

NEW CHARACTERIZATIONS OF QUASI-DISCRETE (QUASI-CONTINUOUS) MODULES

YONGDUO WANG, DEJUN WU and ZHONGKUI LIU*

Department of Applied Mathematics Lanzhou University of Technology Lanzhou 730050, P. R. China e-mail: ydwang@lut.cn wudj@lut.cn

Department of Mathematics Northwest Normal University Lanzhou 730070, P. R. China e-mail: liuzk@nwnu.edu.cn

Abstract

Let R be a ring with identity. Then a right R-module M is called a Q-module if for any $A \leq_{CC} M$ and $B \leq_{CC} M$, A + B = M yields $A \cap B \leq_{CC} M$. It is shown that a module M is quasi-discrete if and only if M is an amply supplemented Q-module. Dually, a right R-module M is called a P-module if for any $A \leq_{C} M$ and $B \leq_{C} M$, $A \cap B = 0$ yields $A \oplus B \leq_{C} M$. We prove that a module M is quasi-continuous if and only if M is a P-module.

1. Introduction

Quasi-discrete (quasi-continuous) modules play important roles in rings and

© 2011 Pushpa Publishing House

2010 Mathematics Subject Classification: 16D10, 16D99.

Keywords and phrases: quasi-discrete module, quasi-continuous module, Q-module,

P-module, SICC-module.

Received January 7, 2011

categories of modules and they have been extensively studied by many authors (see [2-4, 6, 9, 11]). Let M be a module. Consider the following conditions:

- (D₁) For every submodule A of M, there is a decomposition $M = M_1 \oplus M_2$ such that $M_1 \le A$ and $A \cap M_2 \ll M$;
- (D₂) If $A \le M$ such that M/A is isomorphic to a direct summand of M, then A is a direct summand of M;
- (D_3) If A and B are direct summands of M such that A + B = M, then $A \cap B$ is a direct summand of M.

The module M is called *lifting* (see [2]) if it satisfies (D_1) ; M is called *discrete* if it satisfies (D_1) and (D_2) ; M is called *quasi-discrete* if it satisfies (D_1) and (D_3) . According to [9], a module M is called a T-module if for $A \leq_{cc} M$ and $B \leq M$, $M/A \cong M/B$ implies $B \leq_{cc} M$. Keskin in [9] gave a new characterization of discrete modules by showing that a module M is discrete if and only if M is an amply supplemented T-module satisfying (D_{11}) .

Note that the notion of T-modules is derived from the condition (D_2) by replacing "direct summand" by "coclosed submodule". Inspired by this, we introduce the concept of Q-modules on the basis of the condition (D_3) and use it to characterize quasi-discrete modules in Section 2. We call a right R-module M a Q-module if for any $A \leq_{cc} M$ and $B \leq_{cc} M$, A + B = M yields $A \cap B \leq_{cc} M$. It is shown that a module M is quasi-discrete if and only if M is an amply supplemented Q-module.

Let *M* be a module. Dually, consider the following conditions:

- (C_1) Every submodule of M is essential in a direct summand of M;
- (C_2) If a submodule A of M is isomorphic to a direct summand of M, then A is a direct summand of M;
- (C₃) If A and B are direct summands of M such that $A \cap B = 0$, then $A \oplus B$ is a direct summand of M.

The module M is called *extending* [3] if it satisfies (C_1) ; M is called continuous if it satisfies (C_1) and (C_2) ; M is called *quasi-continuous* if it satisfies (C_1) and (C_3) . Er in [4] gave the notion of SICC-modules and used it to characterize continuous modules. A module M is SICC if any submodule N which is isomorphic to a closed

submodule of M is closed. It was shown in [5] that a module M is continuous if and only if M is an SICC-module satisfying (C_{11}) . Inspired by the notion of SICC-modules, we introduce the concept of P-modules through the condition (C_3) and try to give a new characterization of quasi-continuous modules. We call a right R-module M a P-module if for any $A \le_C M$ and $B \le_C M$, $A \cap B = 0$ yields $A \oplus B \le_C M$. It is shown that a module M is quasi-continuous if and only if M is a P-module in Section 3.

