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Abstract

We consider the problem whether or not the Chebyshev varieties V,,,

introduced in Part I of this article, are characterized by their integral

points. We show that for any n > 2, square-free polynomials of n
variables which vanish on V},(Z) constitute a two-dimensional Q-vector
space generated by the defining equation u(xp, ..., x,) of V,, together

with u(xq, ..., xp_1) — ulxg, ..., x,).

1. Introduction

This paper is a continuation of our previous papers [1, 2]. In Parts I
and II, we investigated the arithmetic and geometry of a family of

hypersurfaces V,, — A", n >1, called the Chebyshev varieties (of the

second kind). We found, among other things, that there exists a finite

number of linear subvarieties L;,1<i < m, of dimension < (n —1)/2 such

that V,(Z) = U L;(Z). (See Theorem 2.5 for more precise statement.)

1<i<m
For instance, V3(Z) turns out to be the union L;(Z)U Ly(Z)U
{P,, Py, P3, Py} of two lines and four points, where L; = {x; = x3 = 0},
L2 = {xl + X3 = X9 = 0}, {Pl’ P2, P3, P4} = {(i]., + 2, i].), (i2, +1, 2)}
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In the present paper, we consider the problem whether or not the
Chebyshev varieties are characterized by their integral points. We show
that for any n > 2, square-free polynomials of n variables which vanish

on V,(Z) constitute a two-dimensional Q-vector space generated by the
defining equation u(xq, ..., x,,) of V, and wu(xy, ..., x,,_1) — u(xq, ..., X,,).
When n = 3, our result specializes to the claim that if f € Q[xy, xg, x3]
consists solely of square-free terms and the zero locus V(f)={f =0}
c A® contains two lines {x; = x5 =0}, f{x; +x3 = x5 =0} and four
points (£1, +2, +1), (+2, +1, £2), then f is a Q-linear combination of
u(xy, x9, x3) = x;xX9%3 — X7 — x3 and u(xy, xg)— u(xg, x3) = X1xX9 — X9X3.
Thus our main result of this paper may be regarded as a natural

generalization of this rather straightforward claim, and will provide one
with an infinite family of varieties characterized by their integral points.

The plan of the paper is as follows. In Section 2 we recall the
definition and some fundamental properties of the Chebyshev varieties.

In Section 3, we check that u(xq, ..., x,,_;)— u(xg, ..., x,,) as well as
u(xy, ..., x,,) vanish on V,(Z) for any n > 2, and formulate the main

theorem. In Section 4 we prove the theorem. Some polynomial identities
satisfied by u(x, ..., x,), which is established in Section 2, play an

essential role in the proof.
2. Chebyshev Varieties and their Integral Points

In this section, we recall the definition and some fundamental
properties of Chebyshev varieties.

Let k be a field of arbitrary characteristic, and let A" = k" be the

affine space of dimension n over k. For any n independent variables

X1, X9y -y Xy, let
x, -1 0 - 0 0
-1 xy -1 - 0 0
U(xy, X9, oy X)) = O _:1 ?6.3 . O 0 ,
0 0 0 " x,, -1

0 0 0 - -1 =x,
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and let

u(xy, x9, ..., x,) = det U(xq, x9, ..., Xp,).

Let V, = {u(xq, xg, ..., x,) = 0} =« A", and call it to be the Chebyshev

variety (of the second kind). We recall some properties of w.

Proposition 2.1 [1, Proposition 2.1].

Q) wlxy, X9, «ouy 2,) = %)y, Xpp_qs -er X7)-
1) wlxy, x9, «oy X,) = xu(x9, ..., x,) — u(xs, ..., x,,).
(A1) w(xy, X9, vy X)) = Xpul(%71, vy X5_1) — U(X], oy Xp_g)-

The symmetry stated in (1) will play a role when we characterize the
Chebyshev varieties by their integral points. The following assertion
follows easily from (i1) by induction on n.

Corollary 2.1.1. The degree of u(x;, x9, ..., x,) is equal to n and the
part of degree n of u(xy, x9, ..., x,,) consists solely of x,x9 - x,,. Moreover
every term of u is of degree congruent to n mod 2.

The next proposition shows that there is a simple formula for the
partial derivatives of u.

