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Abstract

Let R be a ring with identity. Then a right R-module M is called a
Q-module if for any A<, M and B <, M, A+B =M yields

AN B <. M. Itis shown that a module M is quasi-discrete if and only

if M is an amply supplemented Q-module. Dually, a right R-module M is
called a P-module if forany A<; M and B <, M, AN B =0 yields

A® B <. M. We prove that a module M is quasi-continuous if and only
if M is a P-module.

1. Introduction

Quasi-discrete (quasi-continuous) modules play important roles in rings and
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categories of modules and they have been extensively studied by many authors (see
[2-4, 6, 9, 11]). Let M be a module. Consider the following conditions:

(Dy) For every submodule A of M, there is a decomposition M = M; @ M,
such that M; < A and ANM, < M;

(D2) If A<M such that M/A is isomorphic to a direct summand of M, then A
is a direct summand of M;

(D5) If A and B are direct summands of M such that A+ B =M, then AN B is
a direct summand of M.

The module M is called lifting (see [2]) if it satisfies (D;); M is called discrete if
it satisfies (D;) and (D,); M is called quasi-discrete if it satisfies (D;) and (Ds).
According to [9], a module M is called a T-module if for A<, M and B<M,
M/A=M/B implies B <, M. Keskin in [9] gave a new characterization of

discrete modules by showing that a module M is discrete if and only if M is an amply
supplemented T-module satisfying (D;).

Note that the notion of T-modules is derived from the condition (D,) by
replacing “direct summand” by “coclosed submodule”. Inspired by this, we
introduce the concept of Q-modules on the basis of the condition (D3) and use it to
characterize quasi-discrete modules in Section 2. We call a right R-module M a
Q-module if for any A<, M and B<,. M, A+B=M vyields ANB <, M. It

is shown that a module M is quasi-discrete if and only if M is an amply
supplemented Q-module.
Let M be a module. Dually, consider the following conditions:

(C,) Every submodule of M is essential in a direct summand of M;

(Cy) If a submodule A of M is isomorphic to a direct summand of M, then A is a
direct summand of M;

(Cy) If A and B are direct summands of M such that AN B =0, then A®@B isa
direct summand of M.

The module M is called extending [3] if it satisfies (C;); M is called continuous
if it satisfies (C;) and (C,); M is called quasi-continuous if it satisfies (C,) and (Cs).
Er in [4] gave the notion of SICC-modules and used it to characterize continuous
modules. A module M is SICC if any submodule N which is isomorphic to a closed
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submodule of M is closed. It was shown in [5] that a module M is continuous if and
only if M is an SICC-module satisfying (Ci;). Inspired by the notion of SICC-
modules, we introduce the concept of P-modules through the condition (C3) and try
to give a new characterization of quasi-continuous modules. We call a right R-
module M a P-module if forany A<, M and B<; M, AN B=0 yields A®B
<c M. It is shown that a module M is quasi-continuous if and only if M is a

P-module in Section 3.

Throughout this paper, all rings are associative with unity and all modules will
be unital right R-modules. Let M be a module and S <M. S is called small in M

(denoted by S< M) ifforany T<M, S+T =M implies T =M. Dually, S is
called essential in M (denoted by S <, M) if forany T <M, SNT =0 implies
T =0. For N, L <M, Nisasupplement of L in M if N is a minimal element in the
set of submodules K <M with K + L =M. Equivalently, N+ L =M with NNL
< N. Dually, N is a complement of L in M if it is maximal in the set of submodules
K <M with KNL=0. M is called supplemented if every submodule of M has a
supplement in M. M is amply supplemented if, for any submodules A, B of M with
M = A+ B there exists a supplement P of A in M such that P <B. Let M be a
module and B< A< M. If A/B < M/B, then B is called a coessential submodule
of A'in M. A submodule A of M is called coclosed (denoted by A<, M) if A has

no proper coessential submodule. Dually, a submodule A of M is called closed
(denoted by A<, M) if A has no proper essential extension in M. Also, we will

call B an coclosure (or an s-closure) of A in M, if B is a coessential submodule of A
and B is coclosed in M. All undefined concepts can be found in [2, 3, 14].

