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Abstract

Integral comparison theorem for half-linear differential equations of the

third-order is shown by means of Riccati change of variable and the

technique of successive approximations. In the end, a conjecture con-

cerning the generalized Euler differential equation is provided.

1. Introduction

Birkhoff in [1] pioneered the study of separation and comparison
theorems for equations of third-order. However, papers directly con-
nected with comparison and oscillation theorems appeared later, e.g.,
[7]. It is largely due to Hanan [5], whose contribution was enormous,
especially in connection to the theory of conjugate points. Reader can
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find these and other results on separation and comparison theorems for
linear differential equations of the third-order summarized in [6 Chap-
ters 4.2. and 4.3. respectively]. There are several tests for oscillation
and disconjugacy in the linear case. Many of them are using the Euler
equation in connection with known comparison theorems. As it will
be clear later, some analogous methods from the theory of the linear
third-order differential equations

y′′′ + p1(t) y′ + p0(t) y = 0, (1)

will be presented. It is most general in the sense that equation x′′′ +
s2(t) x′′ + s1(t) x′ + s0(t) x = 0 can be always transformed into (1) by

y = x e−
1
3

R t
t0

s2(u) du

(under the assumption that s′1 and s′′0 are continuous). One can convince
oneself that p1 = s1 −

s2
2
3 − s′2 and p0 = s0 − s2 s1

3 + 2 s3
2

27 − s′′2
3 (see [4,

Section 1]). The Riccati equation corresponding to (1) is

w′′ + 3 w w′ + w3 + p1(t) w + p0(t) = 0, (2)

where standard substitution w = y′

y was made. In [5] is shown the
following: if equation (1) has p1 ≡ 0 and p0 of constant sign, then it is
oscillatory if

lim
t→∞

inf t3|p0| >
2

3
√

3

and nonoscillatory if

lim
t→∞

sup t3|p0| <
2

3
√

3
.

Note that these conditions are sharp and cannot be weakened. The
following result from [3] generalizes previous assertion. If p1 ≡ 0 and p0

has a constant sign, then reduced equation (1) is disconjugate on [a,∞)
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if ∣∣∣∣∫ t

a
(t− s) s3 p0(s) ds

∣∣∣∣ ≤ (t− a)2

3
√

3
, t > a.

The following ideas are largely helpful. The Euler differential equa-
tion

y′′′ +
γ̃

t3
y = 0, (3)

where γ̃ ∈ R, possesses a solution in the form tλ, exponents of which are
determined from the corresponding algebraic (indical) equation. There-
fore there are critical constants, which determine equation (3) to be
conditionally oscillatory equation. Being more specific, equation (3) is
oscillatory iff γ̃ ∈

[
− 2

3
√

3
, 2

3
√

3

]
.

2. Integral Comparison Theorem

We are concerned here with the third-order half-linear differential
equation (

φα1 [y
′]
)′′ + q(t) φα1 [y] = 0, (E)

where
φα1 [x] := |x|α1−1 x = |x|α1 sgn x, α1 > 0,

known as “signed power function”. Furthermore, we suppose that q ∈
C(I), I = [a, b) , a < b ≤ ∞ is nonnegative on I and q 6≡ 0 on any
subinterval of I. Analysis is based on conversion of (E) into an integral
equation (8) with the help of Riccati substitution and Euler-type dif-
ferential equation. This approach is inspired by paper [3]. The second-
order generalized Riccati equation corresponding to (E) is

z′′ + (2α1 + 1) |z|
1

α1
−1

z z′ + α2
1 |z|

2
α1 z + q(t) = 0, (5)

where transformation z = φα1

[
y′

y

]
is used. Now, we take into account

the generalized Euler differential equation
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(φα1 [y
′])′′ +

γ

tα1+2
φα1 [y] = 0. (6)

It is true that for specific γ there always exist, solution tλ, where
λ ∈ (1, 2). Moreover, if z(t) = φα1

[
λ
t

]
, then for arbitrary α1 (with

corresponding λ), it is true that λα1 ∈ (1, 2) and therefore we choose
w = 2− tα1 z to ensure that w ∈ (0, 1). It changes (5) into

t2 w′′ + (2 α1 + 1) t |2− w|
1

α1
−1(2− w) w′ − 2 α1 t w′ = α2

1 |2− w|
2

α1

(2− w) + (α2
1 + α1)(2− w)− α1 (2 α1 + 1) |2− w|

1
α1

+1 + tα1+2 q(t).
(7)

Let ω = α1(2 α1+1)
α1+1 , σ = ω+α1(2α1 +1), C = −σ 2

1
α1

+1 +α2
1 2

2
α1

+1

+2α1(α1 + 1) and D = ω 2
1

α1
+1 be a constant. Now, we use integration

by parts twice to obtain the integral equation

t2 w = a2 w(a) + g(a)(t− a) +
C

2
(t− a)2 +

D

2
(
t2 − a2

)
+

∫ t

a
[(t− s) H(w) + G(w, s)] ds + Q(t), (8)

where

g(a) = a2 w′(a)− 2 (α1 + 1) aw(a)− ω a |2− w(a)|
1

α1
+1

, (9)

