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Abstract 

The conventional approach to modeling cancer incidence rates uses the 
direct and indirect methods of standardization to estimate the standardized 
risk ratio of exposure for cancer registry data. However, this method 
cannot deal with several confounding factors. An alternative approach is 
to apply a Poisson regression model to estimate the incidence rate ratio for 
counts of events from a cancer registry data. The exponential of 
coefficient of the Poisson regression model represents the risk ratio. The 
author applied the Poisson regression model to the cancer registry data 
from the north of Iran to estimate the age-sex incidence rate ratio using 
GLIM software. It was shown how one could use the model for counts of 
events that occurred in a population or a person-year of time. For this 
analysis with GLIM software, the numerator and denominator of rate are 
needed from each cell of a contingency table. This model is quite flexible 
for count data and can control for several confounding factors while 
detecting the factor which modifies the effect of exposure. 
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Introduction 

Cancer of digestive tracts is one the most common cancer in Iran and as 
elsewhere in the developing countries its incidence is high. In particular, published 
studies from 1968 to 1978 have documented the high incidence rate of esophageal 
cancer in the eastern part of south of Caspian see, in the north of Iran (1-3). The 
International Agency for Research on cancer in Lyon, in collaboration with the 
Institute of Public Health and the Cancer Institute, Tehran University has conducted 
numerous scientific and valuable studies on cancer in northern of Iran (Babol Cancer 
Registry). In particular, for esophageal cancer, there is a large variation its incidence 
found over short distance (1-2). In area where poverty is a consequence of 
environment, the disease would seem to have common (1). The epidemiologic 
evidence would suggest that the nutritional imbalances are of importance in the 
etiology of esophageal cancer in the north of Iran (1-5). A recent published 
monograph from Babol Cancer Registry (6) showed that gastric cancer (15.17%), 
breast cancer (10.7%), esophageal cancer (9.9%) and Melanoma (8.5%) are the first 
forth common cancer in the province of Mazandaran while in the province of 
Golestan (Gorgan and Gonbad), the high risk area of esophageal cancer, the first 
forth common cancer was esophageal (22.1%), gastric (12.5%) melanoma (8.5%) 
and breast (6.4%). Based on recent cancer registry data in Babol Hajian-Tilaki and et 
al (2003) reported the mean (± SD) of esophageal cancer was increased to 1365 ±  
years in the north of Iran (7). This increasing age, perhaps is due to changing in 
nutrition and health behaviours during the three last decades in the north of Iran. 

In analysis of cancer registry of incidence data, standardization is the 
conventional approach for dealing with confounding as an adjustment procedure for 
comparative studies in epidemiology (8). This approach is applicable when 
confounding factors are categorical. The goal of any adjustment procedure is to 
correct for differences in the distribution of confounding factors between two groups 
under comparison. For example the rate of death due to breast cancer can be 
compared for two groups of women. The groups may differ with respect to age. 
Standardization procedure estimates the death rate based on a common age 
distribution. This common distribution is taken from another group, known as a 
standard population. 

If the confounding factor is numerical, standardization can be applied first by 
categorizing the confounding factors. The effect of this categorization may a loss of 
information resulting in small cell frequencies at each cell in a contingency table, 
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hence low precision (8, 9). In dealing with confounding either categorical or 
numerical without loss of information, an alternative approach is to use a family of 
generalized linear models with a log link function, such as the Poisson regression 
model (9, 10). The Poisson regression model includes log-linear models that are 
intrinsically nonlinear models (10, 11, 12). In this model the response variable is a 
count that follows Poisson distribution. The approach considered enables one to 
estimate the risk ratio and to describe the relation between the dependent variable 
and the predictor variables (8-13). 

This article describes the basic method of Poisson regression analysis and its 
application in the analysis of cancer registry data in a population based study. First 
we illustrated how Poisson regression model can be applied to the cancer registry 
count data either incidence or death data from a population during a period of time 
or person time of follow up. In particular, we estimated the age-sex adjusted risk 
ratio of cancer incidence from population based cancer registry in a part of northern 
Iran. 

