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Abstract 

A stochastic inequality between Itô integral and Lebesgue integral is 
obtained from the classic law of iterated logarithm, which provides a way 
to study stochastic delay differential equations with white noises directly 
in probability 1. 

1. Introduction 

We often call differential equations with time delay as delay (or functional) 
differential equations, which are widely used to model phenomena in physics, 
economics, biology, medicine, ecology and other sciences (e.g., [4, 7, 10]). However, 
in most cases, some kind of randomness can appear in the problem, so that the 
phenomena should be modeled by a stochastic form. The earliest work on SDEs was 
done to describe Wiener process in Einstein’s famous paper [1], and at the same time 
by [9]. There is by now a rather comprehensive mathematical literature on the 
mathematical theory and on applications of stochastic differential equations driven 
by white noise (e.g., [5, 6, 8, 11]). 

The well-posed problem stems from a definition given by Hadamard [3]. He 
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believed that mathematical models of physical phenomena should have the 
properties that 

(1) A solution exists 

(2) The solution is unique 

(3) The solution depends continuously on the initial data, in some reasonable 
topology. 

For stochastic mathematical models, the probability sense must be considered in 
the definition of well-posedness. For example, we can define the almost sure well-
posedness as the following: 

Definition 1.1. If all the properties (1)-(3) hold in probability 1 for a stochastic 
mathematical model, then the model is almost surely (a.s.) well-posed. 

The a.s. well-posedness is very important. It is a part of the definition of 
stochastic or random dynamical systems and most of the necessary tools are also 
needed in other parts of the study. Existence and uniqueness of global solutions have 
been established under global Lipschitz conditions (e.g., [5]) or under local Lipschitz 
and linear growth conditions (e.g., [6, 11]). [11] also considered the continuous 
dependence of solutions on initial values. The well-posedness problem for stochastic 
delay differential equations seems to be over. It is noteworthy that the continuous 
dependence on initial values is in mean square, not in probability 1. That is, (1) and 
(2) hold in probability 1, but (3) is true in mean square. Obviously, Definition 1.1 
does not be satisfied. From the current literature, we find that the continuous 
dependence on initial values in probability 1 for Cauchy problem of stochastic delay 
differential equations with white noises has not been solved so far. It motivates us to 
think about the a.s. well-posedness problem of stochastic delay differential equations 
with white noises. 

Suppose that ( { } )PFFΩ ,,, 0≥tt  is a filtered complete probability space. We will 

always consider our problems in the probability space. Let xE  be the mathematical 

expectation of a random variable x. From now on, ( ) ( ),, ω= tWtW  0≥t  is always 

a one dimensional Wiener process and fdW is an Itô’s differential. By using the 
following properties of Itô integral, 

 ( ) ( )∫ =
t

sdWsg
0

,0E  (1.1) 
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 ( ) ( ) ( ) ,
0

2
2

0 ∫∫ =






 tt
dssgsdWsg EE  (1.2) 

where 2
locg L∈  and 2

locL  is as in Section 2, we can transform stochastic equations 

with white noises into the corresponding deterministic equations on some moments. 
By using some stochastic formulas or the relationship between different types of 
stochastic convergence again, we can obtain the existence of solutions of Itô 
stochastic differential equations. The way is well-known and it is used frequently by 

many authors (e.g., [2, 5, 6, 8, 11]). But, if ,2
locLg ∈  where 2

locL  is as in Section 2, 

then (1.1) and (1.2) may not be true for ,0>t  which implies that the idea would not 

be suitable for stochastic differential equations with generalized Itô differential in 

.2
locL  We also point out that the way is helpless to discuss the a.s. continuous 

dependence on initial data for the solutions of Itô stochastic differential equations 
though it leads to continuous dependence on initial data in mean square or in 
probability or in distribution. It motivates us to look for a new way to solve the a.s. 
well-posedness of Itô stochastic delay differential equations freely. In this paper, our 
way seems to be rather different from [5, 6, 11], but to be similar to deterministic 
delay differential equations [4, 7, 10]. That is, by using this way, we can use more 
ideas of deterministic analysis to solve Itô stochastic delay differential equations 
than those of stochastic analysis. 

