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Abstract 

The present study is concerned with the flow of blood in a catheterized 
artery with an overlapping mild stenosis. To account for the slip at 
stenotic wall, hematocrit and peripheral layer, blood has been 
represented by a two-layered macroscopic model consisting of a core 
region assumed to be a particle-fluid suspension and a peripheral 
layer  of plasma (Newtonian fluid). The expression for the flow 
characteristics, namely, the axial velocities, the impedance, the wall 
shear stress, the shear stress at the critical height of the stenosis have 
been derived and represented graphically with respect to different flow 
parameters. The impedance increases with the hematocrit, stenosis size 
and radius of the catheter but decreases with slip at wall. It assumes 
lower magnitude in two-layered model than its corresponding value in 
one-layered model for any given hematocrit. With respect to any 
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parameter, the shear stresses at the critical height possess the 
characteristics similar to that of impedance. Axial velocities increase 
with slip but decrease with radius of the catheter. 

Introduction 

Circulatory disorders are considered to be responsible for over seventy 
five percent of all deaths and atherosclerosis is one of the frequently 
occurring cardiovascular diseases [1]. The word atherosclerosis comes from 
the Greek words athero (meaning gruel or paste) and sclerosis (hardness) [2]. 
It is an abnormal and unnatural growth that develops at various locations of 
the cardiovascular system under diseased conditions and causes serious 
circulatory disorders. These disorders in circulatory systems include as, 
narrowing in body passage leading to the reduction and impediment to blood 
flow in the constricted artery regions, the blockage of the artery in making 
the flow irregular and causing an abnormality of the blood flow and, the 
presence of stenosis at one or more of the major blood vessels, carrying 
blood to the heart or brain etc., could lead to various arterial diseases e.g., 
myocardial infarction, angina pectoris, cerebral accident, coronary 
thrombosis, strokes, etc. [3, 4]. 

Blood being a suspension of corpuscles, behaves like a non-Newtonian 
fluid in small diameter tubes [5, 6]. The experimental observations of 
Cokelet [7] and theoretical investigation of Haynes [8] indicate that blood 
cannot be treated as a single-phase homogeneous viscous fluid while flowing 
through narrow arteries (of diameter .)m1000μ≤  Skalak [9] concluded that 

an accurate description of the blood flow in small vessels requires the 
consideration of erythrocytes as discrete particles. Srivastava and Srivastava 
[10] concluded that blood can be suitably represented by a macroscopic two-
phase model (i.e., a suspension of red cells in plasma) in small vessels (of 
diameter .)m2400μ≤  

Bugliarello and Sevilla [11] and Cokelet [7] experimentally proved that 
for blood flowing through small vessels, there exist a cell-poor plasma 
(Newtonian fluid) layer and a core region of suspension of almost all the 
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erythrocytes. Bugliarello and Sevilla [11] presented the flow of blood 
in  small diameter tubes by a two-layered model assuming peripheral and 
core  fluids as Newtonian fluids of different viscosities. Following the 
experimentally verified model of Bugliarello and Sevilla [11], two-fluid 
modeling of blood flow has been discussed and used by a good number of 
researchers. Shukla et al. [12] applied a two-fluid model to discuss the flow 
of blood through a stenosis. Shukla et al. [12], and Chaturani and Upadhya 
[13] addressed the flow of blood in small diameter tubes using the two-
layered model of micropolar and couple stress fluids, respectively. Biswas 
and Chakraborty [15] analyzed the two layered model of blood flow in a 
stenosed artery considering blood as a Bingham plastic fluid in central core 
layer. 

