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Abstract

Hartree-Fock Roothaan (HFR) calculations for ground states of the
neutral atoms from He to Sr have been performed using integer and
noninteger Slater type orbitals (n- and ni-STOs). In addition, we
calculated three largest relativistic corrections which are the
relativistic kinetic energy correction, the Darwin term and spin-orbit
interaction using n-STOs as perturbation. It has been seen that 1s
electrons are responsible for almost 80-90% of the total relativistic
kinetic energy and the Darwin corrections. Besides, it has been

Keywords and phrases: integer and noninteger n-Slater type orbitals, open- and closed-shell
atoms, relativistic energies.

*Corresponding author
Received August 15, 2011



94 YUSUF YAKAR, BEKIR CAKIR and AYHAN OZMEN

observed that while the total relativistic energy corrections for small
atoms change between 0 and —1 au, the magnitude of the corrections
increases rapidly when going through the bigger atoms. The results
show that the kinetic energy correction and Darwin correction terms
may not be neglected in an accurate calculation even for small atoms.

Our results are in accord with the other results found in the literature.
1. Introduction

The effect computation of multicenter molecular integrals appearing in
the determination of various properties of atom and molecules in HFR
approximation strongly depends on the conformation of the basis function.
Two type’s basis functions are generally used in the multicenter molecular
integrals. One of them is the Gaussian type orbitals (GTOs) which are widely
used in molecular calculations, because multicenter molecular integrals can
be evaluated easily over GTOs. But, GTOs do not represent the correct
behaviour of the wave function especially at the nuclei and at large distances
from the nuclei. The other one is Slater type orbitals (STOs). For problems in
which the long part of the wave function or its behaviour in the
neighbourhood of the nuclei is important, it is desirable to use STOs which
describe the physical situation more accurately than GTOs. Although the use
of STOs is rather difficult and tedious especially in the calculation of
multicenter integrals, the use of STOs in molecular calculation has attracted

great attention from several authors for three decade [1-11].

Traditionally, the principle quantum number »n is assumed to be a
positive integer in calculation of multicenter integrals. However, it is well-
known that STOs with noninteger quantum numbers (ni-STOs) provide a
more flexible basis for atomic calculations than STOs with integer quantum
numbers (7-STOs), and also the energies calculated by use of #ni-STOs lead
to better atomic energies than those obtained by #-STOs [12-15]. The
fundamental difficulty occurring in the use of ni-STOs is that the multicenter
integrals cannot be calculated accurately and efficiently over ni-STOs.

Recently, some authors calculated the molecular integrals and physical
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parameters of atoms and molecules over ni-STOs with several methods
[16-21]. Koga et al. [16], and later Guseinov and Mamedov [19] calculated

two-electron integrals using hypergeometric functions 5 Fj(a, b, ¢, x) over

n-STOs and ni-STOs. Afterwards, Giimiis and Ozdogan [20] employed the
same functions for the calculation of ground state energies of some closed-
shell atoms using both #n-STOs and ni-STOs. However, it is still not clear that

which method is the best in terms of speed and accuracy.

In a previous work [22], one of the authors has calculated the orbital and
ground state energies of some open- and closed-shell atoms over n-STOs and
ni-STOs. In order to increase the efficiency of these calculations, the atomic
two-electron integrals were expressed in terms of incomplete beta function.
In the present study, we have improved our previous study so as to include
the three most important relativistic correction terms, also the range of the
atoms, for which the calculations are performed, is extended to include all
neutral atoms up to Sr. We first discuss the unperturbed Hamiltonian, and
next discuss the following three largest relativistic corrections which are the
relativistic kinetic energy correction, the Darwin term and spin-orbit
interaction. Then we present the methods for numerical calculations, and
discuss the result obtained for the ground states of neutral atoms in the range
from He to Sr. Atomic units (au) will be used throughout study.