Here is the plan of this paper: in Section 2, we devote to building a bridge 
between Itô integral and Lebesgue integral from the classic law of iterated logarithm. 
In Section 3, by using the results of Section 2, we solve the existence, uniqueness, 
continuous dependence, extension and regularity of the solutions of stochastic delay 
differential equations with noises directly in probability 1. 

2. A Stochastic Inequality 

We will often use the following spaces in this paper: 

( ){ } ( )


 ωω== ≥ processadaptedandmeasurableais,,,: 0

2 tftfffL tloc  

satisfying ( ) ,0anyfora.s., 2





≥τ≥∞<ω∫τ tdssf
t
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( ){ } ( )


 ωω== ≥ processadaptedandmeasurableais,,,: 0

2 tftfff tlocL  

satisfying ( ) .0anyfor, 2





≥τ≥∞<ω∫τ tdssf
t

E  

Obviously, .22
locloc L⊂L  In this paper, we will use Itô integral in .2

locL  The details 

on the generalized Itô integral can be found in Section 1.4 of [2]. 

We can assume without loss of generality that 

{ ( ) ( ) 0,:, ≥ω∈ω= + ttC RRΩ  is a Wiener process with ( ) }00 =ω  

that P is a Wiener measure and that ( ) ( ) ,, ttW ω=ω  ,0≥t  ,Ω∈ω  where =+R  

[ ).,0 ∞+  In this setting, we define a family of mappings: 

ΩΩ →θ :t  

for any fixed ,0≥t  where 

( ) ( ) ( ) .0, ≥ω−+ω=ωθ sttsst  

Obviously, ( ) ,stωθ  0≥s  is also a Wiener process. Note that ωθt  is adapted and 

continuous in .+∈ Rt  

From now on, we note that under normal circumstances, all conditions and 
conclusions hold almost surely and all random variables and stopping times are 
almost surely finite. 

Suppose that tt loglog  takes the maximum value 0a  at 0σ=t  in the 

interval ,1,0 





e  where log is the natural logarithm with the base e, 




∈σ e

1,00  

satisfies 

.0logloglog1 00 =σ⋅σ+  

So, .loglog 000 σσ=a  For the sake of brevity, we define the following two 

functions: 
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( ) ( ) ( )







>

=

=
















σ
>

σ
≤≤σ

σ

σ<<

=

=
.0,

,0,0

,1,loglog

,1,

,0,loglog

,0,0

12

0

0
0

0
0

0

1
t

t
tfan

t
tfan

ttt

tta

ttt

t

tfan  

It is verified that ( )tfan1  is continuous and increasing in .+∈ Rt  

First, we provide a theorem, which will be very important in the paper. 

Theorem 2.1. There exists an adapted process ( ) ,2
0

0
aC σ

≥ωθτ  ,0≥τ  which 

is sublinear and continuous in τ such that for any ,2
locLx ∈  

 ( ) ( ) ( ) ( ) ( )τ−







ωθ≤ ∫∫ τ
τ

τ
tfandssxfanCsdWsx

tt
2

2
1  (2.1) 

for any .0≥τ≥t  

Proof. By the classic law of iterated logarithm, 

( )
( ) ( )

.1sup
2

2
1

0
0

=
















+∞<

>
> tfantafan

taW

t
a

P  

It is verified that 

( ) ( )
( ) ( )

.2sup
0

0

2
2

1
0
0

0 atfantafan
taWc

t
a

σ
≥=ω

>
>

 

For ,0≥τ≥t  

( ) ,2∫ττ =
tt dssxx  

where .2
locLx ∈  Denote by 2

+L  a set of nonrandom step functions satisfying 

00 >tx  and there exist nonzero constants ,01 >′t  b such that ( ) btx ≡  for any 

.1tt ′≥  



XIAOMING FAN 158 

For any 2
+∈ Lx  and ,0>t  

 
( ) ( )

