, Gy = 400,

L=1Q=5, R, = 0.55.

Figure 26. The temperature of the fluid is drown against y for different values of
Ggr =1,50,100,150, Ko =0.0L, M =0.1, A = 0.0, Q = 2.5, Ry =50,¢=8, B, =0.5.
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Figure 27. The temperature of the fluid is drown against y for different values of
€=13518 Ky=00LM=012x1=001 Q=5 Ry =50, Gg =300, B, =0.1.

%3

Gp=0.10

Gy =006

-4}

Figure 28. The temperature of the fluid is drown against y for different values of
G, = 0.04, 0.06, 0.10, 0.99, A = 0.09, M = 0.1, Ky = 0.01, B, = 0.01, ¢ = 0.0,
Q =40, R, =5, Ry =40.
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