2. Theory

Using the unperturbed Hamiltonian, an N-electron system containing at
most one open-shell is defined by a restricted determinant wave function, and
the expectation value of the total energy is given by

E = Zth +Z(2Jkl _Kkl)

k )

+f 2th +fZ(2aJmn _men)+2Z(2ka _Kkm) , (D
m mn km

where the indices %, [ refer to the closed-shell orbitals and m, n to the open-
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shell orbitals. a, b and f are numerical constants which depend on particular
open-shell problem, details are given in [25]. The /; in the first sum refer to

the energy expectation value for a single electron in the state k, where the
energy consists of the kinetic energy of the electron and its potential energy
in the coulomb field of the nucleus. In the following double sum, the

quantities Jj; represent the coulomb interaction energies between the charge

densities of the electrons in states & and /. This interaction includes both

electrons of like spin and those of opposite spin. The last terms Kj; are

expressions for the exchange interaction, which acts only between electrons

having the same spin direction. One-electron spatial orbitals ¢,, which are

constructed the Slater determinant, may be expressed as linear combinations

of STOs, indicated ., called basis functions,

q)p = Zckak(C.ak’ F)’ 2
k

where k = nlm are quantum numbers of basis functions, ¢, are expansion

coefficients and C; are the screening constants. The general form of the

normalized complex STO is given by

Yot (G 7) = [0 /T (20 + D215, (09), 3)

where T'(z) denotes the gamma function [24]. Y, (064) is well known

complex spherical harmonic in Condon-Shortley phase convention.

There are two types of integrals appearing in the solution of the HFR
equations for atoms. One of them is one-electron integrals, and the other is
two-electron integrals. Nuclear attraction and kinetic energy integrals are
one-electron integrals, and are defined by the following expressions in terms

of the atomic orbital respectively,

v = [0 =L g @
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and

Rve
7= [of S o, )

where Z denotes the nuclear charge and i indicates the quantum numbers of
one-electron spatial orbitals. These integrals can be easily expressed in terms
of overlap integrals as in [22]. Coulomb and exchange integrals which are
two-electron integrals are also needed in the HFR analysis of atoms.
However, both of them have the same form except for the indices of the basis

orbital. Coulomb integral is defined as follows:
* * 1 3 3
Je = [41008702), 0,010, ()dndry

min{l;+4f, 1+ }

>ty
1
- Z, chlck,’CkJCkJ n n Z C 2L +1
kk[ kjk] L:max{\ l['—l[' M lj—l] ‘}

x (Limy| [imy | Lm; — m)

x (Ismy| Lim ;| Lm'; —m ;) RE

ni+nj,ni+n'y

X (G + 8+ 8+ C5)8 gy || m-m; | (©)

in which & labels the STOs with quantum numbers #n;/;m;, A:fn ’fj is the

1"

combination of normalization constants of the STOs and (Im|I'm' |[LM') with

|l =I'|<L<I1+!l') L>=|m-m'| are gaunt coefficients as defined in [25].

The integral Rﬁl N (z1, z7) in equation (6) has the general form

Ry, 1 22) = [ [ "o e g Sdndn ()
r>

In calculation with n-STOs, the integral RN N (z1, zp) can easily be

calculated in terms of the binomial coefficients as follows:
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L
RN1N2 (Zla 22)

_ (2Q1)n1+1/2(2€r1)ni+1/2(2cz)n2+1/2(2€r2)n'2+1/2

1/2
| o (2N1) F2p, (2N3) Dy (2N + 2N, -2) T
FynyeN,-1(2N] = 2N, - 2) (2N,) (2N, - 1)

1 1
X J—
{FNH_L(NI + Nz _1)21]\71+L+12é\f2—L FN1+L(N1 + NZ - 1)

Ni+L
1 le

X
Nj+L+1 Ny—L+p
Z) ! p=0 (71 +2)™2

Ni—L-1
. 1 2l Fy(Ny + L+ q)

1
N ®)

NotL+q+l [
Fn, (N + Ny = 1)z 7=0 (z) + zp) 2T oY

where F, (k) = k!/(k — s)!s! are the binomial coefficients. In the case of
. . . . . . L
ni-STOs, making a simple change of variable in the integral RN1 Ny (21, 23),

it can easily be defined in terms of the incomplete beta function by

F(Nl + L+ I)F(NZ - L)
N] +L+1 Nz—L
| &)