( ) ( ) ( ) ( ) ( )
.11

2
2

2
0

0
2
20

2
2

2

201

0

tfanatfanxfantfanxfan

sdWsx

tt

t

σ
≤=

















 ∫
E  (2.2) 

By the definition of 2
+L  for every ,2

+∈ Lx  there exists a constant 02 >′t  such that 

for any ( ],,0 2tt ′∈  

 
( ) ( )

( ) ( )
( ).0

201

0 ω≤
∫

c
tfanxfan

sdWsx

t

t

 (2.3) 

By (2.2), (2.3) and by contradiction, we obtain that there exists a constant 00 >t  

such that for any ( ]0,0 tt ∈  and any ,2
+∈ Lx  

( ) ( )

( ) ( )
( ) .10

201

0 +ω≤
∫

c
tfanxfan

sdWsx

t

t

 

Let 

( )

( ]

( ) ( )

( ) ( )
.sup

201

0

,0

1

0

2 tfanxfan

sdWsx
c t

t

tt
x

∫
∈
∈ +

=ω
L

 

Since ( ) ,0 st ωθ  0≥s  is also a Wiener process, 

( )

( ]

( ) ( )

( ) ( )
.sup

201

0

,0

1
0

0

20 tfanxfan

sdsx
c t

t
t

tt
x

t
∫ ωθ

=ωθ

∈
∈ +L

 

Note that ( ) ( )tfanxfan t
201  is continuous in 0≥t  for any .2

locLx ∈  We obtain 

that for any nonrandom step function x and [ ],2, 00 ttt ∈  
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 ( ) ( ) ( ) ( ) ( ).0211 0
0

0 ttfanxfancsdWsx t
t

t

t
t −ωθ≤∫  (2.4) 

By (2.4) and the increasing property of 1fan  for any 2
+∈ Lx  and ( ],2, 00 ttt ∈  

( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( )
( ) .

2
02

1
2

02
1

201

0
0 tfan

ttfanctfan
tfanc

tfanxfan

sdWsx

tt

t

−
ωθ+ω≤

∫
 

So, for any fixed ( ],2, 00 ttt ∈  

( ) ( )

( ) ( )
.1sup

201

0

2
=



















+∞<
∫

+∈ tfanxfan

sdWsx

t

t

x L
P  

By induction and the continuity, we have that for any constant ,0>α  

( ]

( ) ( )

( ) ( )
.1sup

201

0

,0

2
=



















+∞<
∫

α∈
+∈ tfanxfan

sdWsx

t

t

x
t
L

P  

Set 

( )

( ]

( ) ( )

( ) ( )
.sup

201

0

,0 0

2 tfanxfan

sdWsx
c t

t

ntt
x

n
∫

∈
∈ +

=ω
L

 

For any given ,2
+∈ Lx  there exist constants ,01 >′t  ,0≠b  N∈0n  such that 

for any ,1tt ′≥  ( ) btx ≡  and 

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )
( )
( )

( ) ,0
01

2
1

201

1201

201

0
1

0 ω+
′−ω

≤
′∫

c
xfan

tbfan
tfanxfan

tfanbxfanc

tfanxfan

sdWsx

tt

t
n

t

t

 

which implies that for every ,2
+∈ Lx  there exists a constant 03 >′t  such that for 
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any ,3tt ′≥  

 
( ) ( )

( ) ( )
( ) .10

201

0 +ω≤
∫

c
tfanxfan

sdWsx

t

t

 (2.5) 

By (2.2), (2.5) and by contradiction, we obtain that there exists a constant 00 >T  

such that for any 0Tt ≥  and any ,2
+∈ Lx  

( ) ( )

( ) ( )
( ) .20

201

0 +ω≤
∫

c
tfanxfan

sdWsx

t

t

 

So, 

( ) ( )

( ) ( )
.1sup

201

0

0

2
=



















+∞<
∫

≥
∈ + tfanxfan

sdWsx

t

t

Tt
x L

P  

Together with the above results, we have 

( ) ( )

