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Abstract

Let @ ¢ RY be a bounded domain. Let Tk denote the weakly singular

integral operator of the form Tkf(x) = ‘[ K(x, y)f(v)dy generated by
Q

the kernel K(x, y) = l(x, y)/| x —y|N_a. In case N/2< o< N, we
prove that if |I(x, y)| < g(y) and g € Ly/q,1(Q), then (1,(Tk)) € lo,

which improves the corresponding results in [J. Funct. Anal. 37 (1980),
88-126], [Math. Ann. 268 (1984), 127-136].

1. Introduction

Let Q c RN be a domain, A denote the Lebesgue measure on RN

and K : Q% - R be a measurable function given by

K(x,y)z%, 0<a<AN. 1)
|x =y

The so-called weakly singular integral operator Tk 1is the integral

operator, with the weakly singular kernel K(x, y), of the form
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Tef() = | K. 9)f()dy. @

where f belongs to some suitable complex-valued function space. It is well
known that a number of integral equations, derived from differential

equations with boundary values, possess weakly singular kernels.
Let O ¢ RN be a bounded domain. In case, where N/2 < a < N,
Konig et al. in [6] proved that if | I(x, ¥)| < g(y) and g € Ly(Q, 1), then

the eigenvalues A, (T ) of Tk satisfy (A,(Tx)) € ly. Using the theory of

entropy number, Carl and Kithn improved the result of [6]. They obtained
in [1] that if g € L,(Q) and N/a < g < +oo, then (A, (Tk)) € L.

In this paper, we will prove, by means of the property of Lorentz
function space and the theory of p-summing operators, that the condition

g € Ly/q,1(Q) alone is sufficient for (A,(Tk)) € ly. Background material

can be found in [2-4].
2. A Property of Lorentz Function Space

Let p' denote the conjugate index defined by 1/p +1/p’ =1. Let
(Q, 2, n) be a measure space and f : Q — R be a measurable function.
Putting ds(s) = p{o € Q|| f(o)| > s}, we recall from [5] that the
decreasing rearrangement of f, f* :[0, u(Q)) — [0, ©) is given by
f(t) = inf{s > 0 | d¢(s) < t}. If u(Q) < o, then extend f* to [u(Q2), =) by
0. For 0 < p < and 0 < q < o, the Lorentz function space L, ,(Q, 1)

consists of all measurable functions f : Q — R such that

+00 * 1/ 1/q
" f "(p,q) =

0

3

suptYPf*(t) < oo, q = .
t>0

Lemma 1. Let f, g : Q - R be measurable functions. Then for any

t € [0, p(Q),
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(f-g)@) < f () g @) €
Proof. Since
wlo € Q| f(0)-gw)|> )& @)
<ploc Q[ f(0)|> @) +nloc Q] gw)|> g @) =2,
by the definition of rearrangement, we have (f - g)"(2t) < f*(t)- g"(t). The

proof is complete.

Theorem 1. Let 0 < p;, py < and 0 < g1, g3 < . Let 1/p =1/p;
+1/py and 1/q =1/q; +1/qy. Then

Ly, q(Q)0 Ly, 4,(Q) < L (). (5)

Proof. Let f e L, 4 (Q) and ge L (Q). Then by Lemma 1 and

D2,92

Hélder inequality, we have

+o0 o) 1/p\q /g
||f~g||(p,q)ZUO s t(t)t - dt]

< 21/1{ J’ () g:(t)tl/ ) dtjl/q

0

<27 £, )

1)’ Ie "(pz,Qz)'
The proof is complete.
Theorem 2. Let 0 < p;, py < o and 0 < q1, q9 < . Let 1/p =1/p;

+1/pg and 1/q =1/q +1/qs. If p(Q) < + and py/ps < q1/qz, then
Lp;,q, (@) © Ly q,(R) = Lp, (). 0
Proof. Since p;/ps < q1/qq, it is easy to verify that ¢;/p; —¢/p > 0.
Let h(x) e Lp 4(Q). Denote f(x)=|h(x)|¥? and g(x)= sign(h(x))
-|h(x)|q/q2. Then f(x)- g(x) = h(x). We shall prove that f e L, 4 (Q).