Throughout this paper, all rings are associative with unity and all modules will be unital right R-modules. Let M be a module and $S \leq M$. S is called *small* in M (denoted by $S \ll M$) if for any $T \leq M$, S + T = M implies T = M. Dually, S is called essential in M (denoted by $S \leq_e M$) if for any $T \leq M$, $S \cap T = 0$ implies T=0. For $N, L \leq M$, N is a supplement of L in M if N is a minimal element in the set of submodules $K \leq M$ with K + L = M. Equivalently, N + L = M with $N \cap L$ $\ll N$. Dually, N is a complement of L in M if it is maximal in the set of submodules $K \leq M$ with $K \cap L = 0$. M is called supplemented if every submodule of M has a supplement in M. M is amply supplemented if, for any submodules A, B of M with M = A + B there exists a supplement P of A in M such that $P \le B$. Let M be a module and $B \le A \le M$. If $A/B \ll M/B$, then B is called a coessential submodule of A in M. A submodule A of M is called *coclosed* (denoted by $A \leq_{cc} M$) if A has no proper coessential submodule. Dually, a submodule A of M is called closed (denoted by $A \leq_c M$) if A has no proper essential extension in M. Also, we will call B an coclosure (or an s-closure) of A in M, if B is a coessential submodule of A and B is coclosed in M. All undefined concepts can be found in [2, 3, 14].

2. Q-modules

In this section, the notion of Q-modules is introduced and a new characterization of quasi-discrete modules is given. It is shown that a module M is quasi-discrete if and only if M is an amply supplemented Q-module. We start with the following.

Definition 2.1. A module M is called a Q-module if for any $A \leq_{cc} M$ and $B \leq_{cc} M$, A + B = M implies $A \cap B \leq_{cc} M$.

Recall that a module M is said to be *weakly supplemented* if for each submodule A of M there is a submodule B of M such that M = A + B and $A \cap B \ll M$.

Lemma 2.2 ([8, Lemma 1.1]). Let M be a module and $N \le M$. Consider the following conditions:

- (1) N is a supplement submodule of M;
- (2) N is coclosed in M;
- (3) For all $X \leq N$, $X \ll M$ implies $X \ll N$.

Then $(1) \Rightarrow (2) \Rightarrow (3)$ hold. If M is a weakly supplemented module, then $(3) \Rightarrow (1)$ holds.

Proposition 2.3. Any direct summand of a weakly supplemented Q-module is a Q-module.

Proof. Let N be a direct summand of a Q-module M and $A \leq_{cc} N$, $B \leq_{cc} N$ with A + B = N. Since N is coclosed in M, A and B are coclosed in M. Let $M = N \oplus N'$. Then $M = A + B \oplus N'$. It is easy to verify that $B \oplus N' \leq_{cc} M$ by Lemma 2.2, and hence $A \cap (B \oplus N') \leq_{cc} M$ by assumption. Since $A \cap (B \oplus N') = A \cap B$, $A \cap B \leq_{cc} M$. Thus $A \cap B \leq_{cc} N$, as desired.

Theorem 2.4. The following statements are equivalent for an amply supplemented module M.

- (1) M is a Q-module;
- (2) If $A \leq_{cc} M$, $B \leq_{cc} M$, M = A + B holds and $A \cap B \ll M$, then $M = A \oplus B$.

Proof. "(1) \Rightarrow (2)" Let $A \leq_{cc} M$, $B \leq_{cc} M$ with M = A + B and $A \cap B \ll M$. Since M is a Q-module, $A \cap B \leq_{cc} M$ and hence $A \cap B = 0$. Therefore, $M = A \oplus B$.

"(2) \Rightarrow (1)" Let $A \leq_{cc} M$, $B \leq_{cc} M$ with M = A + B. Next we shall show that $A \cap B \leq_{cc} M$. Since M is an amply supplemented module, there is a supplement L of B such that $L \leq A$. Thus M = L + B and $L \cap B \ll L$. Since L and B are coclosed in M, $M = L \oplus B$ by assumption, and so $A = A \cap M = (A \cap B) \oplus L$. Note that $A \leq_{cc} M$, $A \cap B \leq_{cc} A$, so $A \cap B \leq_{cc} M$, as required.

Theorem 2.5. A module M is quasi-discrete if and only if M is an amply supplemented Q-module.

Proof. It follows by Theorem 2.4 and [12, Proposition 4.11].

Lemma 2.6 ([8, Lemma 2.5]). Let $M = M_1 \oplus M_2$. Then M_1 is M_2 -projective if and only if for any $A \le M$ with $A + M_2 = M$, there exists some $L \le M$ with $L \le A$ and $M_2 \oplus L = M$.

