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Abstract 

Modelling an attack tree is basically a matter of associating a logical 
“and” and a logical “or”, but in most of real world applications related 
to fraud management the “and/or” logic is not adequate to effectively 
represent the relationship between a parent node and its children, most 
of all when information about attributes is associated to the nodes and 
the main problem to solve is how to promulgate attribute values up the 
tree through recursive aggregation operations occurring at the “and/or” 
nodes. OWA-based aggregations have been introduced to generalize 
“and” and “or” operators starting from the observation that in between 
the extremes “for all” (and) and “for any” (or), terms (quantifiers) like 
“several”, “most”, “few”, “some”, etc. can be introduced to represent 
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the different weights associated to the nodes in the aggregation. The 
aggregation process taking place at an OWA node depends on the 
ordered position of the child nodes but it does not take care of the 
possible interactions between the nodes. In this paper, we propose to 
overcome this drawback introducing the Choquet integral whose 
distinguished feature is to be able to take into account the interaction 
between nodes. At first, the attack tree is valuated recursively through 
a bottom-up algorithm whose complexity is linear versus the number 
of nodes and exponential for every node. Then, the algorithm is 
extended assuming that the attribute values in the leaves are unimodal 
LR fuzzy numbers and the calculation of Choquet integral is carried 
out using the alpha-cuts. 

1. Introduction 

The fraud surveys carried out in the last five years by leading 
international consulting companies (see, e.g., KPMG Fraud Survey [33]) 
demonstrate that fraud is an increasing phenomenon depending most of all on 
behavioural aspects. Therefore, when addressing fraud detection processes 
the adoption of traditional statistical techniques comes out to be not as 
adequate as those based on the evaluations of experts using computational 
intelligence techniques based on network models. 

One of the most widely used techniques to serve as a formal 
representation of the possible sequences of events/actions leading to an 
attack to some kind of asset are attack trees developed by Schneier [45, 46]. 
Basically, attacks against a system/person are represented in a tree structure 
where the goal is the root node and child nodes denote the different ways of 
achieving that goal. When using attack trees to model a fraud detection 
process, evaluation procedures involving the information about attributes are 
to be carried on. The information is usually associated to the child nodes and 
transferred to the root node via operations occurring at the “and” and/or” 
operators. 

As Yager [55] pointed out, in many real world applications related to 
security problems the “and/or” logic is not adequate to effectively represent 
the relationships between a parent node and its children, and therefore he 
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proposed an extension of the “and/or” attack trees to what he called OWA 
trees. The OWA trees are based on a class of aggregating operators (Yager, 
[51, 53], Yager and Kacprzyk [54]) called Ordered Weighted Averaging 
(OWA) operators and aim at providing a generalization of the “and” and “or” 
operators. 

The aggregation process taking place at an OWA node depends on the 
ordered position of the child nodes but it does not take care of the possible 
interactions between the nodes. One way to overcome this drawback of the 
OWA operator is to introduce the Choquet integral (Choquet [8]) whose 
distinguished feature is to be able to take into account the interaction 
between nodes, ranging from redundancy (negative interaction) to synergy 
(positive interaction). 

In this paper, we show how to use the Choquet integral to extend the 
OWA-based attack trees (Yager [55]) assuming that the attack tree is 
valuated recursively through a bottom-up algorithm whose complexity is 
linear versus the number of nodes and exponential for every node. Then, the 
algorithm is further extended assuming that the attribute values in the leaves 
are unimodal LR fuzzy numbers and the calculation of Choquet integral is 
based on alpha-cuts. 

The paper is organized as follows. In Section 2, we introduce the notion 
of attack tree and its extension to the OWA-based setting. In Section 3, we 
summarize some basic results regarding the Choquet integral. In Section 4, 
we show how to use the Choquet integral to valuate the attack tree via a 
bottom-up algorithm, starting from the attributes’ values associated to the 
leaves. In Section 5, the algorithm is extended assuming that values on the 
leaves are unimodal LR fuzzy numbers and the computation of Choquet 
integral is performed through the introduction of alpha-cuts and thus based 
on interval-valued functions. The last section is devoted to conclusions and 
perspectives on future work. 

2. Attack Trees and Aggregation Operators 

The attack tree technique, as proposed by Schneier [45, 46], provides a 
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structured approach to fraud detection showing the possible attack goals, 
their respective technical difficulty, severity (cost) of impact, and likelihood 
of detection. Using attack trees the different ways in which a system can be 
attacked are systematically classified, and the out-coming graphical notation 
is appealing to practitioners and easy to be automated. 