Methods 

Poisson regression model 

Suppose, we have a count random variable Y with mean ( ).μ=μ EY  The 

Poisson probability distribution as follows: 

( ) ....,,2,1,0,!,Pr nYYeY Y =μ=μ μ−  

The Poisson distribution is often used to model the occurrence events for 
example incidence (or death) of cancer in a population or person times of follow-up. 
Suppose, we have counts of events (incidences or deaths) from a cancer registry in a 
contingency table, where ijY  denotes the frequency of a cell related to the ith row 

category (confounding level) and jth column (exposure level) where ijijEy μ=  and 

the log link of ijμ  is associated with a set of covariates and exposure with model 

( ) ,ln Xij β=μ  e.g., ( ) ∑ β+α=μ ,EXLn iiij  where iX ’s  is an indicator with 

1=iX  if age group i and 0 otherwise. Also, the indicator variable E is defined as 1 

if exposed group ( )1=j  and 0 if nonexposed ( ).0=j  For exposed group ( ):1=j  

β+α=μ ii1ln   for  ki ...,,2,1=  
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and for nonexposed group ( ):0=j  

ii α=μ 0ln  

and then, .lnln 01 β=μ−μ ii  

Thus, ( ) ( ).explnexp01 β=αβ+α=μμ= iiiiRR  

Thus, using a Poisson regression model, the risk ratio of exposure and age group 
(vs. baseline age) can be estimated by the exponential of the coefficients of 
regression. We can interpret ( )βexp  as an estimated overall risk ratio adjusted for 

age. The general fit for a Poisson regression model is obtained using the Poisson 
probability function to derive the likelihood function that can be maximized in order 
to estimate the parameters β’s and its standard error (SE) as well as the information 
matrix using GLIM software. The user needs only specify the link function and the 
input counts of events and the population size (or person year) as denominator of the 
rate) for each cell of the contingency table respectively. Then, the adjusted estimates 
of the parameters ( ) β=RRln  and hence the adjusted risk ratio is estimated. 

Modelling Rate using Poisson Regression 

Suppose the data of number of event and the population (or person year of 
follow up) were presented in a contingency table. A general failure rate in each 
subgroup of interest can be estimated by ,lY=λ  where Y denotes the observed 

count data and l denotes the person time of follow up (or population size that events 
occurred) and the ratio of the two rates is commonly used as a rate ratio or incidence 
density ratio (hazard ratio). 

Suppose iY  denotes the number of events, and il  the person time of follow up. 

Let ( )kiiii XXXX ...,,, 21=  denote the components of covariates and exposure 

and ( )kβββ=β ...,,, 10  is the set of unknown parameters. Then 

( ) ∑α+β=βλ .,ln 0 ijiij XX  

The expected number of events is: 

( )., βλ−μ= XlEY ijijijij  
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Then, ( )βλ+=μ ,lnlnln Xl ijijij  

.ln β+=μ XlLn ijij  

Now, suppose ijY  denotes a dependent count of events in the contingency table in 

ith row (confounding variable level) and jth column (exposure level) and ijP  

denotes the number of person year of follow up that have experienced ijY  events. 

The dependent count variable ijY   has a Poisson distribution with mean ijμ  within 

cell of ith row and jth column in contingency table with probability model: 

( ) !.ij
Yij

ij
ij

ij YeYP μ= μ−  

The expected number of events in each cell is a function of the effect of ith row 
(confounding variables) and jth column (exposure): 

( ).exp jiijij cbaP ++=μ  

Then, ,log jiijij cbaP ++=μ  where a is a constant and ijijij PR μ=  is the rate. 

Thus, .ln ji cbaRate ++=  

Suppose, we want to compare the incidence rate of a type of cancer between 
males and Females ( )female2,male1 == jj  and the incidence count are 

presented in 8 categories of age ( );8...,,1=i  ib  represents the coefficient for ith 

row of the age group and jc  represent the effect of the jth column for gender. The 

regression model for rate among males and females are respectively as follows: 

ln rate(male) 1cba i ++=  

ln rate(female) 2cba i ++=  and the log rate ratio (RR) as follows: 

.ln 12 ccRR −=  

Thus, the difference of RRln  is constant across the age group. This is an inherent 
assumption of a multiplicative model. 