Proposition 2.7. If $M = A \oplus B$ is an amply supplemented Q-module, then A and B are relatively projective.

Proof. We shall show that A is B-projective, the fact that B is A-projective follows by symmetry. Let $X \le M$ and M = X + B. Since M is amply supplemented, there is a submodule K of M such that M = K + B and $K \cap B \ll K \le X$. Since K and $K \cap B$ are coclosed in $K \cap B$ is coclosed in $K \cap B$ by assumption. Therefore, $K \cap B = 0$, and hence $K \cap B = 0$, and hence $K \cap B = 0$ and hence $K \cap B = 0$.

Corollary 2.8 ([12, Lemma 4.23]). If $M = A \oplus B$ is a quasi-discrete module, then A and B are relatively projective.

Corollary 2.9. Let $M = M_1 \oplus \cdots \oplus M_n$ be a Q-module. Then M is lifting if and only if M is amply supplemented and M_i is lifting.

Proof. It follows by Proposition 2.7 and [8, Corollary 2.9]. \Box

A quasi-discrete module is a *Q*-module, but the converse is not true. The following examples show that a *Q*-module need not be a quasi-discrete module.

Example 2.10. It is well known that a ring R is a right V-ring if and only if for any right R-module M, any submodule is coclosed in M. Thus any right R-module M over a right V-ring is a Q-module. However, any right R-module M over a right V-ring need not be a quasi-discrete module.

Example 2.11. Let R be a discrete valuation ring with field of fractions K. Assume K_R is not quasi-projective. By Keskin [8, Example 3.7], the R-module $M = K \oplus K$ is not amply supplemented. Hence it is not quasi-discrete. But every coclosed submodule is a direct summand of M. By Smith and Tercan [12, Lemma 3.6], M satisfies (D_2) and so M satisfies (D_3) . Thus M is a Q-module.

3. P-modules

We define P-modules and use them to characterize quasi-continuous modules in this section. It is proved that a module M is quasi-continuous if and only if M is a P-module.

Definition 3.1. A module M is called a P-module if for any $A \leq_c M$ and $B \leq_c M$, $A \cap B = 0$ implies $A \oplus B \leq_c M$.

Proposition 3.2. Any direct summand of a P-modules is a P-module.

Proof. Let N be a direct summand of a P-module M and $A \leq_c N$, $B \leq_c N$ with $A \cap B = 0$. Since N is closed in M, A and B are closed in M. Note that $A \cap B = 0$ and M is a P-module, $A \oplus B \leq_c M$ and hence $A \oplus B \leq_c N$, as required. \square

Proposition 3.3. Any P-module satisfies (C_3) .

Proof. Let A and B be direct summands of M with $A \cap B = 0$. Then there is a complement L of A in M such that $B \leq L$. Since A and L are closed in M with $A \cap L = 0$, $A \oplus L$ is closed in M by assumption. Note that $A \oplus L \leq_e M$, so $A \oplus L = M$. Since B is a direct summand of M, it is a direct summand of L, and hence $A \oplus B$ is a direct summand of M. This completes the proof.

Lemma 3.4 ([8, Lemma 7.5]). Let $M = M_1 \oplus M_2$. Then M_1 is M_2 -injective if and only if for any $A \le M$ with $A \cap M_1 = 0$, there exists some $L \le M$ with $A \le L$ and $M_1 \oplus L = M$.

Proposition 3.5. If M is a P-module and $M = A \oplus B$, then A and B are relatively injective.

Proof. We shall show that A is B-injective. (B is A-injective follows by symmetry.) Let $X \le M$ and $X \cap A = 0$. Then there is a closed submodule L of M such that $X \le L$, $A \cap L = 0$ and $A \oplus L \le_e M$. Since $A \le_c M$, $L \le_c M$ and $A \cap L = 0$, $A \oplus L \le_c M$ by assumption. Note that $A \oplus L \le_e M$, so $A \oplus L = M$. Thus A is B-injective by Lemma 3.4.

It is known that a ring R is a QF ring if and only if the right R-module $R^{(\mathbb{N})}$ is injective. Now we have:

Corollary 3.6. A ring R is a QF ring if and only if the right R-module $R^{(\mathbb{N})}$ is a P-module.

Also, a well known result asserts that a ring R is semisimple Artinian if and only if every cyclic R-module is injective.

Corollary 3.7. A ring R is semisimple Artinian if and only if every 2-generated R-module is a P-module.