H(w) = −σ |2− w|
1

α1
+1 + α2

1 |2− w|
2

α1 (2− w)− (α1 + 1)(α1 + 2) w

+ 2α1(α1 + 1)− C, (10)

G(w, s) = (4 + 2 α1) sw + ω s |2− w|
1

α1
+1 −Ds, (11)

Q(t) =
∫ t

a
(t− s) sα1+2 q(s) ds. (12)

Hence, w(t) solves (7) iff w solves (8). Further, we use the technique
of successive approximations to obtain a solution. Define the sequence
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wn = wn(t), n = 0, 1, 2, . . . by

t2 w0(t) = a2 w(a) + g(a)(t− a) +
C

2
(t− a)2 +

D

2
(
t2 − a2

)
+ Q(t),

t2 wk(t) = t2 w0(t) +
∫ t

a
(t− s) H(wk−1) ds +

∫ t

a
G(wk−1, s) ds, k ≥ 1.

(13)

We need to know some properties of the integrands in (13) and one
should know that this ”decomposition” is unique in the sense that in
order to preserve properties (in the next lemma) of G and H, one must
”choose” it in this form.

Lemma 2.1. Assume that α1 ≥ 1. Function G(w, s) is non-negative
in [0, 1] × [a, b) and function H(w) is non-negative and increasing in
[0, 1]. Further, G(w, s) is increasing function of variable w.

Proof . First we show the monotonicity of H on [0, 1]. One can show
that H ′(0) ≥ 0 and H ′(1) = 0 for α1 ∈ [1,∞) (actually H ′(0) ≤ 0.3
holds for such α1). But H ′′(w) has exactly one root in the interval [0, 1],
namely w∗ = 2−

(
2α1+1
2α1

)α1

, what implies H ′(w) ≥ 0, w ∈ [0, 1] for all
α1. Now we look at the positivity of H. Obviously, we have H(0) = 0.
Now, H(1) = 1

2 for α1 = 1 and lim
α1→∞

H(1) = 6 ln 2 − 3 − 2 ln 22 > 0.

Moreover, H ′(1) has no root for α1 ≥ 1 (H(1) is decreasing in α1) and
thus 0 < H(1) ≤ 1

2 for all α1 ≥ 1. But from the fact that H is increasing
on [0, 1] the result is obvious.

Monotonicity of G(w, s) follows directly from the inequality

∂G(w, s)
∂w

= s
(
2(2 + α1)− (2α1 + 1)(2− w)

1
α1

)
≥ 0

for (w, s) ∈ [0, 1] × [a, b), α1 ≥ 1. Further, we have G(0, s) = 0 and
G(1, s) ≥ 3

2s for all s ∈ [a, b). The result thus follows from the monotonic-
ity of G in w. This completes the proof. �
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Remark 2.1. Notice that for α1 < 1, H(w) is no more increasing
on [0, 1]. Moreover, G(w, s) is not increasing for all w ∈ [0, 1] and is not
positive for all s ∈ [a, t]. For α1 = 1, we have, in coincidence with [3],
H(w) = 3

2 w2 − w3 and G(w, s) = 3
2 sw2. Therefore, from this time

forth, we assume that α1 ≥ 1.

Lemma 2.2. Let w(t) be a solution of (8) s.t. 0 < w < 1 on
[a, b), a < b ≤ ∞ and suppose that

g(a)(t− a) +
C

2
(t− a)2 +

D

2
(
t2 − a2

)
+ Q(t) ≥ 0, t ≥ a.

Then the sequence {wk}∞k=0 converges uniformly to w on each compact
subset of [a, b).

Proof . From the assumptions of lemma, it is clear that t2 w0(t) >

0, t ≥ a. Thus,

t2(w1(t)− w0(t)) =
∫ t

a
(t− s) H(w0) ds +

∫ t

a
G(w0, s) ds > 0

holds. As well, we have for k > 1,

t2(wk(t)− wk−1(t)) =
∫ t

a
(t− s) [H(wk−1)−H(wk−2)] ds

+
∫ t

a
[G(wk−1, s)−G(wk−2, s)] ds,

which is positive for t > a, by induction, provided wk(t) < w(t), t > a.
But t2 (w(t)− w0(t)) > 0 and t2 (w(t)− wk(t)) > 0, again by induction
and assumptions of lemma. It follows from the Monotone Convergence
Theorem that

lim
k→∞

wk(t) = w∗(t) ≤ w(t), for each t,

and w∗ solves (8) with the same initial conditions as w. Thus w∗ =
w and by the Dini’s theorem, the convergence is uniform on compact
subset of [a, b). �
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Now consider related equation to (E)