2. Q-modules

In this section, the notion of Q-modules is introduced and a new
characterization of quasi-discrete modules is given. It is shown that a module M is
quasi-discrete if and only if M is an amply supplemented Q-module. We start with
the following.

Definition 2.1. A module M is called a Q-module if for any A<, M and
B<,. M, A+B=M implies ANB <, M.
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Recall that a module M is said to be weakly supplemented if for each submodule
A of M there is a submodule B of M such that M = A+ B and A(1B <« M.

Lemma 2.2 ([8, Lemma 1.1]). Let M be a module and N <M. Consider the
following conditions:

(1) N is a supplement submodule of M;

(2) N is coclosed in M;

(3)Forall X <N, X <M implies X < N.
Then (1) = (2) = (3) hold. If M is a weakly supplemented module, then (3) = (1)
holds.

Proposition 2.3. Any direct summand of a weakly supplemented Q-module is a
Q-module.

Proof. Let N be a direct summand of a Q-module M and A<, N, B<, N

with A+ B =N. Since N is coclosed in M, A and B are coclosed in M. Let
M=N®N" Then M =A+B®N". It is easy to verify that B®& N'<.,. M by

Lemma 2.2, and hence AN(B@® N') <., M by assumption. Since AN(B® N’) =
ANB, ANB<, M. Thus AN B < N, as desired. O

Theorem 2.4. The following statements are equivalent for an amply
supplemented module M.

(1) M is a Q-module;

(2)If A<cM, B<,c M, M=A+B holds and ANB <M, then M =
A® B.

Proof. “(1) = (2)” Let A<, M, B<,c M with M = A+B and ANB < M.
Since M is a Q-module, A1 B <, M and hence A B = 0. Therefore, M = A® B.

“(2)= (1)” Let A<, M, B<, M with M = A+ B. Next we shall show that
AN B <, M. Since M is an amply supplemented module, there is a supplement L
of Bsuchthat L< A. Thus M =L+ B and LB « L. Since L and B are coclosed
in M,M =L®B by assumption, and so A=ANM =(ANB)® L. Note that
A< M, ANB< A so ANB <. M, as required. O
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Theorem 2.5. A module M is quasi-discrete if and only if M is an amply
supplemented Q-module.

Proof. It follows by Theorem 2.4 and [12, Proposition 4.11]. O

Lemma 2.6 ([8, Lemma 2.5]). Let M = M; & M,. Then M; is M, -projective
if and only if for any A<M with A+ M, =M, there exists some L <M with
L<Aand My ®L=M.

Proposition 2.7. If M = A® B is an amply supplemented Q-module, then A
and B are relatively projective.

Proof. We shall show that A is B-projective, the fact that B is A-projective
follows by symmetry. Let X <M and M = X + B. Since M is amply supplemented,
there is a submodule K of M such that M =K + B and KB <« K < X. Since K

and B are coclosed in M, KB is coclosed in M by assumption. Therefore,

K N B =0, and hence A is B-projective by Lemma 2.6. O

Corollary 2.8 ([12, Lemma 4.23]). If M = A® B is a quasi-discrete module,
then A and B are relatively projective.

Corollary 2.9. Let M =M @ ---@® M,, be a Q-module. Then M is lifting if and
only if M is amply supplemented and M; is lifting.

Proof. It follows by Proposition 2.7 and [8, Corollary 2.9]. O

A quasi-discrete module is a Q-module, but the converse is not true. The
following examples show that a Q-module need not be a quasi-discrete module.

Example 2.10. It is well known that a ring R is a right V-ring if and only if for
any right R-module M, any submodule is coclosed in M. Thus any right R-module M
over a right V-ring is a Q-module. However, any right R-module M over a right
V-ring need not be a quasi-discrete module.

Example 2.11. Let R be a discrete valuation ring with field of fractions K.
Assume Kpg is not quasi-projective. By Keskin [8, Example 3.7], the R-module
M =K @ K is not amply supplemented. Hence it is not quasi-discrete. But every
coclosed submodule is a direct summand of M. By Smith and Tercan [12, Lemma
3.6], M satisfies (D,) and so M satisfies (D3). Thus M is a Q-module.
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3. P-modules

We define P-modules and use them to characterize quasi-continuous modules in
this section. It is proved that a module M is quasi-continuous if and only if M is a
P-module.

