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Abstract 

Hartree-Fock Roothaan (HFR) calculations for ground states of the 
neutral atoms from He to Sr have been performed using integer and 
noninteger Slater type orbitals (n- and ni-STOs). In addition, we 
calculated three largest relativistic corrections which are the 
relativistic kinetic energy correction, the Darwin term and spin-orbit 
interaction using n-STOs as perturbation. It has been seen that 1s 
electrons are responsible for almost 80-90% of the total relativistic 
kinetic energy and the Darwin corrections. Besides, it has been 
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observed that while the total relativistic energy corrections for small 
atoms change between 0 and –1 au, the magnitude of the corrections 
increases rapidly when going through the bigger atoms. The results 
show that the kinetic energy correction and Darwin correction terms 
may not be neglected in an accurate calculation even for small atoms. 
Our results are in accord with the other results found in the literature. 

1. Introduction 

The effect computation of multicenter molecular integrals appearing in 
the determination of various properties of atom and molecules in HFR 
approximation strongly depends on the conformation of the basis function. 
Two type’s basis functions are generally used in the multicenter molecular 
integrals. One of them is the Gaussian type orbitals (GTOs) which are widely 
used in molecular calculations, because multicenter molecular integrals can 
be evaluated easily over GTOs. But, GTOs do not represent the correct 
behaviour of the wave function especially at the nuclei and at large distances 
from the nuclei. The other one is Slater type orbitals (STOs). For problems in 
which the long part of the wave function or its behaviour in the 
neighbourhood of the nuclei is important, it is desirable to use STOs which 
describe the physical situation more accurately than GTOs. Although the use 
of STOs is rather difficult and tedious especially in the calculation of 
multicenter integrals, the use of STOs in molecular calculation has attracted 
great attention from several authors for three decade [1-11]. 

Traditionally, the principle quantum number n is assumed to be a 
positive integer in calculation of multicenter integrals. However, it is well-
known that STOs with noninteger quantum numbers (ni-STOs) provide a 
more flexible basis for atomic calculations than STOs with integer quantum 
numbers (n-STOs), and also the energies calculated by use of ni-STOs lead 
to better atomic energies than those obtained by n-STOs [12-15]. The 
fundamental difficulty occurring in the use of ni-STOs is that the multicenter 
integrals cannot be calculated accurately and efficiently over ni-STOs. 
Recently, some authors calculated the molecular integrals and physical 
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parameters of atoms and molecules over ni-STOs with several methods     
[16-21]. Koga et al. [16], and later Guseinov and Mamedov [19] calculated 
two-electron integrals using hypergeometric functions ( )xcbaF ,,,12  over 

n-STOs and ni-STOs. Afterwards, Gümüş and Özdoğan [20] employed the 
same functions for the calculation of ground state energies of some closed-
shell atoms using both n-STOs and ni-STOs. However, it is still not clear that 
which method is the best in terms of speed and accuracy. 

In a previous work [22], one of the authors has calculated the orbital and 
ground state energies of some open- and closed-shell atoms over n-STOs and 
ni-STOs. In order to increase the efficiency of these calculations, the atomic 
two-electron integrals were expressed in terms of incomplete beta function. 
In the present study, we have improved our previous study so as to include 
the three most important relativistic correction terms, also the range of the 
atoms, for which the calculations are performed, is extended to include all 
neutral atoms up to Sr. We first discuss the unperturbed Hamiltonian, and 
next discuss the following three largest relativistic corrections which are the 
relativistic kinetic energy correction, the Darwin term and spin-orbit 
interaction. Then we present the methods for numerical calculations, and 
discuss the result obtained for the ground states of neutral atoms in the range 
from He to Sr. Atomic units (au) will be used throughout study. 