( ) ( )
.1sup

201

0

0

2
=



















+∞<
∫

>
∈ +

tfanxfan

sdWsx

t

t

t
x L

P  

Let 

 ( )
( ) ( )

( ) ( )
.sup

201

0

0

2 tfanxfan

sdWsx
C t

t

t
x

∫
>
∈ +

=ω
L

 (2.6) 

Set 

( ) .0withfunctionstepais
0

222









>|∈= ∫+
t

loc dssxxLxL  
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By (2.6), for any given ,2
+∈ Lx  

( ) ( )

( ( ) ) ( )
( )ω≤

ω⋅

ωω∫
C

tfanxfan

sdWsx

t

t

2011

0
1

,

,,
 

uniformly on Ω∈ω1  and ,0>t  which implies 

 ( )
( ) ( )

( ) ( )
.sup

201

0

0

2 tfanxfan

sdWsx
C t

t

t
Lx

∫
>
∈ +

=ω  (2.7) 

Since ( ) ,sωθτ  0≥s  is also a Wiener process, by (2.6), 

 ( )
( ) ( )

( ) ( )
.sup

201

0

0
2

tfanxfan

sdsx
C t

t

x
t

∫ ωθ
=ωθ

τ

∈
>

τ

+L

 (2.8) 

By ( ) ,0lim =
+∞→ t

tW
t

 .0lim =
τ
ωθτ

+∞→τ
 So, by (2.8), ( ) ,0lim =

τ
ωθτ

+∞→τ

C  i.e., 

( )ωθτC  is sublinear in τ. By (2.8) and the definition of Itô integral, ( )ωθτC  is 

continuous in τ. Since ωθτ  is τF -measurable and ( )ωθτC  only depends on ,ωθτ  

the process ( ),ωθτC  0≥τ  is adapted. 

For any 2
+∈ Lx  with ,0>τ

tx  ,0≥τ>t  by (2.7), (2.8) and 

( ) ( )

( ) ( )

( ) ( )

( ) ( )τ−







τ+

ωθτ+
=

τ− ∫
∫∫
τ−

τ−
τ

τ

τ

tfandssxfan

sdsx

tfanxfan

sdWsx

t

t

t

t

2
0

2
1

0

21
 

for ,0≥τ>t  we have (2.1). By limiting, we can prove that (2.1) holds for any 
2
locLx ∈  and .0≥τ≥t  So, the proof is completed.  

Remark 2.1. In Theorem 2.1, the process ( )ωθτC  is independent of x and the 

length of the interval [ ]., tτ  
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Remark 2.2. Theorem 2.1 also holds for stopping times t, τ. 

3. The a.s. Well-posedness Problem 

The following lemma provides a stochastic inequality, which will play an 
important role in getting various estimates in stochastic differential equations with 
white noises. 

Lemma 3.1. Suppose that ,2
1

g  2
1

y  and f are in 2
locL  and satisfy 

 .0, ≥τ≥+= sfydWgydsdy  (3.1) 

Then 

 ( ) ( )
( ) ( ) ( ) ( ) ( )∫ ∫τ ττ τ−





ωθ+





 −

τ≤
t t

tfandssffanCdssfsg
eyty

2
2

1
2

2
1

 (3.2) 

for ,τ≥t  where ( )ωθτC  is as in Theorem 2.1. 

Proof. We multiply two sides of (3.1) by 

( ) ( ) ( ) ( )
.

2
2
1

∫ ∫τ τ
ςς−ς





 ς−ς−

s s
dWfdfg

e  

We can obtain 

( ) ( )
( ) ( ) ( ) ( )∫ ∫τ τ

+




 −

τ=
t t

sdWsfdssfsg
eyty

2
2
1

 

for .τ≥t  By Theorem 2.1, we get the inequality (3.2).  

Let tx  be the supremum norm of x in [ ],, tC τ−  where 0>τ  is a constant. 