An attack tree is a tree in which the nodes represent the elementary 
components of an attack. While the root node is the global goal the potential 
fraudster would like to achieve, children of a node are components 
representing refinements of this goal, and leaves are components than cannot 
be refined anymore. Figure 1 shows an example from Schneier [45] where 
the main goal is to open a safe. 

 

Figure 1. Schneier’s attack tree for opening safe. 

The basic components of an attack tree are therefore “and” nodes and 
“or” nodes, where an “and” node describes a situation in which all the 
children must be satisfied while an “or” node requires at least one of the 
children to be satisfied. 
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In many applications of attack trees, information about attributes is 
commonly associated to the leaves and to the other nodes as well and one of 
the main problem to be solved becomes how to promulgate the information 
up the tree until it reaches the root node. The process of transferring attribute 
information up the tree is carried out by the introduction of aggregation 
operations occurring at the “and/or” nodes. 

In most of the applications addressing the design of fraud detection 
systems “and/or” nodes are not suitable to represent the complex 
relationships between the parents nodes and their children and therefore the 
problem to solve is to introduce a more rich aggregation apparatus able to 
extend the capabilities of “and/or” tree structure. 

The semantics of aggregation are actually so many that is not easy to 
classify the corresponding aggregation operators. There are cases where it is 
required that high and low inputs average each other, in some cases 
aggregation should model conjunction and disjunction logical connectives in 
order to reinforce the inputs each other, etc. For an extensive treatise on 
aggregation functions see Beliakov et al. [2] and Grabisch et al. [29]. 

The most commonly used aggregation operator is the weighted average 
which computes a convex linear combination of the criteria through a pre-
defined set of nonnegative weights. The weighted average is widely used for 
many real world problems. Even if simple and easy to be understood and 
explained also to non-expert users, the weighted average is a compensative 
method. In fact, given its linear nature, an highly scored attribute can 
compensate a lower scored one, implying the satisfaction of the independent 
preference axiom. As a consequence, no interactions among the attributes is 
possible, and this characterization strongly conveys the preference structure 
defined by it to very particular cases. 

In some cases, as for the attack trees, the attributes are organized into a 
hierarchical form, and the evaluation is top-down computed for each node of 
the tree. 

The aggregation of attributes along the tree can be carried out using the 
OWA operators (Yager [51]) which provide a generalization of “and” and 
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“or” operators observing that “and” and “or” are specific examples of the 
quantifiers introduced by Zadeh [60]. Therefore, in between the extreme 
quantifiers “for all” (and) and “for any” (or), terms like “several”, “most”, 
“few”, “some”, “at least one half”, etc. can be used to highlight the different 
weight associated to the nodes in the aggregation process. According to 
Yager [55], the basic component of the attack tree becomes the OWA node 
which is characterized by a vector w whose dimension is equal to the number 
of children emanating from this node. 

The aggregation process taking place at an OWA node depends on the 
ordered position of the child nodes but it does not take care of the possible 
interactions between the nodes. One way to overcome this drawback of the 
OWA operator is to introduce the Choquet integral (Choquet [8]) whose 
distinguished feature is to be able to take into account the interaction 
between nodes, ranging from redundancy (negative interaction) to synergy 
(positive interaction). 

Moreover, the Choquet integral is mathematically well founded and 
characterized (Klement et al. [32]). Many applications in multi-criteria and 
multi-attribute decision aid are reported (Grabisch [22]; Grabisch et al. [28]; 
Grabisch and Labreuche [30]), but we remark that even if its generalizing 
properties are surely a gain, an heavier computational load is required, since 
many more parameters are required than in simpler cases. To wit, a fuzzy 
measure assigns a weight to every possible coalition of criteria, and a 
monotonicity condition needs to be satisfied. The weight of a coalition can 
be greater or lower than the sum of the weights of the elements of every its 
partition. If the equality holds, then the operator degenerates to the weighted 
average. The Choquet integral includes the weighted average, the min and 
the max operator, the OWA, the k-statistic and other aggregation operators, 
showing a wide generality. The most critical issue to address when 
introducing the Choquet integral is the definition of the measure sets. In 
many problems their value can be directly obtained from fuzzy measure, 
even if a nonlinear high dimensional optimization problem needs to be 
solved (Grabisch et al. [26]). In fact, since a weight is assigned to every 
possible criteria subsets, the number of the parameters exponentially 
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increases with the cardinality of the criteria set. Anywise, for human decision 
problems, since the fuzzy measure values reflect the expert’s preference 
structure, they can be indirectly obtained by means of, e.g., a questionnaire 
(Despic and Simonovic [10]). Moreover, the expert’s attitude to pessimism or 
to optimism can be computed from the fuzzy measure, by means of a so 
called andness (orness) index. To downsize the numerical complexity, a 
reduced order model can be applied, admitting interactions only for low 
cardinality criteria coalitions (Grabisch [23]; Grabisch and Roubens [25]). 