2. Theory 

Using the unperturbed Hamiltonian, an N-electron system containing at 
most one open-shell is defined by a restricted determinant wave function, and 
the expectation value of the total energy is given by 

( )∑ ∑ −+=
k kl

klklk KJhE 22  

( ) ( ) ,2222











−+−++ ∑ ∑ ∑

m mn km
kmkmmnmnm KJbKaJfhf  (1) 

where the indices k, l refer to the closed-shell orbitals and m, n to the open-
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shell orbitals. a, b and f are numerical constants which depend on particular 
open-shell problem, details are given in [25]. The kh  in the first sum refer to 

the energy expectation value for a single electron in the state k, where the 
energy consists of the kinetic energy of the electron and its potential energy 
in the coulomb field of the nucleus. In the following double sum, the 
quantities klJ  represent the coulomb interaction energies between the charge 

densities of the electrons in states k and l. This interaction includes both 
electrons of like spin and those of opposite spin. The last terms klK  are 

expressions for the exchange interaction, which acts only between electrons 
having the same spin direction. One-electron spatial orbitals ,pφ  which are 

constructed the Slater determinant, may be expressed as linear combinations 
of STOs, indicated ,kχ  called basis functions, 

 ( )∑ ζχ=φ
k

kkpkp rc ,,  (2) 

where nlmk =  are quantum numbers of basis functions, pkc  are expansion 

coefficients and kζ  are the screening constants. The general form of the 

normalized complex STO is given by 

 ( ) [( ) ( )] ( ),122, 12112 θφ+Γζ=ζχ ζ−−+
lm

rnn
nlm Yernr  (3) 

where ( )zΓ  denotes the gamma function [24]. ( )θφlmY  is well known 

complex spherical harmonic in Condon-Shortley phase convention. 

There are two types of integrals appearing in the solution of the HFR 
equations for atoms. One of them is one-electron integrals, and the other is 
two-electron integrals. Nuclear attraction and kinetic energy integrals are 
one-electron integrals, and are defined by the following expressions in terms 
of the atomic orbital respectively, 

 ∫ φ−φ= ∗ rdr
ZV ii

3  (4) 
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and 

 ∫ φ∇−φ= ∗ ,2
3

2
rdT ii  (5) 

where Z denotes the nuclear charge and i indicates the quantum numbers of 
one-electron spatial orbitals. These integrals can be easily expressed in terms 
of overlap integrals as in [22]. Coulomb and exchange integrals which are 
two-electron integrals are also needed in the HFR analysis of atoms. 
However, both of them have the same form except for the indices of the basis 
orbital. Coulomb integral is defined as follows: 

( ) ( ) ( ) ( )∫ φφφφ= ∗∗
2

3
1

3
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1  

iiiiii mLmmlml ′−′′×  

L
nnnnjjjjjj jjii

RmmLmlml
′′+′+−′′′× ,  

( ) ,, jjii mmmmjjii −′′−δζ′+ζ+ζ′+ζ×  (6) 

in which k labels the STOs with quantum numbers ,iii mln  jj
ii

nn
nnA
′
′  is the 

combination of normalization constants of the STOs and LMmllm ′′  with 

,llLll ′+≤≤′−  mmL ′−≥  are gaunt coefficients as defined in [25]. 

The integral ( )21,
21

zzRL
NN  in equation (6) has the general form 

 ( ) ∫ ∫
∞ ∞

+
>

<−−=
0 0 2112121 ., 221121

21
drdr

r
reerrzzR L

L
rzrzNNL

NN  (7) 

In calculation with n-STOs, the integral ( )21,
21

zzRL
NN  can easily be 

calculated in terms of the binomial coefficients as follows: 
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where ( ) ( ) !!! sskkkFs −=  are the binomial coefficients. In the case of        

ni-STOs, making a simple change of variable in the integral ( ),, 2121
zzRL

NN  

it can easily be defined in terms of the incomplete beta function by 

( ) ( ) ( )
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in which ( ) 221 zzzq +=  and the term ( ) ( )nmB
q

,1−  is the incomplete beta 

function given in [26] by 
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3. Relativistic Corrections 