Proposition 2.2, For any k with 1 < k < n, we have

% ull, n] = u[l, k- 1]ulk +1, n]. 2.1)

This implies that there is a strong restriction on the shape of

u(xy, ..., xp).

Corollary 2.2.1. Every term of the polynomial u(xy, ..., x,) is square-

free.

In the previous article [1], we introduced three families of maps
between the Chebyshev varieties in order to investigate the set of
integral points on them. We recall their definitions and basic properties.
(We have changed the notation a little in order to indicate the dimension

of their domains of definition.)
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Theorem 2.3 [1, Definition 2.9, Theorem 2.11]. For any n > 1, we
define three maps

(Blow-up) blup; ) : A" - A" 1<is<n+l,
(Splitting) splitf;, ,, = A" — A2 1<i<n, cek,
(Pasting) paste&, 0 A" > A2 c ek,

by the following rules:

@) blup(';;i)(xl, e %) = (7, ey Xjo, X T, 21,0 1, X415 ooy X)),
2 <1< n,

blupa; i)(xl, v X)) = (21, 27 £1, 9, ..., Xp),

blup(nml;i)(xl, oy %) = (%7, ooy X1, X, £1, £ 1),
(i1) split(';;c)(xl, ey X)) = (7,5 ey X1, X5 =€, 0, €, X115 ooy X ), 1 <P < 1,
(iii) paste("_;c)(xl, ey X)) = (0, €, X7, oy Xp,),

paste(’:;c)(xl, ey X)) = (%1, oy X, €, 0).

Then we have

(iv) u(blup('; i)(xl, oy X)) = Fu(xy, oo, x,), 1< <0 +1,
(v) u(split(’;,c)(xl, o X)) = U, ooy ), 1< i<, cek,
(vi) u(paste(';; C)(xl, ey X)) = —u(x1, ..., X)), C € E.

In particular, these families of maps restrict to morphisms between the

Chebyshev varieties:
blup& 5 Vi 2 Vi, split(’;;c) 2V, > V9, paste&; 0 Ve 2 Vs
From now on, sometimes for ease of description, we write [1, n] for

u(xy, ..., x,).
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Next we introduce another family of polynomials which satisfy

transformation rules similar to those for u(xq, ..., x,). They are defined
by
(%1, vy Xp) = (g, ooy Xy_1) — wlxg, ..., X,)

for any n > 2. We show that they obey the following transformation

rules.

Proposition 2.4.

£ 0(xg, ey Xp), 2<i<n,
@) v(blup& i)(xl, ey X)) = 3 0(2, oy ) — wly, ey Xy,), ©=1,
T 0(xy, ey ) + (g, oy xp,), T=n+1,

(i1) v(split(';c)(xl, oy X)) = = 0(%], ey X)), 1<i<n,cek,

-

(1ii) v(paste(n C)(xl, ey X)) = = 0(x1, ..oy Xp,) — ct(xq, ..., Xp), € €K,
v(paste(’:;c)(xl, ey X)) = = U(x71, .oy Xp,) + iy, ..., Xp,), € € E.

Proof. (i) We give a proof of the transformation formula for blupg, 4y

since that for blup(r;._ _y can be proved similarly. When 2 <i < n, the

assertion follows from Theorem 2.3(iv). When i =1, we compute as

follows by using Theorem 2.3(iv) together with Proposition 2.1,
v(blupa; +)(x1, ey X))

v, 2 +1, ..., xp)

=u(l, x; +1, e, X, 1) —ulx; +1, ..., x,,)

u(xq, ey Xp_1) — (7 + Duelcg, oony ) — ulxs, -..p X))
= (g, ooy 2y 1) — ulxg, .., x,)) — (x7u(xg, ..., x,,) — u(xg, ..., X))
= 0(%x1, ony Xp,) — (g, oony X))

The case i = n +1 can be treated similarly.
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(11) When 2 <i <n -1, the assertion follows from Theorem 2.3(v).