Then [ ]tC ,τ−  is a Banach space. Let b and [ ] RRR →×τ−××σ + Ω0,: C  be 

measurable. In this section, we always let ( ) ( )ωϕ=ϕ ,,,,, xtbxtb  and ( ) =ϕσ ,, xt  

( ).,,, ωϕσ xt  We always assume that ( ) ( ) 22
1

,,,,, locLxxb ∈ϕ⋅σϕ⋅  for every 

( ) [ ]( ).0,, τ−×∈ϕ Cx R  Consider the following stochastic delay differential 

equations 

 ( ) ( ) ,,0,,,,, 0 φ=>σ+= xtdWxxtdtxxtbdx tt  (3.3) 

where [ ],0,τ−∈φ C  ;0>τ  ( ),stxxt +=  [ ].0,τ−∈s  
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We make the following assumptions on b and σ: 

For any [ ] [ ] ,,, 21 MBMMTT ×−×=B  where ,0>M  012 ≥> TT  and =MB  

{ [ ] },:0, 0 MC ≤ϕτ−∈ϕ  there exists a positive process ( ),tLB  which is locally 

square integrable such that 

( ) ( ) ( ) ( )22112211 ,,,,,,,, ϕσ−ϕσ+ϕ−ϕ xtxtxtbxtb  

 ( ) ( ) ( ) ( ) .,,,,,, 221102121 BB ∈ϕϕϕ−ϕ+−≤ xtxtxxtL  (3.4) 

Furthermore, 2
locLL ∈B  if M is 1TF -measurable. 

Theorem 3.1. If (3.4) is satisfied, then for any [ ]0,τ−∈φ C  with 0F - 

measurable ,0φ  there exists a stopping time 0>T  such that (3.3) has a unique 

solution [ ]TCx ,τ−∈  satisfying ( )tx  is adapted on [ ]T,0  and .0 φ=x  

Proof. If 0φ  is 0F -measurable and x exists, then by 

( ) ( ) ( )( ) ( )( ) ( )∫ ∫ σ++φ=
t t

ss sdWxsxsdsxsxsbtx
0 0

,,,,,0  

we obtain that x is adapted and continuous on [ ].,0 T  

Now, we prove the existence of solution of (3.3). Let 10 +φ=M  and =B  

[ ] [ ] ,,1,0 MBMM ×−×  where { [ ] }.:0, 0 MCBM ≤ϕτ−∈ϕ=  Let ( ) ( ),sLsL B=  

which is as in (3.4). Choose 

( ]
[ ]

( ) ( )( )




+



∈= ∫

η

∈η 0,0
0,0,2sup:1,0sup dssbMsLtT

t
 

( ) ( ) ( )( ) ( ) ,10,0,2 2
0

2
1





<




η







σ+ω+ ∫

η
fandssMsLfanC  

where ( )ωC  is as in Theorem 2.1. By Theorem 3 of Preliminaries in [8], 0>T  is a 

stopping time. 

Let x  be the supremum norm of x in [ ]TC ,τ−  and 

[ ] [ ]{ }.:,, MxTCxT ≤τ−∈=τ−C  
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We define the mapping 

[ ] [ ]TTF ,,: τ−→τ− CC  

as the following: 

( ) ( ) ( ) ( )( ) ( )( ) ( )

( ) [ ]





τ−∈φ

>σ++φ
= ∫ ∫

.0,,

,0,,,,,0
0 0

tt

tsdWxsxsdsxsxsb
tFx

t t
ss  

For any [ ],,0 Tx C∈  by Theorem 2.1, we have 

( ) ( ) ( ) ( )( )∫ ++φ≤
t

dssbMsLtFx
00 0,0,2  

( ) ( ) ( )( ) ( )tfandssMsLfanC
t

2
0

2
1 0,0,2 








σ+ω+ ∫  

.10 +φ≤  

So, [ ] [ ].,,: TTF τ−→τ− CC  

For any [ ],,, Tyx τ−∈ C  by (3.4), we obtain 

( ) ( ) ( ) ( ) ( ) .2,,,,,,,, xysLxxsbyysxxsbyysb ssss −≤−σ+−  

By Theorem 2.1, 

( ) ( ) ( ) ( ) ( )( ) ( )( )∫ −≤−
t

ss dsxsxsbysysbtFxtFy
0

,,,,  

( ) ( )( ) ( )( ) 