It has been assumed that a nonrelativistic calculation should give results 
accurate sufficiently in application of quantum mechanical methods. This 
assumption is very rarely checked, and in the few cases which an 
approximate relativistic calculation has performed, the results show that for 
many systems, the preceding assumption is not verified. In the present study, 
the interest is focused on the shifts in the total ground state energies which 
are caused by relativistic effects. To include relativistic effects in a rigorous 
way, the Dirac equation needs to be solved for many-electron system, which 
is difficult and time consuming. Many authors calculated the relativistic 
corrections, for especially small atoms, with different wave functions by 
using different methods [27-32]. Recently, due to the huge advance in 
computer technology, the relativistic corrections have also been calculated 
for some large atoms by several authors [33-42]. 

Dirac equation may be approximated in two component forms for many-
electron systems in atomic unit as following [43]: 

( )
,

488
1

2
1

222

42
Ψ=Ψ


























 ×ε⋅σ
+

ε⋅∇
+++−∇−∑ ∑
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i

N

ji

iefefi
iji

 (11) 

where efε  is the effective electric field at ,ir  position of the ith electron, 

induced by the nuclei and all other electrons, and ip  is the linear momentum 

of the electron. The first three terms make up the unperturbed Schrödinger 
Hamiltonian whose eigenvalues were mentioned above and the last three 
terms may be calculated perturbatively since they are relatively small in 
magnitude than unperturbed eigenvalue. The fourth term in equation (11) is 
due to the relativistic correction to the kinetic energy and its eigenvalue is 
given by 
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This term is called the mass-velocity term because it rises from the relativistic 
variation of mass with velocity. We calculated this correction term with 

method given in [32, 44]. The expectation value of the term 4p  can be 

easily expressed in terms of overlap integrals as follows: 
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in which mln
nlmS ′′′  are overlap integrals and given in [22]. The fifth term in 

equation (11) involving with the divergence of the effective electric field is 
the Darwin term. It may be thought of as arising from a relativistically-
induced electric moment of the electron, or from the relativistic non-
localizability of the electron and its eigenvalue is calculated as follows: 
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which the first term defines probability of finding the electron on the 
nucleus, so this term yields the Darwin correction for only s-atomic orbital. 
For an electron in ith s-atomic orbital, this term is given by 

( ) ( )∫ φδφ=δ ∗ rdrr ii
3  

( ) ( )∑∑
′
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∗ χχ=

k k
kkkiik

c
cc ,00

8
1
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where k, k′  label the STOs. The second term in equation (14) corresponds to 
shifting probability density of electron from center. For the case with 
electron 1 in ith atomic orbital and electron 2 in jth atomic orbital, we may 
express the eigenvalue of this term using Laplace operator [45] by 
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The last term in equation (11) is the spin-orbit interaction, and the spin-
orbit splitting energy for the atomic orbital with n, l, j is expressed by 

 ( )∑ ⋅=
i

ii
i
i

i
SL sldr

rdV
rc

E ,1
4
1

2  (17) 

where ( )irV  is the potential energy of ith electron which is in the field of the 
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nucleus and spherically averaged field of the 1−N  electrons, and il  and is  

are, respectively, the total orbital and spin angular momentum of the atom. 
( )
i
i

i dr
rdV

r
1  is known as the spin-orbit coupling constant of ith orbital, and it 

is given as 
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where iinnN ′  is the normalization coefficient. 