3. Preliminary Concepts on Choquet Integral 

Consider a finite set of elements { }....,,3,2,1 nN =  A (discrete) fuzzy 

measure μ (also called capacity) defined on N is a set function →μ N2:  

[ ]1,0  satisfying 

(1) ( ) ( ) 1,0 =μ=∅μ N  (boundary conditions), 

(2) ( ) ( ) NTSTSTS ⊆∀μ≤μ⇒⊆ ,,  (monotonicity condition). 

Let we remark that removing the monotonicity condition one can model 
strong conflicting effects (Cardin and Giove [4]; De Waegenaere and Wakker 
[9]; Murofushi et al. [41]; Rèbillè [43]). Moreover, the values of fuzzy 
measure can be fuzzified (Giove [19]; Meyer and Roubens [38]; Yang et al. 
[56]). 

Assigning a different weight to every coalition, this fuzzy measure can 
represent positive and negative interactions among the criteria (Marichal [35, 
36]). 

Given two coalitions ,, NTS ⊆  with ,∅=TS ∩  the fuzzy measure is 

said to be additive if ( ) ( ) ( ),TSTS μ+μ=μ ∪  sub-additive if ( ) <μ TS ∪  

( ) ( ),TS μ+μ  and super-additive if ( ) ( ) ( ),TSTS μ+μ>μ ∪  with respect to 
the two coalitions S, T. 

A sub-additive fuzzy measure models a redundant effect, a super-
additive models a synergic effect, while in the additive case we obtain a 
linear fuzzy measure. 
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Given a fuzzy measure μ an equivalent representation is obtained 
through the Möbius transform (Rota [44]) 

 ( ) ( ) ( )∑
⊆

−
μ ⊆μ−=

TS

st NTSTm ,,1  (3.1) 

where s and t denote the cardinality of the coalitions S and T. 

Conversely, given the Möbius transform ,μm  the associated fuzzy 

measure μ is obtained as 

 ( ) ( ) .,∑
⊆

μ ⊆=μ
TS

NTSmT  (3.2) 

Anywise, not every set of n2  real numbers can be the Möbius values of a 
fuzzy measure, they need to satisfy (Chateauneuf and Jaffray [6]) 

( ) ( ) ( )∑ ∑
⊆ ⊆

∈⊆≥==∅
NT TS

NiiNTiSmTmm .,\,0,1,0 ∪  (3.3) 

A fuzzy measure μ is said to be 2-additive (Grabisch [23]) if ( ) 0=μ Tm  for 

all ,NT ⊆  with ,2>t  and there exists at least one coalition NT ⊆  with 

2=t  such that ( ) .0≠μ Tm  

For 2-additive fuzzy measures we have simply 

 ( ) ( ) ( )
{ }

.,
,

∑ ∑
∈ ⊆

μμ ⊆+=μ
Ti Tji

NTijmimT  (3.4) 

Definition 3.1. Let μ be a fuzzy measure on N. The discrete Choquet 
integral of a function [ ]1,0: →Nf  with respect to μ is defined by 

( ) ( )( ) ( )( ) ( )( )[ ] ( ( ) )∫ ∑
=

μ μ−−==μ
n

i
iAififnffCfd

1
,1...,,1  (3.5) 

where ( )i  indicates a permutation on N so that ( )( ) ( )( ) ( )( ),21 nfff ≤≤≤  

and ( ) ( ) ( ){ }....,, niA i =  Also ( )( ) .00 =f  
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From now on we call ( ) ,ixif =  so the Choquet integral of the vector 

( ) [ ]nnxxx 1,0...,,, 21 ∈  with respect to the fuzzy measure μ is as follows: 

 ( ) ( ( ) ( ) ) ( ( ) )∑
=

−μ μ−=
n

i
iiin AxxxxC

1
11 ,...,,  (3.6) 

where ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ },...,,,,...,,, 2121 niAxxxxxxx inni =≤≤≤∈  and 

( ) .00 =x  

The Choquet integral is nothing else than a linear combination of the 
marginal gains (differences) between the ordered criteria. In this sense, it 
extends the weighted average, but in it is not a linear operator, because it 
requires a preliminary ordering between the criteria. Alternatively, the 
Choquet integral can be written as 

 ( ) ( )( ( ( ) ) ( ( ) ))∑
=

+μ μ−μ=
n

i
iiin AAxxxC

1
11 ,...,,  (3.7) 

where ( ) .1 ∅=+nA  

For instance, if ,132 xxx ≤≤  we have 

( ) ( ) ( )[ ] ( ) ( )[ ] ( ).111,31,31,3,2...,, 1321 μ+μ−μ+μ−μ=μ xxxxxC n  (3.8) 

