EIGENVALUE DISTRIBUTION OF INTEGRAL OPERATORS WITH WEAKLY SINGULAR KERNELS

HONG-LIANG ZHAO and DIAN-CHUAN JIN

(Received September 4, 2004)

Submitted by Sui Sun Cheng

Abstract

Let $\Omega \subset R^N$ be a bounded domain. Let T_K denote the weakly singular integral operator of the form $T_K f(x) = \int_\Omega K(x,\,y) f(y) dy$ generated by the kernel $K(x,\,y) = l(x,\,y)/|\,x-y\,|^{N-\alpha}$. In case $N/2 < \alpha < N$, we prove that if $|\,l(x,\,y)| \le g(y)$ and $g \in L_{N/\alpha,1}(\Omega)$, then $(\lambda_n(T_K)) \in l_2$, which improves the corresponding results in [J. Funct. Anal. 37 (1980), 88-126], [Math. Ann. 268 (1984), 127-136].

1. Introduction

Let $\Omega \subset R^N$ be a domain, λ denote the Lebesgue measure on R^N and $K:\Omega^2 \to R$ be a measurable function given by

$$K(x, y) = \frac{l(x, y)}{|x - y|^{N - \alpha}}, \quad 0 < \alpha < N.$$
 (1)

The so-called weakly singular integral operator T_K is the integral operator, with the weakly singular kernel K(x, y), of the form

2000 Mathematics Subject Classification: 47B06.

Key words and phrases: eigenvalue distribution, p-summing operators, Lorentz spaces.

© 2005 Pushpa Publishing House

$$T_K f(x) = \int_{\Omega} K(x, y) f(y) dy,$$
 (2)

where *f* belongs to some suitable complex-valued function space. It is well known that a number of integral equations, derived from differential equations with boundary values, possess weakly singular kernels.

Let $\Omega \subset R^N$ be a bounded domain. In case, where $N/2 < \alpha < N$, König et al. in [6] proved that if $|l(x,y)| \le g(y)$ and $g \in L_2(\Omega,\lambda)$, then the eigenvalues $\lambda_n(T_K)$ of T_K satisfy $(\lambda_n(T_K)) \in l_2$. Using the theory of entropy number, Carl and Kühn improved the result of [6]. They obtained in [1] that if $g \in L_q(\Omega)$ and $N/\alpha < q < +\infty$, then $(\lambda_n(T_K)) \in l_2$.

In this paper, we will prove, by means of the property of Lorentz function space and the theory of p-summing operators, that the condition $g \in L_{N/\alpha,1}(\Omega)$ alone is sufficient for $(\lambda_n(T_K)) \in l_2$. Background material can be found in [2-4].

2. A Property of Lorentz Function Space

Let p' denote the conjugate index defined by 1/p + 1/p' = 1. Let (Ω, Σ, μ) be a measure space and $f: \Omega \to R$ be a measurable function. Putting $d_f(s) = \mu\{\omega \in \Omega \mid |f(\omega)| > s\}$, we recall from [5] that the decreasing rearrangement of f, $f^*: [0, \mu(\Omega)) \to [0, \infty)$ is given by $f^*(t) = \inf\{s > 0 \mid d_f(s) \le t\}$. If $\mu(\Omega) < \infty$, then extend f^* to $[\mu(\Omega), \infty)$ by 0. For $0 and <math>0 < q \le \infty$, the Lorentz function space $L_{p,q}(\Omega, \mu)$ consists of all measurable functions $f: \Omega \to R$ such that

$$\|f\|_{(p,q)} = \begin{cases} \left(\int_0^{+\infty} \frac{(f^*(t)t^{1/p})^q}{t} dt\right)^{1/q} < \infty, & q < \infty, \\ \sup_{t > 0} t^{1/p} f^*(t) < \infty, & q = \infty. \end{cases}$$
(3)

Lemma 1. Let $f, g: \Omega \to R$ be measurable functions. Then for any $t \in [0, \mu(\Omega))$,

$$(f \cdot g)^* (2t) \le f^*(t) \cdot g^*(t).$$
 (4)

Proof. Since

$$\mu\{\omega \in \Omega \mid |f(\omega) \cdot g(\omega)| > f^*(t) \cdot g^*(t)\}$$

$$\leq \mu\{\omega \in \Omega \mid |f(\omega)| > f^*(t)\} + \mu\{\omega \in \Omega \mid |g(\omega)| > g^*(t)\} = 2t,$$

by the definition of rearrangement, we have $(f \cdot g)^*(2t) \leq f^*(t) \cdot g^*(t)$. The proof is complete.