4. Results and Discussion 

We have calculated ground state energies of open- and closed-shell 
atoms in the range from He to Sr over n-STOs and ni-STOs. Also, we have 
calculated three largest relativistic corrections, i.e., the kinetic energy 
correction, the Darwin term and the spin-orbit interaction. The ground state 
wave functions for both n-STOs and ni-STOs were provided to us by Prof. 
Thakkar through private communication [46]. The calculation of one- and 
two-electron integrals for ni-STOs is extremely time consuming for large 
atoms having a number of basis functions. Therefore, it is very important that 
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the algorithms for calculation of these integrals be fast and accurate. In the 
present study, evaluation of the ground state energies of open- and closed-
shell atoms was realized by using equation (8) for n-STOs and equation (9) 
for ni-STOs to calculate the radial part of two-electron integrals given by 
equation (6). The gaunt coefficients in equation (6) were evaluated by the 
method described in [47], and in order to speed up, the calculations over       
n-STOs, the radial integral given by equation (8) was evaluated with a 
similar approach. In calculations over ni-STOs, we have expressed in terms 
of incomplete beta function ( )nmBq ,  the incomplete gamma functions 

( )xa,γ  and ( )., xaΓ  Our calculations have indicated that the convergence 

behaviour of incomplete beta function is superior to incomplete gamma 
functions and hypergeometric functions. 

It is clear from the series description of incomplete beta function given 
by equation (10) that the convergence is worst for ,1=q  even for this worst 

case including 75 terms were enough to obtain a relative precision of ,10 7−  
and in most cases with 1>q  less than 15 terms were enough to obtain 

relative precision of .10 15−  We have listed in Table 1 the nonrelativistic 
ground state energies of atoms in the range 382 ≤≤ Z  for n-STOs and ni-
STOs. This table contains the results found in the literature as well for 
comparison. For all the atoms included in this study, the ground state 
energies are very close to the exact results with a relative error on the order 

of .10 7−  In order to verify our calculations, we have calculated the atomic 
virial coefficient which differs from the exact value of (–2) only after 7th or 
8th digit. This indicates that our results are sufficiently accurate for the 
ground state energy of atoms. 

We have calculated the three largest relativistic corrections which are 

relativistic kinetic energy correction ,4PE  the Darwin term DE  and 

spin-orbit interaction ,LSE  coming from being perturbation term to the 

ground state energy. We have listed in Table 2 the results obtained for the 
relativistic kinetic energy corrections and the Darwin terms from He to Sr. It 
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can be seen in the first column in Table 2 that the total kinetic energy 
corrections increase from –0.000703 au for the atom He to a value of             

–165.2138 au for the atom Sr. They correspond to %1045.2 2−×  and 5.2% 

when they are compared with the total ground state energies of                       
–2.861813849 au for He and –3176.367226 au for Sr, respectively. It is 
shown that the relativistic kinetic energy correction has increased rapidly 
when going to the larger atoms. Note that even for the atom Sr ( ),38=Z  the 

relativistic kinetic energy correction is about 5.2% of the total ground state 
energy 3176.367226 au, and it may not be neglected in an accurate 
calculation. Similar to the trend in the total energy correction, the relativistic 
effect in each individual orbital increases as the atom becomes larger. The 
major effect of the relativistic kinetic correction causes the wave function to 
shrink in the region near the nuclear where the wave function has large 
gradient. The most contribution to the kinematic correction comes from two 
1s electrons. Consider Fe ( )26=Z  atom for example, 83.8% of the 

correction comes from two 1s electrons and 9.77% from the 2s electrons.  

The contribution of the 3s and 4s electrons is 1.4% and %,104.6 2−×  

respectively. The 2p, 3p and 3d electrons are contributed 4.24%, 

%103.6 1−×  and %,108 2−×  respectively. As most of the wave functions 

stay away from the nuclear regions, the contributions of p- and d-orbitals are 
relatively small in comparison with s orbitals. The Darwin correction listed 
in the second column in Table 2 increases from 0.00569 au for He to 

120.391943 au for Sr, which are amount to %1099.1 2−×  and 3.79% of the 

corresponding total ground state energies, respectively. Take P ( )15=Z  

atom, for example, the magnitude of the Darwin correction is approximately 
1.25% of the total ground state energy. The Darwin correction deals with the 
Laplacian of the effective potentials. For the positive nuclear charge, since 
only the s orbitals are non-vanishing in the nuclear regions, it does not 
contribute to p orbitals. The contribution of the negative electron charges is 
of opposite sign and effects all the states including the p-orbitals. Since the 
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electron charges are spread over the atomic range, this effect is much smaller. 
For the atom P ( ),15=Z  for example, the contribution of two 1s electrons is 

91.84%. The 2s and 3s electrons contribute 6.68% and 0.5%, respectively. 
The total contribution of 2p and 3p electrons is 0.98%. 