−σω+ ∫

t
ss dsxsxsbysysfanC

0

2
1 ,,,,  

( )∫−≤
t

dssLxy
0

 

( ) ( ) ( ).2
0

22
1 tfandssLxyfanC

t








−ω+ ∫  

So, 

0→− FxFy  as ,0→− xy  

which implies that F is a continuous mapping from [ ]T,τ−C  to itself. 
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For any constant ,0>ε  let 

( ]
[ ] [ ]

( ) ( )( )



+





∈η=δ ∫
κ+

η∈κ∈

t

tTt
dssbMsLT 0,0,2supsup:,0sup

,0,0
 

( ) ( ) ( )( ) ( ) .0,0,2 2
2

1



ε<




κ








σ+ωθ+ ∫

κ+
fandssMsLfanC

t

t
t  

It is checked that 0>δ  and is a stopping time. For any [ ],, Tx τ−∈ C  by Theorem 

2.1, we have 

( ) ( ) ( ) ( ) ,12 ε<− tFxtFx  

where [ ]Ttt ,0, 21 ∈  satisfying ,12 δ<− tt  which implies that F is an 

equicontinuous mapping from [ ]T,τ−C  to itself. 

From all the above, we obtain that F is completely continuous on [ ]., Tτ−C  So, 

by the stochastic Schauder theorem, F has at least a fixed point [ ]Tx ,τ−∈ C  for 

almost every ,Ω∈ω  which is a solution of (3.3) satisfying [ ]TCx ,τ−∈  and 

.0 φ=x  

We prove the solution of (3.3) is unique. Suppose that [ ]Tyx ,, τ−∈ C  are two 

solutions of (3.3) satisfying .00 φ== yx  Obviously, xy −  satisfies 

( ) ( ) ( )( ) ( ) ( )( ) .,,,,,,,, dWxxsyysdsxxsbyysbxyd ssss σ−σ+−=−  (3.5) 

Let ( ) ( ){ }.:inf1 txtytt ≠=  Obviously, 1t  is a stopping time. With no generality, 

let ( ).,01 Tt ∈  By Theorem 2.1, (3.4) and (3.5), we have ( ) ( ) .011 =− txty  Let 

{ ( ) ( ) ( )txtyTtt −∈= :,0sup2  is monotonous on [ ]}.,1 tt  Obviously, 02 >t  is a 

stopping time. With no generality, let ( ) ( )txty −  be strictly increasing [ ]., 21 tt  

Since xy −  is adapted on [ ],, 21 tt  by Lemma 3.1, (3.4) and (3.5), there exists a 

positive process ( ),1 tL  which is locally square integrable such that 

( ) ( )txty −  

( ) ( )
( ( ) ( ) ) ( ) ( ) ( )∫ ∫ −





ωθ++

−≤
2

1
122

2
1

2
111

2
11 42

11

t
t

t
tt ttfandssLfanCdssLsL

etxty  
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for any [ ]., 21 ttt ∈  So, ( ) ( ),txty =  [ ],, 21 ttt ∈  which in contradiction with the 

definition of .2t  So, ( ) ( ),txty =  [ ]., Tt τ−∈  We make the conclusion.  

Remark 3.1. After some simple modification for the proof of Theorem 3.1, we 
can make the following result: 

Let x be a solution of (3.3) satisfying ( ) Mtx ≤  for any [ ],, Tt τ−∈  where M 

is TF -measurable. If (3.4) is satisfied, then there exists a stopping time 0>S  such 

that x can be prolonged from [ ]T,τ−  to [ ]., ST +τ−  

Theorem 3.2. If b, σ satisfy (3.4), then for any [ ]0,τ−∈φ C  with 0F -

measurable ,0φ  there exists a predictable time 0>ξ  (finite or infinite) such that 

(3.3) has a unique solution [ )ξτ−∈ ,Cx  satisfying ( )tx  is adapted on [ )ξ,0  and 