Indeed, dg(s) = dh(sql/q) and then f*(¢) =inf{s > 0| dy(s /) < 4} =



84 HONG-LIANG ZHAO and DIAN-CHUAN JIN

(h*(£))/%. Hence we have

/&
wQ) (f*(t)tl/pl )Q1 L
" f ||(p1,q1) = (JO ¢ dt

* 1/
_ U u(mwtfh/mfﬂpdt} "
0 t

< w(@) /P9l el < o, ®)

Similarly, we can prove that g e L(,, 4,)(Q). Thus, we have L, ,(Q)

c Ly q(@Q)eL (©). Our proof now follows from this and Theorem 1.

D2,492
3. Eigenvalue Distribution of Weakly Singular Kernel

Using the above theorems and the theory of p-summing operator, we
now discuss the eigenvalue distribution of (2). In the following, we always

suppose that Q RY is a bounded domain and N/2 < a < N, and we
write p = N/a and e, (y) =|x -y |a_N for the sake of simplicity.

Theorem 3. If |I(x, y)|< g(y) and g € Ly/q1(Q), then (1, (Tk)) € ls.

Proof. By [5, Lemma 1.¢.7], for any f € L, 1(Q), we have

[ Teorona < [V ezor o
Q 0

. MQ) )P
< supe,*c(t)tl/p J. ( Mdt
t>0 0 ¢

< {21 F lpy ©)

where o) denotes the N-volume of the unit ball in RN, Let J(x, y) =
K (x, y)/g(y). We show that the integral operator T);, defined by /, is a

continuous operator which maps L,;(Q) into L,(Q). For any

f € L, 1(Q), from Hélder inequality and (9), we have
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| Tsf |, = esssup

xeQ)

[ I )Gy ‘

IA

esssup | |e (¥)f(y)|dy
xeQ Q

U

< PN lip.ay (10)

Thus, T : L, 1 = L, is a continuous operator with ||T; : L, — L |
1/p'
SON -

We now construct a factorization of g. Let 1/s =1/p —1/2. From

Theorem 2 and g € L, 1(Q), there exists a factorization of the form

8(y) = &1() - 82(»), (11)
where g € Ly(Q) and gy € L 9(Q). We define two multiplication
operators: M, : L,(Q) = Ly(Q) by Mg f =g -f and My, : Ly(Q) —
L,1(Q) by My h = gy - h. Itis not difficult to check that | Mg : L, —
Ly <[ & [,- By [5, Theorem 2.b.8], this implies that Mg is a
2-summing operator. From (6), we know that M g9 is bounded and
l Mg, : Ly »> Ly, | < 21/p|| g5 "(3,2)‘ Thus, by the ideal property of
2-summing operators, the multiplication operator M, = M g9 -M g "

L(Q) > Ly 1(Q) defined by Myf = g - f is also a 2-summing operators.

It is easy to verify that Tgx =T, - M4. Thus, by reason similar to
that above, Tk : L,(Q) - L,(Q) is 2-summing. Consequently, by [5,

Proposition 2.a.1], Tk has square-summable eigenvalues, and

| (T

IN

no(T) < [ Ty |- | Mgy || - mo(Mg, )

IA

2P Kl e ly 1182 Ny = A € hvjay  (12)

where ¢ = 247 G%p /KG and K is the Grothendieck constant. The proof

1s complete.
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Remark. Koénig et al. in [6] proved that if g e Ly(Q), then
(A (Tg)) € ly, and Carl proved in [1] that if g e L,(Q) and N/a
< q < o, then (A,(Tk))€ly. Note that if N/2<a <N, then 1< N/a <2,
and thus Ly(Q) c Lyj,1(Q), Ly(Q) © Lyyq,1(Q). Hence Theorem 3

improves the results in [1, 6].

Theorem 4. If |I(x, y)| < g(x) and g € Lyyo1(Q), then (A,(Tg)) € L.

Proof. We first prove that Tk : L;(Q) - L;(Q) is bounded. For any
fe Li(Q),

I7er 1 = [ | K rtay s

<[] late)e, )| F) ave

- [ (], ewesolas | 1) as .
From (13) and (9), we have
I Txf |, < IQ ¥ g lip, 1yl F) |y < P g Lo 1l .

Thus, | Tk : Li(Q) > Li(Q)] < o] g 1) Hence the conjugate
operator of Tk, Tg : L,(Q) = L,(Q) is also bounded. Let K denote
the kernel of Tx. Then K'(x, y)= K(y, x) = l(y, x)/|x - y |N_a. Note

that A,(Tx) = *,(Tg), neN and |y, x)| < g(y). Thus, in view of

Theorem 1, we have
| GonTi )y = 1 Cen TNy < el & gy (15
where c is given as in Theorem 1. The proof is complete.
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