Definition 3.1. A module M is called a P-module if for any A<. M and
B<. M, ANNB=0 implies A®@B <. M.

Proposition 3.2. Any direct summand of a P-modules is a P-module.

Proof. Let N be a direct summand of a P-module Mand A<; N, B<. N with
AN B =0. Since N is closed in M, A and B are closed in M. Note that AN B =0
and M is a P-module, A@ B <; M and hence A® B <. N, as required. O

Proposition 3.3. Any P-module satisfies (Cy).

Proof. Let A and B be direct summands of M with A1 B =0. Then there is a
complement L of A in M such that B<L. Since A and L are closed in M with
ANL=0, A®L isclosedin M by assumption. Note that A@ L <, M, so A®@L

=M. Since B is a direct summand of M, it is a direct summand of L, and hence
A® B is a direct summand of M. This completes the proof. O

Lemma 3.4 ([8, Lemma 7.5]). Let M = M; @ M,. Then My is M, -injective if
and only if forany A<M with A(1M; =0, there exists some L <M with A<L
and My ®L =M.

Proposition 3.5. If M is a P-module and M =A®B, then A and B are
relatively injective.

Proof. We shall show that A is B-injective. (B is A-injective follows by
symmetry.) Let X <M and X () A=0. Then there is a closed submodule L of

M such that X <L, ANL=0 and A@L <, M. Since A<, M, L<, M and
ANL=0, A®L<, M by assumption. Note that A®L <, M, so A®L=M.
Thus A is B-injective by Lemma 3.4. |

It is known that a ring R is a QF ring if and only if the right R-module RN js
injective. Now we have:
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Corollary 3.6. A ring R is a QF ring if and only if the right R-module RN s a
P-module.

Also, a well known result asserts that a ring R is semisimple Artinian if and only
if every cyclic R-module is injective.

Corollary 3.7. A ring R is semisimple Artinian if and only if every 2-generated
R-module is a P-module.

We know that a ring R is right self-injective if and only if R® R is quasi-
continuous as a right R-module. Hence we have the following.

Corollary 3.8. Aring R is right self-injective if and only if R @ R is a P-module
as a right R-module.

Corollary 3.9 ([12, Proposition 2.10]). If M is a quasi-continuous module and

M = A® B, then A and B are relatively injective.

Proof. It is clear that a quasi-continuous module is a P-module. O

Corollary 3.10. Let M =M, & --- @ M, be a P-module. Then M is extending if

and only if all M; are extending.
Proof. It follows by Proposition 3.5 and [3, Proposition 7.10]. |
Theorem 3.11. A module M is quasi-continuous if and only if M is a P-module.
Proof. “=" is clear.

“<=" It suffices to proof that M satisfies the condition (C,) by Proposition 3.3.
Let N be any closed submodule of M. By Zorn Lemma, there is a closed submodule
N" of Msuchthat N(IN'=0 and N @ N' <, M. Since M is a P-module, N & N’

<c M, and hence N @ N’ =M. That is to say that N is a direct summand of M.
Thus M satisfies the condition (C,). |

We end this section with the following. We know that the condition (C,) implies
the condition (Cs). It is natural to ask whether a SICC-module is a P-module. The
following example shows that a SICC-module need not be a P-module.

Example 3.12. Let K be a field and V = K x K. Consider the ring R of 2 x2
matrix of the form (a;;) with a1, ayp € K, ap €V, ay; =0 and a3 = ay,. Now

the only right ideals of Rare 0, Rg, Iy, Io, I3, I(x, y) forany nonzeroxandy in
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K, where Iy is the set of (a;;) with ay3, @y, ap; all zero, and a;, € K x0; 15 is

the set of (a;j) with &, az), ay; all zero, and &, € 0x K; 13 is the set of (&)

with aq, ayp, apy all zero, and a;p e V; 1(x, y) is the set of (a;;) with ayy,

ayy, ay all zero, and a;5 e (x, y)K. Now all the right ideals except I3 are closed

in Rg, and I3 is not closed since it is essential in Rg. Rgr is a SICC-module.

However, it is easy to verify that Rg is not a P-module.
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