L
RN1N2 (Zla Z2) =

I(N; + L +1DI(N, - L)
B Ni+L+1_Ny—L
ol obl

B 4 (N,—-L, Ny+L+1
(q)l( 2 1 )

LTV + L+ DIV, - L)

Ny+L+1_Nj—-L (q)—l(N2+L+1a NI_L)’ (9)
o) ol

in which ¢ = (z; + z5)/z; and the term B, ._;(m, n) is the incomplete beta

(q)”
function given in [26] by
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) = T(m+n) ~ (-1)F
Fart "= ") kz_‘a T s S

3. Relativistic Corrections

It has been assumed that a nonrelativistic calculation should give results
accurate sufficiently in application of quantum mechanical methods. This
assumption is very rarely checked, and in the few cases which an
approximate relativistic calculation has performed, the results show that for
many systems, the preceding assumption is not verified. In the present study,
the interest is focused on the shifts in the total ground state energies which
are caused by relativistic effects. To include relativistic effects in a rigorous
way, the Dirac equation needs to be solved for many-electron system, which
is difficult and time consuming. Many authors calculated the relativistic
corrections, for especially small atoms, with different wave functions by
using different methods [27-32]. Recently, due to the huge advance in
computer technology, the relativistic corrections have also been calculated

for some large atoms by several authors [33-42].

Dirac equation may be approximated in two component forms for many-

electron systems in atomic unit as following [43]:

N 2 N 4 V.§, &-(Ey xp;
)3 FRASEAN 3R NP AL T Cor P | |y _ gy, (1)

T For 2 2 2
P il 8c 8c 4c

where Eef is the effective electric field at 7;, position of the ith electron,

induced by the nuclei and all other electrons, and p; is the linear momentum

of the electron. The first three terms make up the unperturbed Schrodinger
Hamiltonian whose eigenvalues were mentioned above and the last three
terms may be calculated perturbatively since they are relatively small in
magnitude than unperturbed eigenvalue. The fourth term in equation (11) is
due to the relativistic correction to the kinetic energy and its eigenvalue is
given by
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(ET?) = <Zp, > (12)

This term is called the mass-velocity term because it rises from the relativistic

variation of mass with velocity. We calculated this correction term with

method given in [32, 44]. The expectation value of the term (p4) can be

easily expressed in terms of overlap integrals as follows:

= [oip*0d’r
_ Cz (n; +nj) (& +EDni(n; =)= 1;(f; +1)]
;; CikCik' {[ Cz n Cz ZCini + n; +nzl' -1 J
72
« S+ 51) n(g;f’) sy, ¢))

CF(n; +nj —1) (C; + &) ni(n; =1) = L;(; +1)]
( ¢ +C +20m - n; +n; —2 J

(Zgz)z ’ (Cz +C ) n, 1im;
\/2nl(2n —1) n +nl —1 Sptm;  (Gi> Gi)

+ (M —2C;n; + (& + ClmiCm; — 1) = 4l + 1)]}

i+ n;+np—3

(26 [} (n} = 1) = (1} +1)] (&8 g2t
T2 )@ D)2 3) i 2 (C“C)} )

in which S,’,'}f;,ml are overlap integrals and given in [22]. The fifth term in

equation (11) involving with the divergence of the effective electric field is
the Darwin term. It may be thought of as arising from a relativistically-
induced electric moment of the electron, or from the relativistic non-

localizability of the electron and its eigenvalue is calculated as follows:
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(EP) 8—2226@ 25( , (14)

i=1 i#j

which the first term defines probability of finding the electron on the
nucleus, so this term yields the Darwin correction for only s-atomic orbital.