When i = 1, we can compute as follows:

v(splitg;c)(xl, v X)) = 0(x; — ¢, 0, ¢, Xg, ..., Xp)
=u(x; —¢, 0, ¢, X9, ..., x,,_1) — (0, ¢, x9, ..., X,,)
= —ulxy, X9, oy X,_1) + U(xg, vy Xp)

(by Theorem 2.3(v) and (v1))

— (%1, X9, ey Xp,)-
When i = n, we compute as follows:
v(split(';;c)(xl, ey X)) = V(21 ooy X, — €, 0, C)
= u(xq, ..., X, — ¢, 0) — ulxg, ..., x,, — ¢, 0, ¢)

vy Xp_1) + U(x9, ..y X))

|
|
<
—
®
N
*
[\)

(by Proposition 2.1(iii) and Theorem 2.3(v))
= — (X1, X9, ..y Xp)-

(ii1) The first assertion is assured by the following computation:

v(paste(” c)(xl, e X)) = 0(0, €, X7, .oy Xp,)

™

=u(0, ¢, X1, oy Xp_1) — ule, x1, ..., x,)
= —ulxy, ..y %,-1) — (crlxy, ..., x,) — ulxg, ..., x,,))
= —v(xq, ..., x,) — cu(xg, ..., X))

For the second assertion we compute as follows:
v(paste(':;c)(xl, ey X)) = 0(xq, oy Xy, €, 0)

= u(xq, ooy Xy, €) — U(xg, ...y X, ¢, 0)

(ctlxy, ooy x) = w2y, vy %,_1)) + U9, ...y Xp)

—0(%, ooy X)) + cu(xg, ..., xp)

This completes the proof of Proposition 2.4.
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When the base field is £ = Q, the set of integral points on V,, is

determined in [1] as follows. For any variety V defined over Q, we denote
the set of integral points on Vby V(Z).

Theorem 2.5 [1, Theorem 3.3]. The set of integral points on the
Chebyshev variety V,, is given by the following:

(1) W1(z) = {0},

(11> V2(Z) = {(1’ 1)’ (_1’ - 1)}’

(iif) Vn(Z)z[ U blup(’;;—i})(vn_l(z))]u U spligf 5(Va2(2)
1<i<n 1<i<n-2
ceZ

0 Y a0,
ceZ

for any n>3. In particular, V,(Z) is stable under the map
7 (2, X9, ey X)) B (X5 Xp1y s X7)-

Together with Proposition 2.4 this implies the following by induction

on n.
Theorem 2.6. For any n > 2, the polynomial v(xy, ..., x,) vanishes

on V,(Z).

One of the main purposes of this paper is to show that under some

condition u and v are the only polynomials which vanish on V,(Z).

3. Family of Varieties Determined by their Integral Points

In this section, we discuss the question: are the Chebyshev varieties
characterized by the integral points on them?
In order to formulate our result we introduce some notion. For any

integers n 21, d 2 0, let

P, s(n, d) = {f € Qxy, ..., x, ] deg f = d, each term of f is square-free},
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and let
Psqf(n) = U Psqf(n’ d) {: U Psqf(n, d)}
d>0 0<d<n
A polynomial f € Q[x;, ..., x,,] is said to be consistent if

f= 215 s = %) = (1" fl, sy %),
and 1s said to be anti-consistent if
f=2py oy =) = (= )"y, ooy ).

In other words, f € Q[x;, ..., x,,] is consistent (resp. anti-consistent) if it

has the same (resp. opposite) parity as x; --- x,,. Furthermore, let
I(n) = {f € Q[xy, ..., x,}; f(P) =0 forany P e V,(Z)},
Ly (1) = 101) N Pygy (o),
Lsgf (M) ons = Lsqr(n) N {f; f is consistent,
Ligr (M) ansi = Legr(n) N {f; f is anti-consistent}.

Our main result in this paper is formulated as follows:

Theorem 3.1. For any n > 2, Isqf(n) is a two-dimensional Q-vector

space generated by [1, n] and [1, n — 1] - [2, n]. More precisely, we have
Logf (Meons = Q- [L, nl,
Ligf(M)gnsi = Q- ([1, n = 1] = [2, n]).
The next section is devoted to prove this theorem.

4. Proof of Theorem 3.1

In this section, we give a proof of Theorem 3.1 by induction on n.