(
φα1 [y

′]
)′′ + q1(t) φα1 [y] = 0, (E1)

q1 ∈ C(I). The generalized Riccati equation corresponding to (E1) is

z′′1 + (2α1 + 1) |z1|
1

α1
−1

z1 z′1 + α2
1 |z1|

2
α1 z1 + q1(t) = 0, (15)

and the corresponding integral equation after transformation v = 2 −
tα1z1 is

t2 v = a2 v(a) + g1(a)(t− a) +
C

2
(t− a)2 +

D

2
(
t2 − a2

)
+

∫ t

a
[(t− s) H1(w) + G1(w, s)] ds + Q1(t), (16)

where

g1(a) = a2 v′(a)− 2 (α1 + 1) a v(a)− ω a |2− v(a)|
1

α1
+1 (17)

H1(v) = −σ |2− v|
1

α1
+1 + α2

1 |2− v|
2

α1 (2− v)

−(α1 + 1)(α1 + 2) v + 2α1(α1 + 1)− C, (18)

G1(v, s) = (4 + 2 α1) s v + ω s |2− v|
1

α1
+1 −Ds, (19)

Q1(t) =
∫ t

a
(t− s) sα1+2 q1(s) ds. (20)

At first, notice that H1 coincides with H, as well G1 with G. It is clear

that if v solves (16) on [a, b), then z1(t) =
2− v(t)

tα1
solves (15) and

moreover y(t) = e
R t

a φ−1
α1

[z1(s)] ds is a positive solution of (E1). Let w be
a solution of (8) with 0 < w < 1 on I and the sequence {vk}∞k=0 be
defined for a ≤ t < b by

t2 v0(t) = a2 w(a) + g(a)(t− a) +
C

2
(t− a)2 +

D

2
(
t2 − a2

)
+ Q1(t),

t2 vk(t) = t2 v0(t) +
∫ t

a
(t− s) H1(vk−1) ds +

∫ t

a
G1(vk−1, s) ds, k ≥ 1.

(21)
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Notice, that the first element of defined sequence contains terms of w0,
which is the first element of the sequence (13) defined above.

Proposition 2.3. Let w(t) be solution of (8) such that 0 < w(t) < 1
on I. Assume

g(a)(t− a) +
C

2
(t− a)2 +

D

2
(
t2 − a2

)
+ Q1(t) ≥ 0, t ≥ a.

Further assume

Q1(t) ≤ Q(t), t ≥ a. (22)

Then the sequence {vk}∞k=0 converges, uniformly on compact substets of
I, to a solution v of (16) with 0 < v ≤ w on I.

Proof . Again it is clear that t2 v0(t) > 0, t ≥ a. It can be shown
similarly as in lemma 2.2 that vk(t) ≥ vk−1(t), k = 1, 2, . . . . Further,
if we define wk as in (13), then t2(w0(t)− v0(t)) ≥ 0 by condition (22).
For k > 1 we obtain

t2(wk(t)− vk(t)) =
∫ t

a
(t− s)(H(wk)−H(vk)) ds

+
∫ t

a
(G(wk, s)−G(vk, s)) ds

+Q(t)−Q1(t) ≥ 0

by assumptions and induction. Thus,

lim
k→∞

vk(t) = v(t) ≤ w(t),

uniformly on compact subsets [a, b) and v(t) is a solution of (16).

From the remark 2.1 is clear that the technique used here cannot
be used for α1 < 1. Now we present a conjecture, which is true if so is
the following conjecture. Equation (6) is nonoscillatory iff γ ∈ [γ−, γ+].



Integral Comparison Theorem for Half-linear ... 31

Figure 1.

Unfortunately, it cannot be proved as in the case of the second-order
half-linear equations, where the implicit (exact) type of solutions are
used, see [2]. This seems to be a challenge. We emphasize here that
the assertion plays an important role in the oscillation theory and one
should target the approval of it.

Conjecture 2.4. Let constants λ+, γ+ be defined as

λ+ =
(α1 + 1)(2 α1 + 1) +

√
(α1 + 1)(5α1 + 1)

2 α1 (α + 2)
,

and
γ+ = −α1λ

α1
+ (λ+ − 1)(α1λ+ − α1 − 1),

respectively. Then

γ+

2
(t− a)2 ≥ Q1(t) ≥

(
2 a (α1 + 1)(2− λα1

+ ) + ω aλα1+1
+

)
(t− a)− C

2
(t− a)2 − D

2
(
t2 − a2

)
implies disconjugacy of (E1) on [a,∞).

Conjecture 2.4 says that sufficient condition for equation to be dis-
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conjugate on [a,∞) is falling q(t) into the area between two parabolic
curves, see picture 2. We notice the interesting fact that with the in-
creasing α1 a parabolic curves of the region achieve the bound.

Remark 2.2. Limiting cases:

α1 →∞

Rh =

q1 : (c̃1 t + a c̃2)(t− a) ≤ Q1(t) ≤
(√

5− 2
)
e
√

5−1
2

2
(t− a)2


where c̃1 = ln 2 (1− ln 2), c̃2 = ln 2 (ln 2−5)+6+

(√
5− 4

)
e
√

5−1
2

α1 → 1

Rl =
{

q1 : −a (t− a)√
3

≤ Q1(t) ≤
(t− a)2

3
√

3

}
The question of α1 < 1 is left as an open question and it seems to be a
big challenge.
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