For an electron in ith s-atomic orbital, this term is given by

(8(°)) = [ 078(F)sd’r

- ZZ CikCik' ¢ 7 2 %k (0)xx(0), (15)

kK

where k, k' label the STOs. The second term in equation (14) corresponds to
shifting probability density of electron from center. For the case with
electron 1 in jth atomic orbital and electron 2 in jth atomic orbital, we may

express the eigenvalue of this term using Laplace operator [45] by
- - * * — — 3 3
(87 = 7)) = [ 601)87(2)3( = 5)8i(n)0; () d*na’ry

min{l;+7;,1;+17}

= Z chtick’iczj'ck’j Z (limy| Lim} | Lm; — m')

kikf k iK' L=max{| =1} || 1;~1; |}

(n; +nynj+n)

J
(G + G+ G+ Q)T

X

w1 O mi=mi || m=m; |- (16)

The last term in equation (11) is the spin-orbit interaction, and the spin-
orbit splitting energy for the atomic orbital with n, /, j is expressed by

(ESLY 2 Z<1 dV(r)~ l>’ (17)

where V(r;) is the potential energy of ith electron which is in the field of the
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nucleus and spherically averaged field of the N —1 electrons, and l: and s;

are, respectively, the total orbital and spin angular momentum of the atom.

<LdV_(Vi)

T > is known as the spin-orbit coupling constant of ith orbital, and it
i i

is given as

<1 dV(r > Id’* 1. dV(r 0

7
* (n; +nj —3)
= Nn,-n} Z Z CriCl'i N —2

1
ki & (G + Ci)nl+nl

N
Z Z Z CkpCkp
p:

p#

/
(n, +np)!annp
(Cp +C!p)l’lp+l’lin+l

x{ (n; +n; =3) _"g}v (s Cp)t

G +gyitni=r & f

it —3)
» (n; + n} +1-3) Halﬂ;am[m;, (18)

(Qp + Q’p + gi + g;)"i"'”iH—Z

where N, is the normalization coefficient.

4. Results and Discussion

We have calculated ground state energies of open- and closed-shell
atoms in the range from He to Sr over n-STOs and ni-STOs. Also, we have
calculated three largest relativistic corrections, i.e., the kinetic energy
correction, the Darwin term and the spin-orbit interaction. The ground state
wave functions for both #-STOs and ni-STOs were provided to us by Prof.
Thakkar through private communication [46]. The calculation of one- and
two-electron integrals for ni-STOs is extremely time consuming for large
atoms having a number of basis functions. Therefore, it is very important that
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the algorithms for calculation of these integrals be fast and accurate. In the
present study, evaluation of the ground state energies of open- and closed-
shell atoms was realized by using equation (8) for n-STOs and equation (9)
for ni-STOs to calculate the radial part of two-electron integrals given by
equation (6). The gaunt coefficients in equation (6) were evaluated by the
method described in [47], and in order to speed up, the calculations over
n-STOs, the radial integral given by equation (8) was evaluated with a
similar approach. In calculations over ni-STOs, we have expressed in terms

of incomplete beta function B, (m, n) the incomplete gamma functions

¥(a, x) and T'(a, x). Our calculations have indicated that the convergence

behaviour of incomplete beta function is superior to incomplete gamma
functions and hypergeometric functions.

It is clear from the series description of incomplete beta function given

by equation (10) that the convergence is worst for ¢ = 1, even for this worst

case including 75 terms were enough to obtain a relative precision of 1077,

and in most cases with g > 1 less than 15 terms were enough to obtain

relative precision of 10715, We have listed in Table 1 the nonrelativistic
ground state energies of atoms in the range 2 < Z < 38 for n-STOs and ni-
STOs. This table contains the results found in the literature as well for
comparison. For all the atoms included in this study, the ground state
energies are very close to the exact results with a relative error on the order

of 1077, In order to verify our calculations, we have calculated the atomic
virial coefficient which differs from the exact value of (-2) only after 7th or
8th digit. This indicates that our results are sufficiently accurate for the
ground state energy of atoms.