While the positive Darwin affects are higher the grounds state energies, 
the negative relativistic kinetic energy corrections caused by shrinkage of the 
wave functions are lower the ground state energies. Our results for the total 
Darwin corrections in small atoms are in good agreement with ones obtained 
by Jeng and Hsue. However, there is a small discrepancy seems to increase 
by increasing atomic number Z. The cause of this discrepancy is due to one- 
electron delta function operator in calculation of Darwin term, because the 
approximate wave functions are usually designed to perform accurately the 
common properties of the real wave functions. Although the wave functions 
are sufficient in determination of the various physical properties as energy 
and momentum, they are insufficient to calculate the characteristic properties 
such as amplitude, which is restricted to the narrow region. 

 

                           (a)                                                                (b) 

Figure 1. (a) The ground state relativistic correction energies of atoms. Solid 
lines are kinetic energy correction, dot line is Darwin term, and dash line is 
kinetic energy correction plus Darwin term. (b) The total grounds state 
energies of atoms. Solid lines are nonrelativistic the total ground state energy 
and dot line is relativistic the total ground state energy. 
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Table 2. Relativistic corrections and relativistic total ground state energy of 
atoms in au 
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Table 3. Spin-orbit splitting and the coupling coefficients for p-orbitals from 
B to Sr in au 
Atom 2p-splitting 2p-coupling 3p-splitting 3p-coupling 4p-splitting 4p-coupling 

B 0.000124 0.000041     
C 0.000339 0.000113     
N 0.000746 0.000249     
O 0.001399 0.000466     
F 0.002427 0.000809     

Ne 0.003946 0.001315     
Na 0.006941 0.002314     
Mg 0.011161 0.003720     
Al 0.016747 0.005582 0.000515 0.000172   
Si 0.024534 0.008178 0.001056 0.000352   
P 0.034728 0.011576 0.001837 0.000612   
S 0.047754 0.015918 0.002881 0.000960   
Cl 0.064061 0.021354 0.004294 0.001431   
Ar 0.084329 0.028124 0.006053 0.002019   
K 0.108936 0.036312 0.009288 0.003096   
Ca 0.138610 0.046203 0.013433 0.004478   
Sc 0.174028 0.058009 0.017831 0.005944   
Ti 0.215820 0.071940 0.023014 0.007671   
V 0.264674 0.088225 0.029131 0.009710   
Cr 0.321772 0.107257 0.035593 0.011864   
Mn 0.386589 0.128863 0.044573 0.014858   
Fe 0.461268 0.153756 0.054348 0.018116   
Co 0.546221 0.182074 0.065499 0.021833   
Ni 0.642350 0.214117 0.078204 0.026068   
Cu 0.751467 0.250489 0.091465 0.030488   
Zn 0.871901 0.290634 0.108780 0.036260   
Ga 1.007199 0.335733 0.129370 0.043123 0.003436 0.001145 
Ge 1.157534 0.385845 0.153005 0.051002 0.005901 0.001967 
As 1.324109 0.441370 0.180071 0.060024 0.008834 0.002945 
Se 1.508081 0.502694 0.210721 0.070240 0.012160 0.004053 
Br 1.710603 0.570201 0.245257 0.081752 0.016210 0.005403 
Kr 1.932902 0.644301 0.284235 0.094745 0.020710 0.006903 
Rb 2.176090 0.725363 0.327080 0.109027 0.028769 0.009590 
Sr 2.441714 0.813905 0.375194 0.125065 0.038116 0.012705 