Cardiac catheterization (also called heart catheterization) is a diagnostic 
procedure that performs a comprehensive examination of functioning of the 
heart and its blood vessels [2]. In modern days, with the evolution of 
coronary balloon angioplasty, there has been a considerable increase in the 
use of catheters of various sizes. A catheter with a tiny balloon at the end is 
inserted into the artery in balloon angioplasty to treat atherosclerosis. The 
catheter is carefully guided to the location at which stenosis occurs and 
balloon is inflated to fracture the fatty deposits and widen the narrowed 
portion of the artery [16]. Back [17] and Back et al. [18] studied important 
hemodynamic characteristics like the wall shear stress, pressure drop, and 
frictional resistance in catheterized coronary arteries under normal as well 
as  the pathological situation in presence of a stenosis. The effect of 
catheterization on various flow characteristics in a curved artery was studied 
by Karahalios [19] and Jayaraman and Tiwari [20]. Dash et al. [21] studied 
the changed flow pattern in a narrow artery when a catheter is inserted into it 
and estimated the increase in friction in the artery due to catheterization 
using a Casson fluid model for steady and pulsatile flow of blood. Sankar 
and Hemalatha [22] studied pulsatile flow of Herschel-Bulkley fluid through 
catheterized arteries. Srivastava and Rastogi [16] studied the steady flow of 
blood in a catheterized artery with a mild stenosis considering blood a 
particle-fluid suspension. Biswas and Chakraborty [23] analysed the effect of 
catheterization on pulsatile flow of blood in a stenosed artery. 
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In the most of the abovementioned studies, traditional no-slip boundary 
condition has been employed. However, a number of studies of suspensions 
in general and blood flow in particular both theoretical [24-28] and 
experimental [29, 30], have suggested the likely presence of slip (a velocity 
discontinuity) at the flow boundaries (or in their immediate neighbourhood). 
Recently, Ponalgusamy [31], Biswas and Chakraborty [23, 32, 33] have 
developed mathematical models for blood flow through stenosed arterial 
segment, by taking a velocity slip condition at the constricted wall. But to 
authors knowledge, no theoretical or experimental work has been done till 
date to analyze the effect of velocity slip at the stenotic wall on two-layered, 
macroscopic two-phase (plasma-red cell system) blood flow model in a 
catheterized artery. 

With the above motivations, an attempt has been made to study the 
effects of slip (at the stenotic wall), peripheral plasma layer and hematocrit 
on the flow variables (wall shear stress, velocity profiles, and resistance to 
flow) for blood flow through a catheterized vessel with an overlapping mild 
stenosis taking into account that blood is represented by a particle-fluid 
suspension. 

Mathematical Formulation 

We consider an axially symmetric, laminar, steady and fully developed 
flow of blood (assumed to be incompressible) through a catheterized circular 
tube with an axially symmetric overlapping stenosis as shown in Figure 1. 

 

Figure 1. Geometry of a catheterized artery with an overlapping stenosis. 
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It is assumed that wall of the tube is rigid and the body fluid blood is 
represented by a two-fluid model with a core region of suspension of all 
erythrocytes and a peripheral layer of plasma (a Newtonian viscous fluid). 
The artery length is assumed to be large enough as compared to its radius so 
that the entrance, exit and special wall effects can be neglected. 

The geometry of stenosis with the peripheral region is given by [1] 
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The geometry of the stenosis in the core region is given by [1] 
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where ( )zR  is the radius of the stenosed artery with peripheral layer; ( )zR1  

is the radius of the artery in the stenosed core region such that ( ) =zR1  

( );zRε  ε is the ratio of the central core radius to the normal artery radius; 

00, RR ε  are the radii of the normal artery and core region of the normal 

artery respectively; δ  is the height of the stenosis at a distance ,20Ldz +=  

called the critical height in the peripheral region; 1δ  is the critical height 

of  the stenosis in the core region such that 01 , Lδε=δ  is the length and 

d  is the location of the stenosis. The appropriate equations governing the 
steady flow of a particle-fluid suspension in the case of a mild stenosis 
( ),1Rδ  subject to the additional conditions [2, 3, 10], ( ) ,12Re 0Lδ  

( ),1~2 00 OLR  can be written as 
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where ( )zr ,  are (radial, axial) coordinates, ( )fp uu ,  are the axial velocities 

of (particle, fluid) in the core region ( ) ( )001 ,,0 uRr μ≤≤  are the (viscosity, 

fluid velocity) in the peripheral region ( ),1 RrR ≤≤  ( )Css μ=μ ~  is the 

suspension viscosity in the core region, C denotes the constant volume 

fraction density of the particles (called hematocrit) and S  is the drag 
coefficient of interaction between the two phases (fluid and particle). The 

expression for the drag coefficient of interaction S  and empirical relation for 
the viscosity of suspension sμ  may be selected [1, 2, 16] as 
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where 0a  is the radius of a particle and T is measured in absolute 

temperature. 