We know that a ring R is right self-injective if and only if $R \oplus R$ is quasicontinuous as a right R-module. Hence we have the following.

Corollary 3.8. A ring R is right self-injective if and only if $R \oplus R$ is a P-module as a right R-module.

Corollary 3.9 ([12, Proposition 2.10]). *If M is a quasi-continuous module and* $M = A \oplus B$, then A and B are relatively injective.

Proof. It is clear that a quasi-continuous module is a P-module.

Corollary 3.10. Let $M = M_1 \oplus \cdots \oplus M_n$ be a P-module. Then M is extending if and only if all M_i are extending.

Proof. It follows by Proposition 3.5 and [3, Proposition 7.10].

Theorem 3.11. A module M is quasi-continuous if and only if M is a P-module.

Proof. " \Rightarrow " is clear.

" \Leftarrow " It suffices to proof that M satisfies the condition (C_1) by Proposition 3.3. Let N be any closed submodule of M. By Zorn Lemma, there is a closed submodule N' of M such that $N \cap N' = 0$ and $N \oplus N' \leq_e M$. Since M is a P-module, $N \oplus N' \leq_c M$, and hence $N \oplus N' = M$. That is to say that N is a direct summand of M. Thus M satisfies the condition (C_1) .

We end this section with the following. We know that the condition (C_2) implies the condition (C_3) . It is natural to ask whether a SICC-module is a P-module. The following example shows that a SICC-module need not be a P-module.

Example 3.12. Let K be a field and $V = K \times K$. Consider the ring R of 2×2 matrix of the form (a_{ij}) with a_{11} , $a_{22} \in K$, $a_{12} \in V$, $a_{21} = 0$ and $a_{11} = a_{22}$. Now the only right ideals of R are 0, R_R , I_1 , I_2 , I_3 , I(x, y) for any nonzero x and y in

K, where I_1 is the set of (a_{ij}) with a_{11} , a_{22} , a_{21} all zero, and $a_{12} \in K \times 0$; I_2 is the set of (a_{ij}) with a_{11} , a_{22} , a_{21} all zero, and $a_{12} \in 0 \times K$; I_3 is the set of (a_{ij}) with a_{11} , a_{22} , a_{21} all zero, and $a_{12} \in V$; I(x, y) is the set of (a_{ij}) with a_{11} , a_{22} , a_{21} all zero, and $a_{12} \in (x, y)K$. Now all the right ideals except I_3 are closed in R_R , and I_3 is not closed since it is essential in R_R . R_R is a SICC-module. However, it is easy to verify that R_R is not a P-module.

References

- [1] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, 2nd ed., Springer-Verlag, New York, Heidelberg, Berlin, 1992.
- [2] J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, Lifting modules, Supplements and Projectivity in Module Theory Series: Frontiers in Mathematics, 2006.
- [3] N. V. Dung, D. V. Huynh, P. F. Smith and R. Wisbauer, Extending modules, Pitman Research Notes in Mathematics 313, Longman, 1994.
- [4] N. Er, When submodules isomorphic to complements are complements, East-West J. Math. 4 (2002), 29-40.
- [5] N. Er, Direct sums and summands of weak CS-modules and continuous modules, Rocky Mountain J. Math. 29 (1999), 491-503.
- [6] L. Ganesan and N. Vanaja, Strongly discrete modules, Comm. Algebra 35 (2007), 897-913.
- [7] L. Ganesan and N. Vanaja, Modules for which every submodule has a unique coclosure, Comm. Algebra 30 (2002), 2355-2377.
- [8] D. Keskin, On lifting modules, Comm. Algebra 28 (2000), 3427-3440.
- [9] D. Keskin, On coclosed submodules, Indian J. Pure Appl. Math. 36 (2005), 135-144.
- [10] D. Keskin and W. M. Xue, Generalizations of lifting modules, Acta Math. Hungar. 91 (2001), 253-261.
- [11] D. Keskin, Discrete and quasi-discrete modules, Comm. Algebra 30 (2002), 5273-5282.
- [12] S. H. Mohamed and B. J. Müller, Continuous and Discrete Modules, London Math. Soc.; LNS 147, Cambridge Univ. Press, Cambridge, 1990.
- [13] P. F. Smith and A. Tercan, Generalizations of CS-modules, Comm. Algebra 21 (1993), 1809-1847.
- [14] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia, 1991.