The Choquet integral satisfies several properties (see, e.g., Grabisch [22]; 
Marichal [34]; Ghirardato and Le Breton [17]) and for the purposes of our 

paper we recall the following ones (for all [ ] )1,0, n∈′xx  

( ) ( )nnii xxxCxxxCNixx ′′′≤⇒∈∀′≤ μμ ...,,,...,,, 2121  (Monotonicity) 

 (3.9) 

( ) ( )nnii xxxCxxxCNixx ′′′<⇒∈∀′< μμ ...,,,...,,, 2121  (Strict Monotonicity) 

 (3.10) 

( ) ( ) ( )....,,,max...,,,...,,,min 212121 nnn xxxxxxCxxx ≤≤ μ  (3.11) 

Moreover, Choquet integral is continuous. 
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Let we remark that if the fuzzy measure is additive, it coincides with the 
weighted average, and if every subset with the same cardinality has the same 
measure, it collapses into the OWA operator (Fodor et al. [14]; Grabisch, 
[20]). 

Using the Möbius transform, the Choquet integral can be alternatively 
written as (Marichal [34]) 

 ( ) ( ) { }∑
⊆ ∈μμ =

NT
iTin xTmxxxC .min...,,, 21  (3.12) 

In the case of 2-additive fuzzy measures, we have simply 

 ( ) ( ) ( ) { }
{ }

∑ ∑
∈ ⊆

μμμ +=
Ni Nji

jiin xxijmximxxxC
,

21 .,min...,,,  (3.13) 

The more or less tendency to pessimism or to optimism of an expert can 
be featured by his own fuzzy measure. In particular, we consider the andness 
index together with its complementary orness index (Dujmovic [12]). If the 
orness index is close to 0 (andness ),1=  the fuzzy measure reflects a 

pessimistic behaviour of the decision maker, and its Choquet integral is 
nothing else that the min operator, i.e., the logical conjunction of the criteria 
values (conservative behaviour of the decision maker). On the opposite, 
when orness ,1=  the fuzzy measure reflects an optimistic behaviour of the 

decision maker and the Choquet integral becomes the max operator, i.e., the 
logical disjunction of the criteria values (fully compensative). For any 
Choquet integral we have 

 ( ) ( )∑
⊆

μμ +
−

−
=

NT
Tmt

tn
nCorness 11

1  (3.14) 

being ( )Tmμ  the Möbius values of the fuzzy measure. Moreover, 

( ) ( )μμ −= CornessCandness 1  for any fuzzy measure μ on N. Both indices 

can be easily computed given the values of the fuzzy measure. Shapley 
power and interaction indices as well can be computed (Shapley [47]; 
Murofushi [40]; Grabisch and Roubens [24]) together with other ones like 
veto and favour indices (Marichal [35]). 
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4. The CAT Algorithm 

The main scope we would like to achieve through the use of Choquet 
integral is to combine the inputs in such a way that not only the importance 
of individual inputs as in weighted means, or their magnitude as in OWA, 
matter, but the importance of their coalitions as well. It means that an input 
might be not relevant by itself becoming very important when merged with 
some other inputs. 

We start considering the Choquet-based aggregation in a single node of 
the attack tree. According to the scheme proposed by Yager [55] for the 

OWA trees, we associate to each node a fuzzy measure [ ],1,02: →μ N  

defined on the set N of his child nodes. 

As special cases, if we consider the fuzzy measure 

 ( )
⎩
⎨
⎧ =

=μ
otherwise,0

,1 NT
Tand  (4.1) 

then the node corresponds to an “and” node, while if we consider the fuzzy 
measure 

 ( )
⎩
⎨
⎧ ∅≠

=μ
otherwise,0

,1 T
Tor  (4.2) 

then the node corresponds to an “or” node. 

Now we want to evaluate the attributes associated with the tree. Suppose 
that a node has n children, and denote ix  is the attribute value associated 

with the child i, see Figure 2. We want to assign to this node a single 
attribute value, aggregating the values { }....,,, 21 nxxx  We do this by means 

of the Choquet integral with respect to the fuzzy measure μ associated                 
to this node. Therefore, we obtain for the node the attribute value 

( ),...,,, 21 nxxxCμ  see Equation (3.7). 
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Figure 2. A node with attribute valued children. 