Boundary conditions associated with the problem are given by 

suu =0  at ,Rr =  (8) 

ffuu τ=τ= 00 ,  at ,1Rr =  (9) 

0=fu  at ,0Rkr =  (10) 
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where su  is the axial velocity slip at the stenotic wall [15, 23, 32, 33], 

( )10 kRk  is the radius of the axisymmetric catheter and ,0
00 r

u
∂
∂

μ=τ  

( )
r

u
C f

sf ∂

∂
μ−=τ 1  are the shear stresses in the peripheral and central core 

region, respectively. 

We introduce the following non-dimensional variables: 
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where 0q  is the negative of the pressure gradient in a uniform tube without 

stenosis and L  is the length of the stenosed artery. 

The non-dimensional form of the geometry of stenosis with the help of 
equation (11) can be given by 
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Using the non-dimensional variables given in (11), equations (3)-(5) 
become 
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The boundary conditions in non-dimensional form are given by 

suu =0  at ,Rr =  (16) 

ffuu τ=τ= 00 ,  at ,1Rr =  (17) 

0=fu  at .kr =  (18) 

The non-dimensional volumetric flow rate is given by 
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The non-dimensional shear stresses are given by 
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Solution 

Solving equations (13)-(15) with the help of boundary conditions (16)-
(18), we get 
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where  

( ) ( )εμ−=α log1 sC   and  ( ).log 1Rk=β  

From equation (19), the non-dimensional flow rate is given by 
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The pressure gradient 
dz
dp  can easily be obtained out by taking 1=Q  [4] as 
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The resistance to flow (impedance) is given by 
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The first and the third integrals in the expression for λ (equation (24)) are 
straight forward where as the analytical evaluation of the second integral is a 
formidable task. In view of this, one obtains the final expression for the flow 
resistance, λ as 
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In equation (25), expression for G is given by 
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The expression for the wall shear stress can be obtained from equation 
(20) as 
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The shear stress at the critical height of the stenosis is given by 
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In absence of catheter ( )0→k  and slip at wall ( ),0=su  the present study 

reduces to the analysis performed by Srivastava et al. [1]. 

Results and Discussions 

To analyze the quantitative effects of volume fraction density of the 
particles (hematocrit) C, the critical height attained by the overlapping 
stenosis δ, the radius of the catheter k, the ratio of the central core radius to 
the normal artery radius ε, slip velocity at stenotic wall ,su  computer codes 

have been developed for numerical evaluations of the analytic results 
obtained for Rfuu τλ,,,0  and Sτ  in equations (21), (22), (27), (29), (30) 

for parameter values ;2.0,1.0,0;18.0;2.00;6.00 =−=ε−=δ−= kC  

C37;m4;05.0,02.0,0 0 =μ== Taus  [1]. The variation of resistance to 

flow λ with critical height of the stenosis δ for different values of parameters 
k and su  is presented in Figure 2. The variation of λ with hematocrit 

parameter C for different values of suk,  and the variation of λ with ε for 

different values of k, C have been depicted in Figures 3 and 4, respectively. 
Also, the variations of Sτ  with δ is depicted in Figure 5, with C in Figure 6 
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for different values of the parameters suk,  and with ε in Figure 7 for 

different values of k, C. Figure 8 shows the variation of the wall shear stress 
distribution with axial distance z for different values of k and C. Finally, the 
variations of 0u  and fu  with radial distance r for different values of k and 

su  are displayed in Figure 9. 

 

Figure 2. Variation of resistance to flow λ with critical height of the stenosis 
δ for different values of k and .su  

 

Figure 3. Variation of resistance to flow λ with hematocrit parameter C for 
different values of k and .su  
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Figure 4. Variation of resistance to flow λ with ε for different values of k 
and C. 