Since the rate comprises of a numerator (counts of events) such as deaths or 
incidences, and the denominators (person years of follow up or population 
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abbreviated as PY) then: 

ln count- ji cbaPY ++=ln  

ln count .ln ji cbaPY +++=  

The coefficient of the term ln(PY) is equal to 1; this term is called the offset in the 
GLIM program. 

Data and Analysis 

The data were collected from registered cancer incidences in different 
diagnostic centers of Babol, in the north of Iran in 2002. We tabulated the frequency 
of cancer with respect to age and sex for overall cancer and for specific types of 
cancer such as esophageal cancer, gastric cancer and breast cancer. The age and sex 
distribution of the population of the catchment’s area of cancer registry were derived 
from census data. The GLIM software was used with a program that is shown in the 
Appendix. The input data was the number of events, the size of the population 
within each stratum of the age-sex contingency table, the age group and gender 
status. The Poisson link function was used. An indicator variable for gender and 

1−k  indicator variables for k categories of age strata were defined and the first age 
group was defined as the base-line group. 

Results 

Table 1 shows that the age-sex distribution of the population size and overall 
number of cancer patients, specifically, the number of esophageal cancers and 
gastric cancers. The population size of the catchment area of the registry was 
421,068 and the overall number of registered cancers was 632 subjects. The overall 
cancer rate was 175 per 100,000 for males and 125 per 100,000 for females. Both 
esophageal and gastric cancers were more common among males than females. 
Using the data of Table 1 as a numerator and denominator of the rate, and defining 
an indicator variable for gender (male = 1 and female = 0) and other indicator 
variables for age groups with a baseline age 10<  for overall cancers (and with 
baseline age 40<  years for gastric and esophageal cancer and age 30<  years for 
breast cancer), we estimated the age and sex adjusted effect using a log-linear model 
with a Poisson link function. The regression coefficients, their standard errors 
(SE’s), the risk ratio ( )( )BRR exp=  and its P-value are shown in Table 2. The age 
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adjusted risk ratio for males vs. females is 1.35 ( ).01.0<P  The Figure 1 shows that 

the sex adjusted risk ratio significantly increases with increasing age for overall 
cancer. Table 2 shows that the results of the application of a Poisson regression 
specifically for gastric and esophageal cancer with base line age 40<  years. The 
Figure 2 again shows that the risk ratio increases exponentially with age. However, 
using the breast cancer data, Figure 3 shows that the risk ratio is maximized at 55 
years and then the trend tends to decrease. 

Table 1. Population size and cancer incidence during a year with respect to the age 
group and gender 

Male Female 
Age 

group Pop. 
size 

No. 
cancer 

No. 
Eso. 

No. 
Gast. 

Pop. 
size 

No. 
cancer 

No. 
Eso. 

No. 
Gast. 

0-9 44992 8 - - 44030 9 - - 

10-19 55679 12 - - 55421 14 - - 

20-29 33626 16 - 1 37533 16 - 2 

30-39 28461 19 - 2 29460 27 2 - 

40-49 17396 31 4 3 18589 44 2 1 

50-59 11683 49 3 15 11635 50 4 9 

60-69 9977 88 11 24 9121 49 12 10 

> = 70 6848 143 17 46 6573 57 12 11 

Total* 208680 366 37 91 212388 266 32 33 

Eso.: esophageal; Gast.: gastric 

*The total was counted with 18 subjects of male and 26 subjects of female with missing data 
of age group. 