Case 1. n = 2. The most general element f of Py,¢(2) is written as

f = ag + a1x] + Qgxg + Q19X Xg.
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In order for f to belong to I(2), it must satisfy f(1,1) = f(-1,-1)=0,
since Vo(Z) = {(1, 1), (-1, — 1)} by Theorem 2.5(ii). It follows that

f,1)=ag+a +ag +aj9 =0,
f(-1,-1)=ayg—a —ag +ay9 =0.

Therefore we see that any element of I;,¢(2) is a linear combination of
[1, 2] = x;x5 =1 and [1]-[2] = %; — x9. Noticing that [1, 2] € T4 (n)0ps
and [1] - [2] € T4 (n)4» We see that Theorem 3.1 holds for n = 2.

Remark. If we drop the assumption that every term of f is square-
free, then many other polynomials like xlzxé1 -1, xf - xg belong to I(2).

For this reason we restrict our attention on square-free polynomials.
Case 2. n = 3. Let f(x;, x9, x3) € Ly (3) and put
f = Qo t A1X] + Q9X9 + A3X3 + Q19X X9 + A13X1Xg + A93X9Xg + A193X1X9X3.

Since (0, ¢, 0), (¢, 0, t) € V3(Z) for any t € Z by Theorem 2.5(iii), we see
that

ag + agt = 0, hence a5 = ag =0,
- a1t + ast — a13t2 =0, hence a; = a3 and a3 = 0.
Hence we have
f=ay(x; +x3) + ap%1%3 + Ag3%9X3 + G 23%1X9X3.

Furthermore, since (1, 2, 1), (-1, — 2, = 1) € V3(Z) by Theorem 2.5(iii), we

have

2(11 + 2(112 + 2(123 + 2(1123 =0,
—2(11 + 2(112 + 2(123 - 2(1123 =0,
which imply that ¢; = —a;93, agg3 = —a19, and hence

f = arg3(x129%3 — 21 — x3) + a12(0129 — X2x3) = 1231, 3]+ ara([L, 2] - [2, 3]).
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Noticing that [1, 3] € I3r(3) s
that Theorem 3.1 holds for n = 3.

and [1, 2] - [2, 8] € Ly (8)y,y, We see

Case 3. n > 4. We assume that Theorem 3.1 holds for 2 < n and

prove it by induction. Let f(xy, ..., x,) € Lyr(n). Then there exist
i, fo € Pygp(n —2) and f3 € Pyyr(n —1) such that

f = fi + xn_lfz + xnf3. (41)
Recall that for any (ay, ..., @,_9) € V;_o(Z), we have paste,,(ay, -, ap_2)

€ V,(Z) with t € Z. Hence

0 = f(ay, v Gp_9, t, 0) = filay, ..., ay_9) +tfo(ay, ..., ay_9), (4.2)

which implies that fi, fy € I;jr(n —2). Note that any polynomial in
Py, r(n) can be written as f = f'+ f” with f’ consistent and f” anti-
consistent. The following lemma shows that the Iy, (n) is stable under

this decomposition.
Lemma 4.1. T;;r(n) = Ly (n)oons @ Lsgr(n) g

Proof of Lemma 4.1. Let f € I, +(n) and write it as f = f + [~

sqf
with /" consistent and f” anti-consistent. Since V,(Z) is, by definition,

the set of integral zeros of the consistent polynomial [1, n], it is stable

under the map t:(xq, ..., x,)~ (-xq, ..., —x,). Therefore for any
(a1, .., @) € V,,(Z), we have
0= flay, .oy @) = fl(a1, ooy ap) + (1, -y @) (4.3)
and
0=7(-a,..,—a,)
=f(-ay, .., —a,)+f"(-a, .., —a,)
= (1" fay, oy ay)+ (1" ay, ... ay). (4.4)

Comparing the right hand sides of (4.3) and (4.4), we see that
f'(a, ..., a,) = f(aq, ..., a,) = 0 for any (ay, ..., a,) € V,,(Z), hence the

assertion of Lemma 4.1 follows.
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By this lemma, we can divide our argument into two cases where
f e Lsgr()eons and f € Iggr(n) gy