We have calculated the three largest relativistic corrections which are

relativistic kinetic energy correction (EP 4), the Darwin term (ED ) and

spin-orbit interaction (ELS>, coming from being perturbation term to the

ground state energy. We have listed in Table 2 the results obtained for the

relativistic kinetic energy corrections and the Darwin terms from He to Sr. It
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can be seen in the first column in Table 2 that the total kinetic energy

corrections increase from —0.000703 au for the atom He to a value of

—165.2138 au for the atom Sr. They correspond to 2.45 x 1072% and 5.2%

when they are compared with the total ground state energies of
—2.861813849 au for He and —3176.367226 au for Sr, respectively. It is
shown that the relativistic kinetic energy correction has increased rapidly

when going to the larger atoms. Note that even for the atom Sr (Z = 38), the

relativistic kinetic energy correction is about 5.2% of the total ground state
energy 3176.367226 au, and it may not be neglected in an accurate
calculation. Similar to the trend in the total energy correction, the relativistic
effect in each individual orbital increases as the atom becomes larger. The
major effect of the relativistic kinetic correction causes the wave function to
shrink in the region near the nuclear where the wave function has large
gradient. The most contribution to the kinematic correction comes from two

s electrons. Consider Fe (Z =26) atom for example, 83.8% of the
correction comes from two ls electrons and 9.77% from the 2s electrons.
The contribution of the 3s and 4s electrons is 1.4% and 6.4><10_2%,
respectively. The 2p, 3p and 3d electrons are contributed 4.24%,

6.3x107'% and 8x1072 %, respectively. As most of the wave functions

stay away from the nuclear regions, the contributions of p- and d-orbitals are
relatively small in comparison with s orbitals. The Darwin correction listed

in the second column in Table 2 increases from 0.00569 au for He to
120.391943 au for Sr, which are amount to 1.99 x 1072% and 3.79% of the
corresponding total ground state energies, respectively. Take P (Z =15)

atom, for example, the magnitude of the Darwin correction is approximately
1.25% of the total ground state energy. The Darwin correction deals with the
Laplacian of the effective potentials. For the positive nuclear charge, since
only the s orbitals are non-vanishing in the nuclear regions, it does not
contribute to p orbitals. The contribution of the negative electron charges is

of opposite sign and effects all the states including the p-orbitals. Since the
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electron charges are spread over the atomic range, this effect is much smaller.

For the atom P (Z = 15), for example, the contribution of two 1s electrons is

91.84%. The 2s and 3s electrons contribute 6.68% and 0.5%, respectively.
The total contribution of 2p and 3p electrons is 0.98%.

While the positive Darwin affects are higher the grounds state energies,
the negative relativistic kinetic energy corrections caused by shrinkage of the
wave functions are lower the ground state energies. Our results for the total
Darwin corrections in small atoms are in good agreement with ones obtained
by Jeng and Hsue. However, there is a small discrepancy seems to increase
by increasing atomic number Z. The cause of this discrepancy is due to one-
electron delta function operator in calculation of Darwin term, because the
approximate wave functions are usually designed to perform accurately the
common properties of the real wave functions. Although the wave functions
are sufficient in determination of the various physical properties as energy
and momentum, they are insufficient to calculate the characteristic properties

such as amplitude, which is restricted to the narrow region.
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Figure 1. (a) The ground state relativistic correction energies of atoms. Solid
lines are kinetic energy correction, dot line is Darwin term, and dash line is
kinetic energy correction plus Darwin term. (b) The total grounds state
energies of atoms. Solid lines are nonrelativistic the total ground state energy
and dot line is relativistic the total ground state energy.
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Table 2. Relativistic corrections and relativistic total ground state energy of

atoms in au

Atom  Eq.(13) Eq.(15)  Egs.(13+15) RelE*  RelE" RelE

o D I Ty g
o amme dwm o gy s
o amen emm o wee
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Voaums wme amen g sesw
o dmm Gums b i, s
P 042505 0332233 0092272 993101 9950160617
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R
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P s W e Sses
o e s e g s
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Ti