Theorem 1. Let $0 < p_1, p_2 < \infty$ and $0 < q_1, q_2 \le \infty$. Let $1/p = 1/p_1 + 1/p_2$ and $1/q = 1/q_1 + 1/q_2$. Then

$$L_{p_1,q_1}(\Omega) \circ L_{p_2,q_2}(\Omega) \subset L_{p,q}(\Omega). \tag{5}$$

Proof. Let $f\in L_{p_1,q_1}(\Omega)$ and $g\in L_{p_2,q_2}(\Omega)$. Then by Lemma 1 and Hölder inequality, we have

$$\| f \cdot g \|_{(p,q)} = \left(\int_0^{+\infty} \frac{((f \cdot g)^*(t)t^{1/p})^q}{t} dt \right)^{1/q}$$

$$\leq 2^{1/p} \left(\int_0^{+\infty} \frac{(f^*(t) \cdot g^*(t)t^{1/p})^q}{t} dt \right)^{1/q}$$

$$\leq 2^{1/p} \| f \|_{(p_1,q_1)} \cdot \| g \|_{(p_2,q_2)}. \tag{6}$$

The proof is complete.

Theorem 2. Let $0 < p_1$, $p_2 < \infty$ and $0 < q_1$, $q_2 \le \infty$. Let $1/p = 1/p_1 + 1/p_2$ and $1/q = 1/q_1 + 1/q_2$. If $\mu(\Omega) < +\infty$ and $p_1/p_2 \le q_1/q_2$, then

$$L_{p_1,q_1}(\Omega) \circ L_{p_2,q_2}(\Omega) = L_{p,q}(\Omega). \tag{7}$$

Proof. Since $p_1/p_2 \leq q_1/q_2$, it is easy to verify that $q_1/p_1 - q/p \geq 0$. Let $h(x) \in L_{p,q}(\Omega)$. Denote $f(x) = |h(x)|^{q/q_1}$ and $g(x) = \mathrm{sign}(h(x))$ $\cdot |h(x)|^{q/q_2}$. Then $f(x) \cdot g(x) = h(x)$. We shall prove that $f \in L_{p_1,q_1}(\Omega)$. Indeed, $d_f(s) = d_h(s^{q_1/q})$ and then $f^*(t) = \inf\{s > 0 \mid d_h(s^{q_1/q}) \leq t\} = 0$ $(h^*(t))^{q/q_1}$. Hence we have

$$\|f\|_{(p_{1},q_{1})} = \left(\int_{0}^{\mu(\Omega)} \frac{(f^{*}(t)t^{1/p_{1}})^{q_{1}}}{t} dt\right)^{1/q_{1}}$$

$$= \left(\int_{0}^{\mu(\Omega)} \frac{(h^{*}(t)t^{1/p})^{q}}{t} t^{q_{1}/p_{1}-q/p} dt\right)^{1/q_{1}}$$

$$\leq \mu(\Omega)^{(q_{1}/p_{1}-q/p)/q_{1}} \|h\|_{(p,q)}^{q/q_{1}} < +\infty. \tag{8}$$

Similarly, we can prove that $g \in L_{(p_2,q_2)}(\Omega)$. Thus, we have $L_{p,q}(\Omega)$ $\subset L_{p_1,q_1}(\Omega) \circ L_{p_2,q_2}(\Omega)$. Our proof now follows from this and Theorem 1.