In the third column of Table 2, we have listed the total relativistic 
corrections including the relativistic kinetic energy plus the Darwin 
correction from –0.000134 au for He to –44.9526 au for Sr. While total 
relativistic corrections for small atoms various between 0 and –1 au, these 
corrections have increased rapidly when going through the bigger atom. The 
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corresponding relativistic corrected ground state energy values in the 
literature are listed in fourth and fifth columns in Table 2 for comparison. In 
the fourth column, Jeng and Hsue [40] calculated the relativistic corrected 
energies by the local density approximation method (LDA) by employing     
B-spline basis. They took into account two correction terms which are the 
relativistic kinetic energy correction and the Darwin correction, in 
calculation of the relativistic corrected energies. In fifth column, Macedo et 
al. [42] calculated directly the ground state energies from relativistic 
Hamiltonian of the closed-shell atoms from He to Barium over Gaussian 
basis sets by the generator coordinate Dirac-Fock (GCDF) method. Our 
results calculated by ab-initio method over n-STOs for the relativistic 
corrected energies from He to Sr are listed in the last column in this table. As 
can be shown from the table that our results obtained from He to Sr atoms are 
better than ones calculated by Jeng and Hsue [40]. Furthermore, while our 
results are better than ones calculated by Macedo et al. [42] for small atoms, 
there is a small discrepancy with ones of larger atoms. This situation may 
explain that we have not taken into account the other relativistic terms which 
have important effects for especially larger atoms. When going to larger 
atoms, these effects are lower the negative total energy values of atoms. We 
have shown the total ground state correction terms in Figure 1(a) and the 
total ground state nonrelativistic and relativistic energies in Figure 1(b). It 
can be shown clearly from Figure 1(a) that the order of magnitude of the 
kinetic energy corrections and the Darwin corrections are almost the same in 
small atoms and they remove each other, but the relativistic kinetic energy 
correction is larger than the Darwin term for larger atoms. This results show 
that the terms of the kinetic energy corrections and Darwin terms may not be 
neglected in accurate calculation even for small atoms. In addition, we may 
see in Figure 1(b) that the total nonrelativistic and relativistic ground state 
energies have increased exponentially with respect to atomic number. 

We have listed the results obtained for spin-orbit energies and coupling 
constants of p-orbitals in Table 3. As can be seen in the table, the magnitude 
of spin-orbit splitting grows rapidly as the atomic number Z increases. Take 

the dominate 2p splitting, the splitting increases from 41024.1 −×  au for B to 
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2.441714 au for Sr. As seen in this table, the inner orbitals, ,01 ≠  have 
larger energy splittings whose wave functions lie nearer to the origin as 

equation (17) contains the expectation value of .1−r  Take the Si ( )14=Z  

atom, the energy 0.001056 au in the 3p-orbitals is only 4.3% of the 2p 
splitting energy 0.024534 au. The splitting energy of 2p orbital corresponds 

to %1048.8 3−×  merely when compared with the total ground state energy 

of 289.47814 au. The spin-orbit splitting energy for Si has been measured 
and calculated in various works. Hayes and Brown [49] measured a value of 

eV05.065.0 ±  (0.023887 au) for this energy with the experiments on the 

absorption of molecules. For the energy, Siegbahn et al. [50] and Kelfve et 
al. [51] obtained various results which are over the range of 0.6 ~ 0.7 eV at 
various experiments. This energy was calculated to be 0.7 eV (0.025724 au) 
with perturbation treatments on The Hartree-Fock Slater wave functions by 
Herman and Skillman [52]. In this study, we have calculated 0.024534 au for 
spin-orbit splitting energy of 2p in Si. The result is in good agreement with 
the above mentioned experimental values and with other results found in 
literature. 

Works are in progress for the calculation of relativistic corrections for 
several excited states of the finite and infinite Quantum Dots with spherical 
confining potential, which their nonrelativistic ground state energies and 
wave functions were obtained with combining the Genetic algorithm and 
HFR method. 
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