Again, as special cases, if we consider the fuzzy measure ,andμ  we 

obtain 

( ) ( )( ( ( ) ) ( ( ) ))∑
=

+μ μ−μ=
n

i
iandiandin AAxxxxC and

1
121 ...,,,  

( ) ( ),...,,min 11 nxxx ==  (4.3) 

and if we consider the fuzzy measure ,orμ  we obtain 

( ) ( )( ( ( ) ) ( ( ) ))∑
=

+μ μ−μ=
n

i
ioriorin AAxxxxC or

1
121 ...,,,  

 ( ) ( ),...,,max 1 nn xxx ==  (4.4) 

thus andμ  performs the same as an “and”, and orμ  performs the same as an 

“or”. 

For any other choice of the fuzzy measure μ, according to Equation 
(3.11), we obtain 

( ) ( ) ( )....,,,max...,,,...,,,min 212121 nnn xxxxxxCxxx ≤≤ μ  (4.5) 

From now on, we simply say nodes values instead of attribute values on the 
nodes. 

Now we show how Choquet integral can be used to valuate the attack 
tree via a bottom-up algorithm, starting from the leaves. At first, each leaf 
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contains a numerical value, while the remaining nodes are empty. Moreover, 
each empty node will be characterized by its own fuzzy measure referring to 
every coalition of child nodes converging to it. To each node i of the tree, 

except leaves nodes, is assigned a fuzzy measure [ ],1,02: →μ iN
i  where 

iN  is the set of the child nodes of the ith node. We will obtain the value of 

the ith node aggregating, through Choquet integral, the values of the child 
nodes converging to it. 

The attack tree is then described as a triplet { },,, μValNodeTree =  

where 

- Node is a vector of dynamical arrays whose ith row contains the 
parents of the ith node. For the root node, it is the null set 

- Val is a vector containing for the leaves the original value and for the 
remaining the aggregated value 

- μ  is a vector of dynamical arrays whose ith row contains the values of 

fuzzy measure associated to the ith node. 

Note that we require 22 −iN  coefficients in [ ]1,0  in order to define 

the fuzzy measure iμ  being ( ){ }ijNodejNi == :  the set of the child nodes 

of the ith node. 

For instance, consider the following tree containing 8 nodes and assume 
that the values attached to the 5 leaves are (0.5, 0.9, 0.1, 0.6, 0.4). 

 

Figure 3. A tree containing 8 nodes. 
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Accordingly, the tree can be represented as { },,, μValNodeTree =  

where 

.,

4.0

6.0

1.0

9.0

5.0
,

1

132

3

32

32

1

1

3

2

1

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
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⎢
⎢

⎣

⎡

−

−

−

−

−
=

⎥
⎥
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⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
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⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∗

∗

∗

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡−

=

μ

μ

μ

μValNode  

Clearly, the fuzzy measures associated to the nodes 1, 2, 3, need to be 

specified trough vectors with cardinality ,6,14224 =−  and 6 respectively; 
in particular: 

( ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),7,3,8,2,7,2,3,2,8,7,3,2 111111111 μμμμμμμμ=μ  

 ( ) ( ) ( ) ( ) ( ) ( )).8,7,3,8,7,2,8,3,2,7,3,2,8,7,8,3 111111 μμμμμμ  

The following pseudo-Pascal code describes the CAT algorithm, a top-down 
recursive algorithm which computes the aggregate value. 

// input: the vector Tree 

// output: the value of the aggregated Choquet integral 

READ { }μValNodeTree ,,=  

PROCEDURE ( );,,Choquet:CV xμ N=  // input: set N of child nodes, 

 // vector x of values and values 

 // of fuzzy measure μ; output: 

 // the aggregated value CV 

( ( ) ( ) ) ( ( ) )∑
=

− μ⋅−=
n

i
iii AxxCV

1
1  // Choquet computation, see formula (3.6) 
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END CV; 

PROCEDURE CAT ( );B,μ  

1:j =  

REPEAT 

IF ( )( ) THENjBVAL ∗≠  

 ( ) ( )( )jBVAL:jx =  

ELSE 

 ( ) ( ){ }jBkNode:Nk:A =∈=  

 ( ) ( ( ) );A,CAT:jx jBμ=  

;1j:j +=  

UNTIL ( )Bcardj >  

CAT := Choquet ( );,B, xμ  

END CAT; 

( ){ };1jNode:Nj:B =∈=  // determine the children set of the root node 

WRITE Output ( )B,CAT: 1μ=  // call the procedure with the root values and  

 // print the result 

The algorithm runs top-down in a recursive way, and furnishes the 
aggregated Choquet values. The complexity is linear versus the number of 
nodes, and exponential for every node, but usually the cardinality of the set 
of the child nodes of each node is small enough to make the computation 
efficient. 