Table 2. Estimates of parameters of Poisson regression model and age-sex adjusted 
risk ratio for overall cancer 

Parameter Estimate SE RR* P-value 

1 (scale) -8.72 0.25 - - 
Sex (M vs F) 0.30 0.08 1.35 P < 0.01 
Age (10-19) 0.21 0.31 1.33 NS 

Age (20-29) 0.87 0.30 2.38 P < 0.001 

Age (30-39) 1.43 0.28 4.18 P < 0.001 



K. O. Hajian-Tilaki 26 

Age (40-49) 2.39 0.27 10.91 P < 0.001 

Age (50-59) 3.10 0.26 22.19 P < 0.001 

Age (60-69) 3.62 0.26 37.34 P < 0.001 

Age (> = 70) 4.35 0.25 77.48 P < 0.001 

*Comparison group: 0-9 years 

Table 3. Estimates of parameters of Poisson regression model and age-sex incidence 
risk ratio for gastric and esophageal cancer 

Parameter Estimate SE RR* P-value 

1 (scale) -11.41 0.23 - - 
Sex (M vs F) 0.81 0.16 2.24 P < 0.001 
Age (40-49) 2.74 0.47 15.48 P < 0.001 
Age (50-59) 4.15 0.39 63.43 P < 0.001 
Age (60-69) 5.08 0.37 156.02 P < 0.001 
Age (> = 70) 5.86 0.36 350 P < 0.001 

*Comparison group: 20-39 years 
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Figure 1. Sex adjusted risk ratio with age for overall cancer. 
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Figure 2. Sex adjusted risk ratio with age for gastric and esophageal cancer. 
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Figure 3. Risk ratio of breast cancer with age. 
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Discussion 

In this study, the age-sex risk ratio was estimated in a population based 
cumulative incidence study. The adjusted risk ratio was estimated using a Poisson 
regression model. In contrast to the conventional approach of standardization of the 
rate, a Poisson regression model has several advantages. First, it can be applied to 
the counts of events with experience in person time of follow-up (an incidence 
density type study) or in a population at specific period of time – e.g., a year 
(cumulative incidence type study). Second, it is applicable when estimating the 
adjusted rate ratio for either categorical or continuous confounding factors. Third, it 
easily can be applied to estimate the interaction effect of exposure and covariates for 
example the interaction effect of age and gender and thus the users are able to 
determine whether a covariate is a modifier. However, the model inherently is a 
multiplicative model with a specific assumption. An important assumption is the log 
rate ratio is constant across strata. In some sense, this is the same assumption needed 
for the Cox proportional hazard regression model which is a semiparametric model 
without any assumption of underlying hazard. In contrast to the modelling of data by 
the Cox regression model, the Poisson regression model involves less computation 
in the maximization of the likelihood function for estimation of regression 
coefficients with categorization of count data that is presented in a contingency table 
which is a summarized data. While the dependent variable in a Cox regression model 
is a continuous time to event (censored data) and the conditional likelihood is 
constructed based on the risk sets at each failure time. Thus, the estimation 
procedure involves a huge computation. In spite of less computation for the Poisson 
regression model, these two models yield the same results of risk ratio (15). Even if 
the data were not presented in a contingency table, in particular with numerical 
covariates and continuous exposure variable, the Poisson regression model is 
applicable for estimating risk ratio with some other software for example Egret 
software. In particular, for cancer registry data of population based cumulative 
incidence type study, we show how the users can apply Poisson regression model to 
estimate adjusted risk ratio without data from a standard population. For this 
situation, the Poisson model needs the rare disease assumption that is almost 
satisfied for cancer count data. In another situation, this model is used for age-
period-cohort analysis of breast cancer mortality rates (16) and the cohort effect was 
detected by fitting a Poisson regression model. Overall, this approach of analysis is 
applicable and can be fitted in any software package that estimates GLMs with user 
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defined link functions (including GLIM, SAS, Stat, Splus, R and Egret) and utilizes 
the theory of generalized linear model for assessing goodness of fit and regression 
diagnostics. 
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Appendix: Program used in GLIM 

?$ Input 12$ 

?$ data sex age count incidence$ 

?$ input 12$ 

File name ? A:cancer.dat 

?$ Factor age 8$ 

?$ Factor Sex 2$ 

?$ Yv incidence$ 

?$ error Poisson$ 

?$ cal count = %log(count)$ 

?$ offset count $ 

?$ fit sex+age $ 

?$ display e r$ 

?$ stop $ 