3. Eigenvalue Distribution of Weakly Singular Kernel

Using the above theorems and the theory of p-summing operator, we now discuss the eigenvalue distribution of (2). In the following, we always suppose that $\Omega \subset R^N$ is a bounded domain and $N/2 < \alpha < N$, and we write $p = N/\alpha$ and $e_x(y) = |x - y|^{\alpha - N}$ for the sake of simplicity.

Theorem 3. If $|l(x, y)| \le g(y)$ and $g \in L_{N/\alpha, 1}(\Omega)$, then $(\lambda_n(T_K)) \in l_2$.

Proof. By [5, Lemma 1.c.7], for any $f \in L_{p,1}(\Omega)$, we have

$$\int_{\Omega} |e_{x}(y)f(y)| dy \leq \int_{0}^{\lambda(\Omega)} e_{x}^{*}(t)f^{*}(t)dt$$

$$\leq \sup_{t>0} e_{x}^{*}(t)t^{1/p'} \cdot \int_{0}^{\lambda(\Omega)} \frac{f^{*}(t)t^{1/p}}{t} dt$$

$$\leq \sigma_{N}^{1/p'} ||f||_{(p,1)}, \tag{9}$$

where σ_N denotes the N-volume of the unit ball in R^N . Let J(x, y) = K(x, y)/g(y). We show that the integral operator T_J , defined by J, is a continuous operator which maps $L_{p,1}(\Omega)$ into $L_{\infty}(\Omega)$. For any $f \in L_{p,1}(\Omega)$, from Hölder inequality and (9), we have

$$\|T_{J}f\|_{\infty} = \operatorname{ess\,sup} \left| \int_{\Omega} J(x, y) f(y) dy \right|$$

$$\leq \operatorname{ess\,sup} \int_{\Omega} |e_{x}(y) f(y)| dy$$

$$\leq \sigma_{N}^{1/p'} \|f\|_{(p,1)}. \tag{10}$$

Thus, $T_J:L_{p,1}\to L_\infty$ is a continuous operator with $\|T_J:L_{p,1}\to L_\infty\|$ $\leq \sigma_N^{1/p'}$.

We now construct a factorization of g. Let 1/s = 1/p - 1/2. From Theorem 2 and $g \in L_{p,1}(\Omega)$, there exists a factorization of the form

$$g(y) = g_1(y) \cdot g_2(y), \tag{11}$$

where $g_1 \in L_2(\Omega)$ and $g_2 \in L_{s,2}(\Omega)$. We define two multiplication operators: $M_{g_1}: L_{\infty}(\Omega) \to L_2(\Omega)$ by $M_{g_1}f = g_1 \cdot f$ and $M_{g_2}: L_2(\Omega) \to L_{p,1}(\Omega)$ by $M_{g_2}h = g_2 \cdot h$. It is not difficult to check that $\|M_{g_1}: L_{\infty} \to L_2\| \le \|g_1\|_2$. By [5, Theorem 2.b.8], this implies that M_{g_1} is a 2-summing operator. From (6), we know that M_{g_2} is bounded and $\|M_{g_2}: L_2 \to L_{p,1}\| \le 2^{1/p} \|g_2\|_{(s,2)}$. Thus, by the ideal property of 2-summing operators, the multiplication operator $M_g = M_{g_2} \cdot M_{g_1}: L_{\infty}(\Omega) \to L_{p,1}(\Omega)$ defined by $M_g f = g \cdot f$ is also a 2-summing operators.

It is easy to verify that $T_K=T_J\cdot M_g$. Thus, by reason similar to that above, $T_K:L_\infty(\Omega)\to L_\infty(\Omega)$ is 2-summing. Consequently, by [5, Proposition 2.a.1], T_K has square-summable eigenvalues, and

$$\| (\lambda_n(T_K)) \|_2 \le \pi_2(T_K) \le \| T_J \| \cdot \| M_{g_2} \| \cdot \pi_2(M_{g_1})$$

$$\le 2^{1/p} \sigma_N^{1/p'} K_G \| g_1 \|_2 \cdot \| g_2 \|_{(s,2)} = c \| g \|_{(N/a,1)}, \qquad (12)$$

where $c=2^{1/p}\,\sigma_N^{1/p'}K_G$ and K_G is the Grothendieck constant. The proof is complete.