As an illustrative example, consider the attack tree in Figure 1 and label 
the 13 nodes as OpenSafe = 1, PickLock = 2, LearnCombo = 3, …, 
GetTargetToStateCombo = 13. 
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Moreover, suppose that the (normalized) leaves values are: 

PickLock (node 2) = 0.5 

CutOpenSafe (node 4) = 0 

Install-Improperly (node 5) = 0.2 

FindWritenCombo (node 6) = 0.9 

Threaten (node 8) = 0 

BlackMail (node 9) = 0.4 

Bribe (node 11) = 0.5 

ListenToConversation (node 12) = 0.6 

GetTargetToStateCombo (node 13) = 0.2. 

Thus Tree is defined as { },,, μValNodeTree =  where 

⎥
⎥
⎥
⎥
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⎢
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μ

μ

μ

μ

μValNode  

and the capacities associated to the nodes 1, 3, 7, 10 need to be specified 
trough vectors with cardinality 14, 2, 14 and 2 respectively. Introduce now 
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the following measures: 

( ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),4,3,5,2,4,2,3,2,5,4,3,2 111111111 μμμμμμμμ=μ  

( ) ( ) ( ) ( ) ( ) ( ))5,4,3,5,4,2,5,3,2,4,3,2,5,4,5,3 111111 μμμμμμ  

( )1,6.0,4.0,7.0,6.0,2.0,7.0,3.0,3.0,3.0,1.0,3.0,1.0,2.0=  

( ) ( ){ } { }9.0,6.07,6 333 =μμ=μ  

{ ( ) ( ) ( ) ( ) ( ) ( ) ( ),11,8,10,8,9,8,11,10,9,8 77777777 μμμμμμμ=μ  

( ) ( ) ( ) ( ) ( ),11,9,8,10,9,8,11,10,11,9,10,9 77777 μμμμμ  

( ) ( )} { }1,1,1,1,1,1,1,1,1,1,1,1,1,111,10,9,11,10,8 77 =μμ  

( ) ( ){ } { }.0,013,12 101010 =μμ=μ  

Note that the nodes 7 and 10 correspond to “and” and “or” nodes 
respectively. Therefore, 7μC  corresponds to the max operator and 10μC  

corresponds to the min operator. 

Moreover, 1μ  is a 2-additive fuzzy measure, and if we compute the 
orness indices, see Equation (3.10), we obtain 

( ) ( ) ( ) ( ) .0,1,4
3,12

5
10731

==== μμμμ CornessCornessCornessCorness  

Applying the CAT algorithm we obtain 

( ) ( ) ( ) 2.02.0,6.0min,min, 1312131210 10 ==== μ xxxxCx  

( ) ( )1110981110987 ,,,max,,,7 xxxxxxxxCx == μ  

( ) 5.05.0,2.0,4.0,0max ==  

( ) ( ) ( ) 74.06.05.09.05.05.0,9.0, 33 763 =⋅−+=== μμ CxxCx  

( ) ( )2.0,0,74.0,5.0,,, 11 54321 μμ == CxxxxCx  

( ) ( ) ( ) .194.01.05.074.03.02.05.04.002.00 =⋅−+⋅−+⋅−+=  
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So far, the risk of an attack is low even though the first two child nodes of 
the root, PickLock and LearnCombo are medium-high valued (0.5 and 0.74 
respectively), because the relative coalition weights are relatively small. 

Finally, let us remark that among the existing methods used to assign the 
values of the capacities, we decided to adopt the one proposed by Despic and 
Simonovic [10], based on a questionnaire to be submitted to the experts in 
order to achieve their subjective evaluations of the leaves. 

5. Extension to Fuzzy-valued Attributes 

The estimation of the attributes’ values along the attack tree is usually 
based on data type depending on subjective judgments, most commonly 
represented by natural language expressions. Following Zadeh [58, 59], here 
we assume to translate these expressions into the mathematical formalism of 
possibility measures and to represent the numeric imprecision of attributes’ 
values using unimodal LR fuzzy numbers, as fuzzy subsets of the set of real 
numbers (Dubois and Prade [11]). 

Definition 5.1. A unimodal LR fuzzy number A is defined by 

 ( )

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

+≤≤⎟
⎠
⎞

⎜
⎝
⎛ −

≤≤−⎟
⎠
⎞

⎜
⎝
⎛ −

=

,else0

,for

,for

2
2

1
1

aaxaa
axR

axaaa
xaL

xA  (5.1) 

where Ra ∈  is the peak of A, 0>α  and 0>β  are the left and the right 

spread, respectively, and [ ] [ ]1,01,0:, →RL  are two strictly decreasing 

continuous shape function such that ( ) ( ) 100 == RL  and ( ) ( ) .011 == RL  
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Figure 4. Unimodal LR fuzzy number. 