Cr
Mn
Fe

Co

Rb

Sr
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-17.42544
-17.3516*
-20.93297
-20.8483"
-24.93114
-24.8310°
-29.51226
-29.4022°
-34.68222
-34.5551°
-40.50466
-40.3591*
-47.03333
-46.8672"
-54.21971
-54.0990*
-62.35381
-62.2186"
-71.37705
-71.2129*
-81.35203
-81.1601°
-92.34659
-92.1261°
-104.4293
-104.1789°
-117.6707
-117.3890*
-132.1439
-131.8292°
-148.0269
-147.5940°
-165.2138
-164.7560"

13.03139
12.9432*°
15.62175
15.5193°
18.57270
18.4519°
21.94091
21.8048"
25.73911
25.5823°
30.01028
29.8308°
34.79246
34.5879°
40.07225
39.8730°
46.00891
45.7856"°
52.58072
52.3242°
59.83303
59.5419°
67.81200
67.4842°
76.56539
76.1981"
86.04135
85.7318"
96.58995
96.1354°
108.0204
107.476
120.3919
119.80°

-4.39405
-4.4084°
531122
-5.329°
-6.35844
-6.3791°
-7.57135
-7.5974°
-8.94311
-8.9728°
-10.49438
-10.5283°
-12.24087
-12.2793°
-14.14746
-14.226°
-16.3449
-16.433°
-18.79633
-18.8887°
21,519
21.6182°
-24.53459
24.6419*
-27.86391
-27.9808*
-31.62935
-31.6572°
-35.55395
-35.6938°
-40.0065
-40.1178*
-44.8219
-44.9526°

-851.5621

-946.8378

-1048.1914

-1155.7717

-1269.7314

-1390.2226

-1517.3973

-1651.4824

-1792.4091

-1790.0714

-2094.7034

-2256.3961

-2425.2588

-2601.3991

-2784.9273

-2975.5191

-3173.4689

-1049.6731

-1794.6082

-2097.4618

-2788.8555

-3178.0743

-852.7999249

-948.1953472

-1049.714399

-1157.437388

-1271.386379

-1391.908551

-1519.111222

-1653.110392

-1794.1924006

-1942.056791

-2096.878277

-2258.772833

-2427.730882

-2604.069931

-2787.608182

-2978.363107

-3176.367226

a [40]. L3 [42]
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Table 3. Spin-orbit splitting and the coupling coefficients for p-orbitals from
B to Srin au

Atom 2p-splitting 2p-coupling 3p-splitting 3p-coupling 4p-splitting 4p-coupling
B 0.000124  0.000041
C 0.000339 0.000113
N  0.000746  0.000249
0)
F

0.001399  0.000466
0.002427  0.000809
Ne 0.003946 0.001315
Na 0.006941 0.002314
Mg 0.011161 0.003720
Al 0.016747 0.005582  0.000515  0.000172
Si  0.024534 0.008178  0.001056  0.000352
P 0.034728 0.011576 0.001837  0.000612
S 0.047754 0.015918 0.002881  0.000960
Cl  0.064061 0.021354 0.004294  0.001431
Ar 0.084329 0.028124 0.006053  0.002019
K 0.108936 0.036312 0.009288  0.003096
Ca 0.138610 0.046203 0.013433  0.004478
Sc  0.174028 0.058009 0.017831  0.005944
Ti  0.215820 0.071940 0.023014  0.007671
vV 0.264674 0.088225 0.029131  0.009710
Cr 0321772 0.107257 0.035593  0.011864
Mn 0.386589  0.128863  0.044573  0.014858
Fe 0.461268 0.153756 0.054348  0.018116
Co 0.546221 0.182074 0.065499  0.021833
Ni  0.642350 0.214117 0.078204  0.026068
Cu 0.751467 0.250489 0.091465  0.030488
Zn 0.871901 0.290634 0.108780  0.036260
Ga 1.007199 0.335733  0.129370  0.043123  0.003436  0.001145
Ge 1.157534 0.385845 0.153005  0.051002  0.005901 0.001967
As 1324109 0.441370 0.180071  0.060024  0.008834  0.002945
Se  1.508081 0.502694 0.210721  0.070240  0.012160  0.004053
Br 1.710603  0.570201  0.245257  0.081752  0.016210  0.005403
Kr 1.932902 0.644301 0.284235  0.094745  0.020710  0.006903
Rb  2.176090 0.725363  0.327080  0.109027  0.028769  0.009590
Sr 2441714 0.813905 0.375194  0.125065  0.038116  0.012705