Case 3.1. Let f e I;r(n)
and fy € Igpr(n - 2)
see that

Then we see that f; € Iy (n - 2)

cons* cons

in (4.1). Therefore by induction hypothesis, we

anti

fi =all, n-2]
fo = ca([l, n = 3]-1[2, n-2])
hold for some ¢, ¢y € Q, hence we have
f=cll,n-2]+cy([1, n-3]-[2, n - 2])x,_; + f3x,,. (4.5)

On the other hand, by using paste(”_ff) in the derivation of (4.1) and (4.2)

instead of paste('ﬁ:?), we see that

f=d[3 n]+ds([3, n—1] - [4, n])xy + g3x; (4.6)
holds for some d;, dy € Q, g5 € Q[xg, ..., x,]. By letting x; = x, =0 in
(4.5) and (4.6), we have

([0, xg, ..y xp_2]) + ca([0, 22, ey xp_3] = [x2, ooy Xp_2) 2o
= dy[xg, ..., X1, O] + do([xg, ooy %51 ] = [X4s oo %51, O]) 5.
By Proposition 2.1, this is equivalent to
—cy[xg, . X a0 ]+ co(Hxs, s 23] = [ oo 2 2 )20
+di[x3, s %9 ] —do([23, ey X5 |+ [2X4, ey Xpy_g ]) 29 = 0.

Since the coefficient of x5 ---x,,_; on the left hand side is —c9 — dy, we
find that dy = — c9. Hence the coefficient of x,,_; on the left hand side is

equal to
02(—[953, oo xn73] - [x2, ) xnf2] + [x3, xnf2]x2)
= 6‘2(—[953, xn—S] - ([xz, xn—2] - [xs, xn—Z]xZ))

= ca(-fxz, s 23]+ [, oor %52
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Therefore we must have cg = 0. Thus (4.5) simplifies to
f=all,n-2]+ fx,. (4.7)

Furthermore it follows from Theorem 2.3(iv) that blup(’;i)(al, ey @y 1)
€ V,(Z) for any (a, ..., a,_1) € V,,_1(Z). Hence we have

0="f(a, .., a1 +1,1) = ¢lay, ..., @_a] + f3(ay, ..., ap_g +1)
for any (aq, ..., a,_1) € V,_1(Z). Hence if we put h(xq, ..., x,_1) =

f3(xy, oy Xy +1),  then  h(xy, .., X,1) + ¢1[xy, ooy Xp_g] € Iggp(n - 1).

Therefore by induction hypothesis there exist A, B € Q such that
hxq, oy X,_1) +¢[l, n = 2] = A[1, n = 1]+ B([1, n — 2] - [2, n — 1]).
Hence we have
f3(ey, vy 1)
= h(xy, ooy X1 — 1)
= Alxy, .., Xy — 1+ B([xy, oy x5_9] = [%9, vy X1 —1]) = 121, oy X_a]
= Alxy, vy 2y 1] = [x1, s 202))
+ B([x1, ey Xp_o] =[x, oy Xpoq ]+ X9, ooy Xp_0]) = c1x1, ooy X,_9]
(by the equality [xq, ..., x,,.1 = 1] = [x], «ry %51 ] = [%1, cos X_3]
and the like)
=Al,n-1]+(~A+B-¢)[1,n-2]-B(2, n -1]-[2, n - 2]). (4.8)

Note that our assumption f € I/ (n) implies by (4.7) that f3 is

cons

consistent. Hence it follows from (4.8) that f3 = A[l, n — 1], which implies
f=cqll, n-2]+ A, n-1]x,. (4.9)

By symmetry, mentioned in Theorem 2.5, we see that there exist
cj, A" € Q such that

f =ci[38, n]+ A'[2, n]x;. (4.10)
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Comparing the coefficients of xqx5 ---x, on the right hand sides of (4.9)

and (4.10), we have A = A’. Moreover, since the right hand side of (4.10)

is transformed as
ci[3, n] + A[2, n]x; = i3, n]+ A([2, n —1]x,, — [2, n — 2])x],

we have ¢; = — A by comparing the coefficients of x;x9 ---x,,_9. Thus we
see that f =— A[l, n - 2]+ A[1, n —1]x,, = A[l, n], which completes the

proof of Theorem 3.1 when fis consistent.