In Figures 2-4, it is clearly noticed that the resistance to flow λ, 
experienced by the streaming fluid over the whole arterial segment increases 
with the hematocrit C, the critical height of the stenosis δ, radius of the 
inserted catheter k and the ratio ε but decreases with the slip velocity attained 
by the fluid at the constricted wall. For any value of the catheter radius k as 
the hematocrit C increases from 0 to 0.1, resistance to flow λ increases 
steeply, the increment is relatively slower from 1.0=C  to 0.5 and then 
again it starts increasing rapidly from 5.0=C  to 0.6. However, employment 
of velocity slip at wall decreases the resistance for any value of k and C. 

It is observed from Figures 5-7 that the wall shear stress at the critical 
height of the stenosis Sτ  increases with δ and C for any values of catheter 

radius k but decreases with velocity slip su  at the stenotic wall. As the ratio 

of the central core radius to the normal artery radius ε increases, sτ  increases 

gradually and the maximum magnitude is attained at ,1=ε  i.e., for single 

layered flow. Also, for any value of ε (i.e., for both single and two-layered 
flow), increase in catheter radius k increases .Sτ  
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Figure 5. Variation of shear stress at the critical height Sτ  with δ for 

different values of k and .su  

 

Figure 6. Variation of shear stress at the critical height Sτ  with C for 

different values of k and .su  
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Figure 7. Variation of shear stress at the critical height Sτ  with ε for 
different values of k and C. 

From Figure 8, it is revealed that the wall shear stress in the stenotic 
region, Rτ  rapidly increases from its approached value at 0=z  to its peak 

value in the upstream of the first stenosis throat at ,1~273 −−=z  it then 
decreases steeply in the downstream of the first throat to its magnitude at the 
critical height of the stenosis at .3=z  The flow characteristic, Rτ  further 
increases steeply in the upstream of the second stenosis throat and attains its 
peak magnitude (same as at the first throat of the stenosis) at the second 
throat of the stenosis at ,5~273 −+=z  it then decreases rapidly to the 
same magnitude as its approached value (at )0=z  at the end point of the 

constriction profile at .6=z  It is also observed that the wall shear stress Rτ  
at any axial distance increases with catheter radius k and hematocrit C. 

Figure 9 shows that the axial velocity in the core region fu  increases 

with radial distance r until it reaches its maximum wherefrom it starts 
decreasing and equals with axial velocity in peripheral region 0u  at ε=r  

an comes to its minimum at the stenotic wall ( ).Rr =  It is noticed that axial 

velocities both in core and peripheral regions increases with velocity slip su  
but decreases with catheter radius k. 
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Figure 8. Variation of wall shear stress Rτ  with axial distance z for different 

values of k and C. 

 

Figure 9. Variation of axial velocities fu  and 0u  with radial distance r for 

different values of k and .su  

Conclusion 

To observe the effects of slip velocity, hematocrit and the peripheral 
layer on flow characteristics of blood, a two-layered model, assuming that 
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blood in the central region is represented by a suspension of erythrocytes in 
plasma, has been applied to discuss the flow through an overlapping stenosis 
in a catheterized artery. The flow characteristics (resistance to flow, wall 
shear stress in the stenotic region, and shear stress at the critical height of the 
stenosis) increase with hematocrit, catheter radius and also with stenosis 
height. These flow variables assume lower magnitude in two-layered model 
than its corresponding value in one-layered model. Again employment of 
velocity slip at stenotic wall reduces their magnitude. These conclude that the 
presence of velocity slip and peripheral layer helps in the normal functioning 
of the diseased artery. The shear stress at the two stenosis throats assumes the 
same magnitude. The axial velocities both in central core and peripheral 
regions increase with velocity slip. 

Throughout a number of restrictions have been imposed on the present 
study and lots of simplifications have been made, but still it enables someone 
to estimate the effects of slip velocity at the stenotic wall, hematocrit and 
peripheral layer on flow characteristics of blood flowing through a 
catheterized artery with an overlapping mild constriction. The model would 
have been more realistic if pulsatile flow and permeability of the arterial wall 
were considered. Also the consideration of non-uniform artery could have 
brought the analysis nearer to actual situation. Those are the scopes for future 
course of study. 
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