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Abstract 

The tanh method is used to find travelling wave solutions of various 
nonlinear wave equations. In this paper, the extended tanh function 
method is further improved by picking up new solutions of an 
auxiliary ordinary differential equation and presenting a general 
ansätz. The BBM equation and the variant Boussinesq equation are 
chosen to illustrate the method. As a result, abundant new solitary 
wave solutions and periodic solutions are obtained. 

1. Introduction 

Nonlinear wave equations are related to nonlinear phenomena in physics, 
mechanics, biology, etc. To further explain some physical phenomena, 
seeking exact solutions of nonlinear wave equations is of great significance 
and has been a major subject. Many powerful methods have been developed 
such as inverse scattering method [1], Bäcklund transformation method [2] 
and Hirota’s bilinear method [3]. In recent years, various direct methods 



XUEQIN ZHAO, FANWEI MENG and CHENDONG TIAN 82 

were given such as homogeneous balance method [4], hyperbolic function 
expansion method [5, 6], sine-cosine method [7], Jacobian elliptic function 
expand method [8, 9], tanh method [10], the generalized Riccati equation 
method [11], the generalized projective Riccati equation method [12], and so 
on. This is due to the availability of symbolic computation systems like 
Maple or Mathematica which enable us to perform the complex and tedious 
computation on computer. 

Recently, in [13, 14] starting from an auxiliary equation 
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where A, B, C are real parameters, Sirendaoreji proposed an extended tanh 
function method (TFM). In [13, 14], Yomba further developed the work 
made in [8], they only found that equation (1) has two solutions as follows: 
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Using their TFM, they only obtained several solitary wave solutions. As we 
know, when applying direct method, it is important to obtain the more new 
solutions of auxiliary equations and choose an appropriate ansätz. 

Fortunately, by calculating, we find the following eight solutions to 
equation (1): 
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Along this way, in this paper, by introducing eight new solutions of the 
auxiliary equation and an appropriate anätz, we further improve the method 
such that it can be used to obtain more types of solutions which contain 
solitary wave solutions, singulary solitary wave solutions and periodic 
solutions. 

2. Exact Solutions of the Variant Boussinesq Equations  

We would like to seek the solutions of the variant Boussinesq equations: 
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( ) ,0=++ xxxxt uhuh  (3a) 

.0=++ xxt uuhu  (3b) 

The equations was introduced as models for water waves and called variant 
Boussinesq I [15, 16]. Their inverse transformation solutions, soliton 
solutions, symmetries and conservation laws have been obtained [16-19]. 
The proposed method gives more new travelling wave solutions for the two 
equations. By the travelling transformation 
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equation (3) reduces to the following ordinary differential equations: 
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where λ is a constant to be determined later, by the balance u ′′′  with hu ′  in 
(5a), and balance h′  with uu ′  in (5b), gives ,21 =n  and ,12 =n  so we can 
assume that 
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Substituting (6) with (1) into (5), and collecting coefficients of iφ  and 

( ) ( ),1,0,2,1,0432 ==φ+φ+φφ jicba ji  and setting it to be zero, it 

yields a system of algebraic equations, using the Maple solve the above over-
determined equations, we get the following results: 
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Case 2. 
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where 2120121 ,,, aacμ  are arbitrary constants. 

Substituting above two sets of solutions with (2) into (6), we obtain exact 
travelling wave solutions of the variant Boussinesq equations (3) as follows. 
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Family 3. 
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Family 4. 
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Family 7. 
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Family 9. 
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Remark. Among the above solutions, Families 1, 4 and 8 are solitary 
wave solutions, Families 5 and 9 are singulary solitary wave solutions, and 
Families 2, 3, 6 and 7 are periodic solutions. These nine families solutions 
are new, and cannot be obtained by other method such as tanh function 
method, various tanh function methods, and hyperbolic function method. 
These solutions have not been given in literature. 
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