In this section, the CAT algorithm is extended assuming that values on 
the leaves are unimodal LR fuzzy numbers. Extending the Choquet integral 
to a fuzzy domain several forms of information can be handled at the same 
time, i.e., crisp data, interval values, fuzzy numbers and linguistic variables 
(Yang et al. [56]). 

At first, the Choquet integral is defined for a measurable interval-valued 
function (Aumann [1]), and then it is extended to fuzzy integrand using the 
alpha-cuts (Grabisch et al. [21]). 

From now on, we introduce the following notations: 

• I  the set of interval numbers (rectangular fuzzy numbers). 

• { }nN ...,,2,1=  a set of elements. 

• I→NF :  an interval-valued function. 

• ( )iFL  and ( )iFR  respectively the left end point and the right end 

point of the interval ( ).xF  

• F  the set of all unimodal LR-type fuzzy numbers. 

• [ ]αα AA RL ,  the alpha-cut of fuzzy number A. 

• F→Φ N:  a unimodal LR fuzzy-valued function. 
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• tree,-F  an attack tree whose leaves’ values are unimodal LR fuzzy 

numbers. 

The following definitions are due to Yang et al. [56]: 

Definition 5.2. ( )iF  is measurable if both ( )iFL  and ( )iFR  are 

measurable functions. 

Definition 5.3. The Choquet integral of ( )iF  with respect to a fuzzy 

measure μ is defined as 

( ) ( ) ( ) .measurableand,∫ ∫ ⎭
⎬
⎫

⎩
⎨
⎧ ∈∀∈|μ=μ iGNiiFiGGdFd  

Definition 5.4. ( )iΦ  is measurable if its alpha-cuts ( )iαΦ  are measurable 

interval-valued functions for every ( ].1,0∈α  

Definition 5.5. Given a measurable fuzzy-valued function ( )iΦ  on N 

and a fuzzy measure μ on ,2N  the Choquet integral of ( )iΦ  with respect to 

μ is defined as 

 ∫ ∫
≤α≤

α μΦα=μΦ ∪
10

.dd  (5.2) 

Accordingly, the calculation of the Choquet integral with a fuzzy-valued 
function depends on the calculation of the Choquet integral with interval-
valued functions, and the following proposition can be proved (Grabisch et 
al. [21]). 

Proposition 5.1. Given the measurable interval-valued function αΦ  and 

the fuzzy measure μ on ,2N  the Choquet integral of  αΦ  with respect to μ is 

 ∫ ∫ ∫ ⎥⎦
⎤

⎢⎣
⎡ μΦμΦ=μΦ ααα ., ddd RL  (5.3) 

Therefore (5.2) becomes 

 ∫ ∫ ∫
≤α≤

αα
⎥⎦
⎤

⎢⎣
⎡ μΦμΦα=μΦ ∪

10
., ddd RL  (5.4) 
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Consider now an F-tree whose leaves’ values are unimodal LR fuzzy 
numbers. 

To prove that the root value is still a unimodal LR fuzzy number, we 
introduce the following. 

Proposition 5.2. The Choquet integral of unimodal LR fuzzy numbers is 
still a unimodal LR fuzzy number. 

Proof. A generic unimodal LR fuzzy number A is characterized by an 

alpha-cut [ ],, αα AA RL  where αL  and αR  are strictly monotonic continuous 

functions (with respect to α). 

Consider now a set of unimodal LR fuzzy numbers { }....,,1 kAA  If we 

aggregate these fuzzy numbers through Choquet integral with respect to a 
fuzzy measure μ, we obtain a fuzzy number A characterized by the alpha-cut 

[ ],, αα AA RL  where, see Equation (5.3), 

 [ ] [ ]....,,,...,, 11
αα

μ
ααα

μ
α == k

RRR
k

LLL AACAAACA  (5.5) 

In fact, from the strict monotonicity of the Choquet integral, and given that 
the lower bound of each alpha-cut is less than the relative upper bound, we 

have .αα < AA RL  

Moreover, if we consider 10 21 ≤α<α≤  since 21 αα < i
L

i
L AA  and 

,...,,121 kiAA i
R

i
R =∀> αα  from the strict monotonicity of the Choquet 

integral we have 

 .2121 αααα >< AAAA RRLL  (5.6) 

Then αL  and αR  are strictly monotonic functions (with respect to α). 
Moreover, since Choquet integral is a continuous aggregation function, all 
α
iL  and α

iR  are continuous functions ,...,,1 ki =∀  and the composition of 

continuous functions is continuous, then it follows that αL  and αR  are 
continuous functions (with respect to α). 
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Therefore, the Choquet integral of unimodal LR fuzzy numbers is still a 
unimodal LR fuzzy number. 

Then, as an immediate consequence of Prop. 5.2, starting from the leaves 
and carrying on a bottom-up Choquet aggregation, the obtained tree root’s 
value is again a unimodal (continuous) LR fuzzy number. 