( ) ( ).lim ∞<ξ=







∞=∞<ξ

−ξ→
PP txand

t
 

Proof. By Remark 3.1, we can prolong ( )tx  as possible. So, there exists a 

predictable time ξ (finite or infinite) such that [ )ξ,0  is the maximal existing interval 

of the solution of (3.3). Let 

{ },0 ∞<ξ=Ω  

{ ),lim:01 ∞=Ω∈ω=Ω
−ξ→

t
t

x  

{ ( ) }.lim:02 ∞=Ω∈ω=Ω
−ξ→

tx
t

 

Obviously, .012 Ω⊂Ω⊂Ω  

First, we prove that ( ) .010 =ΩΩP  By contradiction, suppose ( ) .010 >ΩΩP  

So, there exists a stopping time 0T  satisfying ξ=0T  in 10 ΩΩ  and 0TF -

measurable 0>M  such that ( ) Mtx ≤  for [ ).,0 0Tt ∈  By Remark 3.1, there 

exists a stopping time 01 >T  such that we can prolong x from [ )0,0 T  to 

[ ),,0 10 TT +  which is in contradiction with the definition of [ )ξ,0  in .10 ΩΩ  So, 

( ) ( ).10 Ω=Ω PP  
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Second, from the continuity of ( ) ,tx  we know that in ,1Ω  for enough large 

,N∈n  ( ){ }ntxtn ≤≥=τ :0sup  exists and it satisfies that ξ<τ≤τ +1nn  and 

( ) ntx >  for all ( )., ξτ∈ nt  By the continuity of ( )tx  in [ )ξ,0  and the increasing 

property of { },nτ  we have −ξ→τn  as ∞→n  for almost every .1Ω∈ω  So, 

( ) ∞=
−ξ→

tx
t
lim  for almost every ,1Ω∈ω  which implies that ( ) ( ).21 Ω=Ω PP  So, 

( ) ( ).02 Ω=Ω PP   

Theorem 3.3. If (3.4) is satisfied by b and σ, then the solution mapping 
xx0  is continuous, where [ ]0,0 τ−∈ Cx  with 0F -measurable .00x  

Proof. Assume the opposite, i.e., if there exists a set Ω⊂Ω0  with ( ) 00 >ΩP  

such that for almost every fixed ,0Ω∈ω  there exists a sequence [ ]0,τ−∈φ Ck  

with ( )000 ,0 ε∈δ<−φ xk  and ,0ε≥− T
k xx  where 0ε  is a constant, kx  is 

the solution of (3.3) with initial value ,kφ  [ ]T,0  is the existing interval. Without 

loss of generality, let 0Ω  be the maximal set satisfying the condition. 

For some sequence of increasing stopping times ( ],,0 Ttk ∈  kx  satisfies 

( ) ( )
( ) ( )

( ) ( )





Ω∈ωε<−

Ω∈ωε=−
<≤τ−ε<−

.\,

,,
,,

00

00
0

Ωkkk

kkk
kk

txtx

txtx
tttxtx  

The set of [ ] R→τ− kk tx ,:  is uniformly bounded and equicontinuous for almost 

every fixed .Ω∈ω  Therefore, without loss of generality, after passing to the 

subsequence, we can assume that 0>→ ttk  and xxk →  as ∞→k  uniformly 

on each interval [ ] [ ].,0~,0 tt ⊂  In addition, x  is uniformly continuous on [ )t,0  

and therefore can be continuously prolonged on [ ]t,0  with ( ) ( ) =− txtx  

( ) ( ) 0lim ε=−
∞→

kk
k

txtx  in .0Ω  

Let [ ] [ ] ,,1,0 MBMMT ×−×+=B  where ,sup 0ε+= TxM  { ∈ϕ=MB  

[ ] }.:0, 0 MC ≤ϕτ−  Let ( ) ( ),sLsL B=  which is as in (3.4). By Theorem 2.1 

and (3.4), 
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( ( ) ) ( ( ) )∫ ∫−
t t

s
k
s

k dsxsxsbdsxsxsb
0 0

,,,,  

( ) ( ( ) ( ) )∫ −+−≤
t

s
k
s

k dsxxsxsxsL
0

,  (3.6) 