In the third column of Table 2, we have listed the total relativistic
corrections including the relativistic kinetic energy plus the Darwin
correction from —0.000134 au for He to —44.9526 au for Sr. While total
relativistic corrections for small atoms various between 0 and —1 au, these

corrections have increased rapidly when going through the bigger atom. The
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corresponding relativistic corrected ground state energy values in the
literature are listed in fourth and fifth columns in Table 2 for comparison. In
the fourth column, Jeng and Hsue [40] calculated the relativistic corrected
energies by the local density approximation method (LDA) by employing
B-spline basis. They took into account two correction terms which are the
relativistic kinetic energy correction and the Darwin correction, in
calculation of the relativistic corrected energies. In fifth column, Macedo et
al. [42] calculated directly the ground state energies from relativistic
Hamiltonian of the closed-shell atoms from He to Barium over Gaussian
basis sets by the generator coordinate Dirac-Fock (GCDF) method. Our
results calculated by ab-initio method over n-STOs for the relativistic
corrected energies from He to Sr are listed in the last column in this table. As
can be shown from the table that our results obtained from He to Sr atoms are
better than ones calculated by Jeng and Hsue [40]. Furthermore, while our
results are better than ones calculated by Macedo et al. [42] for small atoms,
there is a small discrepancy with ones of larger atoms. This situation may
explain that we have not taken into account the other relativistic terms which
have important effects for especially larger atoms. When going to larger
atoms, these effects are lower the negative total energy values of atoms. We
have shown the total ground state correction terms in Figure 1(a) and the
total ground state nonrelativistic and relativistic energies in Figure 1(b). It
can be shown clearly from Figure 1(a) that the order of magnitude of the
kinetic energy corrections and the Darwin corrections are almost the same in
small atoms and they remove each other, but the relativistic kinetic energy
correction is larger than the Darwin term for larger atoms. This results show
that the terms of the kinetic energy corrections and Darwin terms may not be
neglected in accurate calculation even for small atoms. In addition, we may
see in Figure 1(b) that the total nonrelativistic and relativistic ground state
energies have increased exponentially with respect to atomic number.

We have listed the results obtained for spin-orbit energies and coupling
constants of p-orbitals in Table 3. As can be seen in the table, the magnitude
of spin-orbit splitting grows rapidly as the atomic number Z increases. Take

the dominate 2p splitting, the splitting increases from 1.24 x 10~ au for B to
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2441714 au for Sr. As seen in this table, the inner orbitals, 1 # 0, have

larger energy splittings whose wave functions lie nearer to the origin as
equation (17) contains the expectation value of »~!. Take the Si (Z =14)

atom, the energy 0.001056 au in the 3p-orbitals is only 4.3% of the 2p
splitting energy 0.024534 au. The splitting energy of 2p orbital corresponds

to 8.48 x1072% merely when compared with the total ground state energy

of 289.47814 au. The spin-orbit splitting energy for Si has been measured
and calculated in various works. Hayes and Brown [49] measured a value of
0.65 £0.05eV (0.023887 au) for this energy with the experiments on the

absorption of molecules. For the energy, Siegbahn et al. [50] and Kelfve et
al. [51] obtained various results which are over the range of 0.6 ~ 0.7 eV at
various experiments. This energy was calculated to be 0.7 eV (0.025724 au)
with perturbation treatments on The Hartree-Fock Slater wave functions by
Herman and Skillman [52]. In this study, we have calculated 0.024534 au for
spin-orbit splitting energy of 2p in Si. The result is in good agreement with
the above mentioned experimental values and with other results found in

literature.

Works are in progress for the calculation of relativistic corrections for
several excited states of the finite and infinite Quantum Dots with spherical
confining potential, which their nonrelativistic ground state energies and
wave functions were obtained with combining the Genetic algorithm and
HFR method.
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