Remark. König et al. in [6] proved that if $g \in L_2(\Omega)$, then $(\lambda_n(T_K)) \in l_2$, and Carl proved in [1] that if $g \in L_q(\Omega)$ and $N/\alpha < q < \infty$, then $(\lambda_n(T_K)) \in l_2$. Note that if $N/2 < \alpha < N$, then $1 < N/\alpha < 2$, and thus $L_2(\Omega) \subset L_{N/\alpha,1}(\Omega)$, $L_q(\Omega) \subset L_{N/\alpha,1}(\Omega)$. Hence Theorem 3 improves the results in [1, 6].

Theorem 4. If $|l(x, y)| \le g(x)$ and $g \in L_{N/\alpha, 1}(\Omega)$, then $(\lambda_n(T_K)) \in l_2$.

Proof. We first prove that $T_K: L_1(\Omega) \to L_1(\Omega)$ is bounded. For any $f \in L_1(\Omega)$,

$$\|T_{K}f\|_{1} = \int_{\Omega} \left| \int_{\Omega} K(x, y) f(y) dy \right| dx$$

$$\leq \int_{\Omega} \int_{\Omega} |g(x)e_{y}(x)| \cdot |f(y)| dy dx$$

$$= \int_{\Omega} \left(\int_{\Omega} |g(x)e_{y}(x)| dx \right) |f(y)| dy. \tag{13}$$

From (13) and (9), we have

$$||T_{K}f||_{1} \leq \int_{\Omega} \sigma_{N}^{1/p'} ||g||_{(p,1)} |f(y)| dy \leq \sigma_{N}^{1/p'} ||g||_{(p,1)} \cdot ||f||_{1}. \tag{14}$$

Thus, $\|T_K:L_1(\Omega)\to L_1(\Omega)\|\leq \sigma_N^{1/p'}\|g\|_{(p,1)}$. Hence the conjugate operator of T_K , $T_K^*:L_\infty(\Omega)\to L_\infty(\Omega)$ is also bounded. Let K^* denote the kernel of T_K^* . Then $K^*(x,\,y)=K(y,\,x)=l(y,\,x)/|x-y|^{N-\alpha}$. Note that $\lambda_n(T_K)=\lambda_n(T_K^*)$, $n\in\mathbb{N}$ and $|l(y,\,x)|\leq g(y)$. Thus, in view of Theorem 1, we have

$$\|(\lambda_n(T_K))\|_2 = \|(\lambda_n(T_K^*))\|_2 \le c \|g\|_{(N/\alpha,1)},$$
 (15)

where c is given as in Theorem 1. The proof is complete.

References

 B. Carl and T. Kühn, Entropy and eigenvalues of certain integral operators, Math. Ann. 268 (1984), 127-136.

EIGENVALUE DISTRIBUTION OF INTEGRAL OPERATORS ... 87

- [2] G. P. Kostometov, Asymptotic behavior of the spectrum of integral operators with a singularity on the diagonal, Math. USSR Sb. 23 (1974), 417-424.
- [3] H. König, Some remarks on weakly singular integral operators, Int. Equ. Oper. Th. 3 (1980), 397-407.
- [4] H. König, Weyl-type inequalities for operators in Banach space, Proc. Conf. Funct. Anal., Paderborn, 1979, North Holland, 1980, pp. 297-317.
- [5] H. König, Eigenvalue Distribution of Compact Operators, Birkhäuser Verlag, 1986.
- [6] H. König, J. R. Retherford and N. Tomczak-Jaegermann, On the eigenvalues of (p, 2)-summing operators and constants associated to normed spaces, J. Funct. Anal. 37 (1980), 88-126.

Department of Mathematics Qingdao Polytechnic University Qingdao, Shandong 266033, P. R. China e-mail: zhaohl@371.net

Department of Mathematics Hebei Polytechnic University Tangshan, Hebei 063000, P. R. China e-mail: jdchuan@heut.edu.cn