( ( ) ) ( ) ( ( ) ) ( )∫ ∫ σ−σ
t t

s
k
s

k sdWxsxssdWxsxs
0 0

,,,,  

 ( ) ( ) ( ( ) ( ) ) ( ),2
0

22
1 tfandsxxsxsxsLfanC

t
s

k
s

k








−+−ω≤ ∫  (3.7) 

where [ ].~,0 tt ∈  The terms at the right-hand side of (3.6) and (3.7) tend to zero as 

.∞→k  So, x  is the solution of the following equation: 

 ( ) ( ) .,0,,,,, 00 φ==>σ+= xxtdWxxtdtxxtbxd tt  (3.8) 

Since the solution of (3.3) is unique, ( ) ( ),txtx =  [ ].~,0 tt ∈  Since [ ]tt ,0~ ∈  is 

arbitrary, we get ( ) ( ),txtx =  [ ],,0 tt ∈  which is impossible in .0Ω  So, we complete 

the proof.  

Theorem 3.4. Suppose that b, σ satisfy (3.4). Then for any [ ]0,τ−∈φ C  with 

0F -measurable ,0φ  there exists a global solution [ )∞τ−∈ ,Cx  of (3.3) if one of 

the following conditions holds: 

 (i) There exists a continuous adapted process [ ) ( )∞→∞ ,0,0:1k  such that 

( ) ( ) .0,1 ≥≤ ttktx  

(ii) There exists a positive process 2
2 locLk ∈  such that 

( ) ( ) ( ) ( )22112211 ,,,,,,,, ϕσ−ϕσ+ϕ−ϕ xtxtxtbxtb  

( ) ( )12122 ϕ−ϕ+−≤ xxtk  

for ,0≥t  R∈21, xx  and [ ].0,, 21 τ−∈ϕϕ C  

Proof. By Theorem 3.1 and Remark 3.1, the conclusion can be made easily.  



THE a.s. WELL-POSEDNESS OF STOCHASTIC DELAY … 169 

Theorem 3.5. Suppose that [ ] [ ]( )RR ,0,,0, τ−××∈σ CTCb  and (3.3) has a 

solution [ ]., TCx τ−∈  Then ( ) ,tx  0≥t  has a version with continuous sample 

paths, whose increment ( ) ( )txhtx −+  is an infinitesimal of the order not less than 

hh loglog2
1

 when ,0→h  where [ ].,0, Thtt ∈+  

Proof. Let ( ){ }TttxM ≤≤τ−= ,max  and 

{ ( ) ( ) }.0,,,,,,max TtMxxxtxxtbN Ttt ≤≤≤σ+=  

By (3.3), 

( ) ( ) ( )( ) ( )( ) ( )∫ ∫
+ +

σ+=−+
ht

t

ht

t
ss sdWxsxsdsxsxsbtxhtx ,,,,  

for any [ ].,0, Thtt ∈+  By Theorem 2.1, 

( ) ( )
[ ]

( ) ( ) ( ).sup 2
2

1
,0

hfanhNfanChNtxhtx t
Tt

⋅ωθ+≤−+
∈

 

By ( ) ,
loglog

lim
2

1
0

N
hh

hNfan
h

=
+→

 we make the conclusion.  

Remark 3.2. After some light modification, our results can be generalized to 

( )2≥nnR  and stochastic delay differential equations such as 

( ) ( ) ,,0,,,,,
1

0∑
=

φ=>σ+=
n

i
itit xtdWxxtdtxxtbdx  

where [ ],0,τ−∈φ C  ;0>τ  b and [ ] RRR →τ−××σ + 0,: Ci  for ni ...,,2,1=  

are measurable and ( ) ( ) 22
1

,,,,, loci Lxxb ∈ϕ⋅σϕ⋅  for every ( ) [ ];0,, τ−×∈ϕ Cx R  

( )TnWWW ...,,, 21  is an n-dimensional Wiener process. 
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