This result holds even when the same fuzzy sub-node’s value is referred 
to two or more different higher-level nodes, like the nodes 4, 5 and 7 in the 
Figure 3, all of them connected to the nodes 2, 3. The two interactive fuzzy 
nodes 2 and 3 can be separately computed and again aggregated to the node 1 
(with the leave node 8). Let us remark that the nodes 2 and 3 are interactive 
because they are functions of the same two variables 4, 5 and 7. 

The fuzzy attribute value in the root can be computed applying the 
algorithm described in the Section 4 to every alpha-cut of the fuzzy attribute 
values on the leaves. 

The algorithm proceeds as described below. First of all, the alpha-cuts of 
each unimodal LR fuzzy number in the leaves will be considered, using a 
suitable grid. The procedure receives the extremes of the alpha-cut, and 
computes the aggregated value for both the lower and the upper bounds. 
Increasing the values of alpha in between [ ],1,0  the two computed values 

form and interval included in the previous ones (for lower value of alpha). 
Thus the obtained intervals form the alpha-cuts of the fuzzy root, the required 
solution. 

The pseudo-Pascal code describes the generalized fuzzy-CAT algorithm. 
For simplicity, we consider only the alpha-cut computation; an external tool 
will be devoted to the computation of the alpha-cut extremes of the leaves 
fuzzy nodes, using a loop over a pre-fixed number of iterations. 

Fuzzy-CAT algorithm (for the alpha-cut) 

// input: the vector fuzzy Tree 

// output: the value of the aggregated Choquet integral 
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// here ( ) [ ( ) ( )],, iValiValiVal RL=  the two extremes of the alpha-cut; the 

same for ( ) [ ( ) ( )]ixixix RL ,=  

READ { }μValNodeTree ,,=  

PROCEDURE ( );,,Choquet:CV xμ N=  // input: set N of child nodes,  

 // vector x of fuzzy values and 

 // values of fuzzy measure μ, 

 // output: the aggregated fuzzy 

 // value CV 

( ( ) ( ) ) ( ( ) )∑
=

− ⋅−=
n

i
i

L
i

L
iL AmxxCV

1
1  // Choquet computation for the lower  

 // bound 

( ( ) ( ) ) ( ( ) )∑
=

− ⋅−=
n

i
i

R
i

R
iR AmxxCV

1
1  // Choquet computation for the upper 

 // bound 

END CV; 

PROCEDURE CAT ( );B,μ  

1:j =  

REPEAT 

IF ( )( ) THENjBVAL ∗≠  

 ( ) ( )( )jBVAL:jx LL =  

 ( ) ( )( );jBVAL:jx RR =  

ELSE 

 ( ) ( ){ }jBkNode:NkA =∈=  

 ( ) ( ( ) );A,jBCAT:jx LL =  
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 ( ) ( ( ) );A,jBCAT:jx RR =  

;1j:j +=  

UNTIL ( )Bcardj >  

CAT := Choquet ( );,B, xμ  

END CAT; 

( ){ };1jNode:Nj:B =∈=  // determine the children set of the root node 

WRITE Output ( )B,CAT: 1μ=  // call the procedure with the root values and 

 // print the result 

The algorithm computes the lower and the upper bounds for the aggregated 
fuzzy Choquet values. The complexity is obviously the same of the basic 
CAT algorithm. 

6. Conclusions 

In this paper, our main concern has centered on the development on a 
framework for improving the effectiveness of the aggregation of the 
information along the so called attack trees (Schneier [45]). When addressing 
fraud detection problems, a suitable approach is represented by the 
introduction of a tree structure where the goal is represented by the root node 
and child nodes represent the different ways of achieving that goal. 
Accordingly, evaluation procedures involving the information about 
attributes associated to leave nodes can be carried on via “and” and/or” 
operators. As Yager [54] pointed out, in many real world applications related 
to security problems the “and/or” logic is not adequate to effectively 
represent the relationships between a parent node and its children, and 
therefore he proposed an extension of the “and/or” attack trees to what he 
called OWA-based attack trees. 

In this paper, observing that OWA operators do not consider possible 
interactions between the nodes, we have shown how to use the Choquet 
integral to overcome this weakness of OWA-based attack trees. Then, the 
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algorithm was extended assuming that the attribute values in the leaves are 
unimodal LR fuzzy numbers and the calculation of Choquet integral was 
implemented using the alpha-cuts. 

Future work will be devoted to the extension of our approach to a multi 
experts framework aiming at representing the negotiation process involved in 
the representation and valuation of the attack tree, exploiting the results 
achieved in Giove [18] and Bortot et al. [3]. 
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