unii- Then we see that there exist f| e

Case 3.2. Let f e Iy(n)
Ligr(n = 2)gnsis fo € Tggp(n = 2)0ns and f3 € Pyop(n —1) such that
f=h+x,afe +xufs. (4.11)
By a similar argument to the one for Case 3.1, we see that
fi = a(l, n-3]-12,n-2]),
fo = ¢l n - 2]
for some ¢;, ¢y € Q, hence we have
f=ca(l,n-3]-12, n-2])+¢[l, n—2]x,,_; + f3x,. (4.12)

By symmetry, we see that there exist d;, dy € Q, g5 € Q[x3, ..., x,,] such
that

f=d (3, n-1]-[4, n]) + dy[3, n]xg + g3x;. (4.13)
By putting x; = x, = 0 in (4.12) and (4.13), we have
1 ([0, xg, ..., xp_g] = [x9, ..., X9 ]) + 5[0, x9, ..., x,_9]x,_1
= dy([x3, ooy Xp_1] = [%4, - X1, O]) + da[xg, ..., X,,_1, 0]xs.
By Proposition 2.1, this is equivalent to
(=g, s xp-gl=lxg, oy xp2]) = ealx, oy xp2lrny

- dl([X3, ooy xn_1]+ [DC4, . xn_2])+ d2[3€3, ooy xn_2]x2 = 0.
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Looking at the coefficients of x5 ---x,,_9 and x3 ---x,_;, we have
—c; +dy =0,
—cg—dp =0.

Hence the left hand side becomes

(-3, n = 38]-[2, n — 2]+ x49[3, n — 2])
+co(3, n-1]+[4, n-2]-[3, n-2]x,_;)
=c; (-3, n - 3]+ [4, n—2]) + co(-[3, n — 3] + [4, n — 2])

= (c; +c9)(-[3, n — 3]+ [4, n - 2)]).

Hence we have ¢y = — ¢;. Thus we obtain
f = cl([l’ n- 3] - [2’ n- 2] - [1’ n- 2]xn71) + f3xn’ (4-14)
and hence
f=a(-fn-11-12 n-2)+ fyx,. (4.15)

Since blup(';_;i)(al, ey @p_1) € V,(Z) for any (ay, .., a, 1) eV, 1(Z),
(4.15) implies that
0 =c(-ay, oy ap_q +1]=[ag, ..., ap_ol) + falay, ..., ap_g +1)

=c(Hay, ooy ap_1]-[a1, oo ap_al=lag, ..., ay_s]) + f3(ay, ..., @,,.1 +1).
Hence f3(xq, ..., ¥y, +1)—c1([L, n 1]+ [1, n = 2]+ [2, n - 2]) € Iy (n - 1),

and it follows from induction hypothesis that there exist A, B € Q such

that
f3(x1, o0 Xy + 1) — ([, n =1]+[1, n = 2]+ [2, n - 2])

= AL n-1]+B(L, n-2]-[2, n-1).
Hence we see that
fa@ps o 2y 1) =L n-1]-[Ln-2)+[Ln-2]+[2n-2)
F AL n-1]-[L n-2)

+B(1,n-2]-[2, n-1]+[2, n - 2)])
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=(A+c),n-1]+(B-A)[1, n-2]
- B[2, n—1]+(c; + B)[2, n - 2].
Since f3 is anti-consistent, we must have
A+c; =0, g +B=0.
Hence A = B and we have
fa(x1, oo xp_1) = — B[2, n —1].
It follows from (4.14) that
f=q,n-3]-[2,n-2]-[1, n-2]x,_1) +¢[2, n - 1]x,
=c(,n-38]-[2,n-2]-[1, n-2]x,,_; +[2, n-1]x,)
= o ((-[L, n = 3]+ [1, n = 2]x, 1) = (-2, n = 2]+ [2, n — 1]x,))
=—([1, n —1]-[2, n]).

Thus we see that Theorem 3.1 holds when f is anti-consistent. This
completes the proof of Theorem 3.1.

Remark. As is seen in the proof, we do not need the whole V,(Z) to
characterize the two-dimensional vector space generated by [1, n] and

[, n-1]-[2, n]. Indeed, the subset obtained from successive
applications of blup(kl.i), blup(kkﬂ. ) paste(ki 0 (k>1) to {0} c V1(Z) is

enough to do the same task.
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